

Theory of Bouguet's MatLab Camera Calibration Toolbox: Stereo

Yuji Oyamada

¹HVRL, University

²Chair for Computer Aided Medical Procedure (CAMP)
Technische Universität München

June 5, 2012

Variables

Assumption:

- N cameras observing L key-points resulting M images for each sequence.
- The cameras are fixed meaning relative positions among them are same through the sequence.

Variables:

- \mathbf{a}_j : Intrinsic parameters of j -th camera.
- \mathbf{b}_{ij} : Extrinsic parameters of i -th image of j -th camera.
- \mathbf{x}_{ijk} : k -th key-point of i -th image of j -th camera.

where

- $j = 1, \dots, N$
- $i = 1, \dots, M$
- $k = 1, \dots, L_{ij}$

Variables

The set of extrinsic parameters $\{\mathbf{b}_{ij}\}$ has redundancy because the cameras are fixed.

Introduce another variable \mathbf{r} :

- \mathbf{b}_{ij} : Extrinsic parameters of i -th image of 1st camera.
- \mathbf{r}_j : Extrinsic parameters of j -th camera w.r.t. 1st camera.

Note that \mathbf{r}_1 is equivalent to identity matrix.

Variables

We have observation vector \mathbf{x} and parameters vector \mathbf{p} where

$$\mathbf{x} = (\mathbf{x}_{111}^\top, \dots, \mathbf{x}_{11L_{11}}^\top, \mathbf{x}_{1N1}^\top, \dots, \mathbf{x}_{1NL_{1N}}^\top, \dots, \mathbf{x}_{MN1}^\top, \dots, \mathbf{x}_{MNL_{MN}}^\top)^\top$$

$$= (\mathbf{x}_{11}^\top, \mathbf{x}_{1N}^\top, \dots, \mathbf{x}_{MN}^\top, \dots, \mathbf{x}_{MN}^\top)^\top$$

$$\mathbf{p} = (\mathbf{a}_1^\top, \dots, \mathbf{a}_N^\top, \mathbf{r}_2^\top, \dots, \mathbf{r}_N^\top, \mathbf{b}_1^\top, \dots, \mathbf{b}_M^\top)^\top$$

where $\mathbf{x}_{ij} = (\mathbf{x}_{ij1}^\top, \dots, \mathbf{x}_{ijL_{ij}}^\top)^\top$

Non-linear optimization

Finds optimal parameters \mathbf{p} as

$$\{\{\hat{\mathbf{a}}_j\}\{\hat{\mathbf{r}}_j\}\{\hat{\mathbf{b}}_i\}\} = \arg \min_{\{\mathbf{a}_j\}\{\mathbf{r}_j\}\{\mathbf{b}_i\}} \sum_{i=1}^M \sum_{j=1}^N \sum_{k=1}^{L_{ij}} v_{ijk} \text{dist}(\hat{\mathbf{x}}_{ijk}, \mathbf{x}_{ijk})^2$$

where

- $\hat{\mathbf{x}}_{ijk} = Q(\mathbf{a}_j, \mathbf{b}_i)$ denotes a reprojected point of \mathbf{x}_{ijk} with parameters \mathbf{a}_j and \mathbf{b}_i ,
- a visibility term $v_{ijk} = 1$ iff k -th point is visible in i -th image observed by j -th camera.

Normal equations

$$\mathbf{J}^\top \mathbf{J} \boldsymbol{\delta} = -\mathbf{J}^\top \boldsymbol{\epsilon}$$

where

$$\mathbf{J} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{a}} & \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{r}} & \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{b}} \end{bmatrix} = [\mathbf{ARB}]$$

$$\mathbf{A} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{a}}, \mathbf{R} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{r}}, \mathbf{B} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{b}}$$

$$\mathbf{A}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{a}_j}, \mathbf{R}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{r}_j}, \mathbf{B}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{b}_i}$$

Structure of Jacobian matrix \mathbf{J}

$$\begin{array}{ccccccccc}
\mathbf{a}_1^\top & \mathbf{a}_2^\top & \cdots & \mathbf{a}_N^\top & \mathbf{r}_2^\top & \cdots & \mathbf{r}_N^\top & \mathbf{b}_1^\top & \mathbf{b}_2^\top & \cdots & \mathbf{b}_M^\top \\
\hline
\mathbf{x}_{11}^\top & \mathbf{A}_{11}^\top & & & \mathbf{R}_{12}^\top & & & \mathbf{B}_{11}^\top & & & \\
\mathbf{x}_{12}^\top & & \mathbf{A}_{12}^\top & & & & \mathbf{R}_{12}^\top & & \mathbf{B}_{12}^\top & & \\
\vdots & & & \ddots & & & \ddots & & \vdots & & \\
\mathbf{x}_{1N}^\top & & & & \mathbf{A}_{1N}^\top & & & & \mathbf{R}_{1N}^\top & & \mathbf{B}_{1N}^\top \\
\mathbf{x}_{21}^\top & \mathbf{A}_{21}^\top & & & & & & & & \mathbf{B}_{21}^\top & \\
\mathbf{x}_{22}^\top & & \mathbf{A}_{22}^\top & & & \mathbf{R}_{22}^\top & & & & \mathbf{B}_{22}^\top & \\
\vdots & & & \ddots & & & \ddots & & & & \vdots & \\
\mathbf{x}_{2N}^\top & & & & \mathbf{A}_{2N}^\top & & & & \mathbf{R}_{2N}^\top & & \mathbf{B}_{2N}^\top \\
\vdots & & & & \vdots & & & & \vdots & & \vdots \\
\mathbf{x}_{M1}^\top & \mathbf{A}_{M1}^\top & & & & \mathbf{R}_{M2}^\top & & & & & \mathbf{B}_{M1}^\top \\
\mathbf{x}_{M2}^\top & & \mathbf{A}_{M2}^\top & & & & & & & \mathbf{B}_{M2}^\top & \\
\vdots & & & \ddots & & & \ddots & & & & \vdots \\
\mathbf{x}_{MN}^\top & & & & \mathbf{A}_{MN}^\top & & & \mathbf{R}_{MN}^\top & & & \mathbf{B}_{MN}^\top
\end{array}$$

Sparse LM

- LM is suitable for minimization w.r.t. a small number of parameters.
- The central step of LM, solving the normal equations,
 - has complexity N^3 in the number of parameters and
 - is repeated many times.
- The normal equation matrix has a certain sparse block structure.

Sparse LM

- Let $\mathbf{p} \in \mathbb{R}^M$ be the parameter vector that is able to be partitioned into parameter vectors as $\mathbf{p} = (\mathbf{a}^\top, \mathbf{b}^\top)^\top$.
- Given a measurement vector $\mathbf{x} \in \mathbb{R}^N$
- Let $\sum_{\mathbf{x}}$ be the covariance matrix for the measurement vector.
- A general function $f : \mathbb{R}^M \rightarrow \mathbb{R}^N$ takes \mathbf{p} to the estimated measurement vector $\hat{\mathbf{x}} = f(\mathbf{p})$.
- ϵ denotes the difference $\mathbf{x} - \hat{\mathbf{x}}$ between the measured and the estimated vectors.

Sparse LM

The set of equations $\mathbf{J}\boldsymbol{\delta} = \boldsymbol{\epsilon}$ solved as the central step in the LM has the form

$$\mathbf{J}\boldsymbol{\delta} = [\mathbf{A}|\mathbf{B}] \begin{pmatrix} \frac{\delta_a}{\delta_b} \end{pmatrix} = \boldsymbol{\epsilon}.$$

Then, the normal equations $\mathbf{J}^\top \sum_x^{-1} \mathbf{J}\boldsymbol{\delta} = \mathbf{J}^\top \sum_x^{-1} \boldsymbol{\epsilon}$ to be solved at each step of LM are of the form

$$\left[\begin{array}{c|c} \mathbf{A}^\top \sum_x^{-1} \mathbf{A} & \mathbf{A}^\top \sum_x^{-1} \mathbf{B} \\ \hline \mathbf{B}^\top \sum_x^{-1} \mathbf{A} & \mathbf{B}^\top \sum_x^{-1} \mathbf{B} \end{array} \right] \begin{pmatrix} \frac{\delta_a}{\delta_b} \end{pmatrix} = \left(\begin{array}{c} \mathbf{A}^\top \sum_x^{-1} \boldsymbol{\epsilon} \\ \hline \mathbf{B}^\top \sum_x^{-1} \boldsymbol{\epsilon} \end{array} \right)$$

Sparse LM

Let

- $\mathbf{U} = \mathbf{A}^\top \sum_x^{-1} \mathbf{A}$
- $\mathbf{W} = \mathbf{A}^\top \sum_x^{-1} \mathbf{B}$
- $\mathbf{V} = \mathbf{B}^\top \sum_x^{-1} \mathbf{B}$

and \cdot^* denotes augmented matrix by λ .

The normal equations are rewritten as

$$\begin{bmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^\top & \mathbf{V}^* \end{bmatrix} \begin{pmatrix} \delta_a \\ \delta_b \end{pmatrix} = \begin{pmatrix} \epsilon_A \\ \epsilon_B \end{pmatrix}$$

$$\rightarrow \begin{bmatrix} \mathbf{U}^* - \mathbf{WV}^{*-1}\mathbf{W}^\top & \mathbf{0} \\ \mathbf{W}^\top & \mathbf{V}^* \end{bmatrix} \begin{pmatrix} \delta_a \\ \delta_b \end{pmatrix} = \begin{pmatrix} \epsilon_A - \mathbf{WV}^{*-1}\epsilon_B \\ \epsilon_B \end{pmatrix}$$

This results in the elimination of the top right hand block.

Sparse LM

The top half of this set of equations is

$$(\mathbf{U}^* - \mathbf{WV}^{*-1}\mathbf{W}^\top)\boldsymbol{\delta}_a = \boldsymbol{\epsilon}_A - \mathbf{WV}^{*-1}\boldsymbol{\epsilon}_B$$

Subsequently, the value of $\boldsymbol{\delta}_a$ may be found by back-substitution, giving

$$\mathbf{V}^*\boldsymbol{\delta}_b = \boldsymbol{\epsilon}_B - \mathbf{W}^\top\boldsymbol{\delta}_a$$

Sparse LM

$\mathbf{p} = (\mathbf{a}^\top, \mathbf{b}^\top)^\top$, where $\mathbf{a} = (fc^\top, cc^\top, alpha_c^\top, kc^\top)^\top$ and
 $\mathbf{b} = (\{omc_i^\top \ Tc_i^\top\})^\top$

The Jacobian matrix is

$$\mathbf{J} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{p}} = \left[\frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{a}}, \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{b}} \right] = [\mathbf{A}, \mathbf{B}]$$

where

$$\frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{a}} = \left[\frac{\partial \hat{\mathbf{x}}}{\partial fc}, \frac{\partial \hat{\mathbf{x}}}{\partial cc}, \frac{\partial \hat{\mathbf{x}}}{\partial alpha_c}, \frac{\partial \hat{\mathbf{x}}}{\partial kc} \right]$$

$$\frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{b}} = \left[\frac{\partial \hat{\mathbf{x}}}{\partial omc_1}, \frac{\partial \hat{\mathbf{x}}}{\partial Tc_1}, \dots, \frac{\partial \hat{\mathbf{x}}}{\partial omc_i} \frac{\partial \hat{\mathbf{x}}}{\partial Tc_i}, \dots, \frac{\partial \hat{\mathbf{x}}}{\partial omc_N} \frac{\partial \hat{\mathbf{x}}}{\partial Tc_N} \right]$$

Sparse LM

The normal equation is rewritten as

$$\begin{aligned} & \left(\begin{bmatrix} \mathbf{A}^\top \\ \mathbf{B}^\top \end{bmatrix} [\mathbf{A} \quad \mathbf{B}] + \lambda \mathbf{I} \right) \Delta_{\mathbf{p}} = - \begin{bmatrix} \mathbf{A}^\top \\ \mathbf{B}^\top \end{bmatrix} \epsilon_{\mathbf{x}} \\ & \rightarrow \left(\begin{bmatrix} \sum_{i=1}^N \mathbf{A}_i^\top \mathbf{A}_i & \sum_{i=1}^N \mathbf{A}_i^\top \mathbf{B}_i \\ \sum_{i=1}^N \mathbf{B}_i^\top \mathbf{A}_i & \sum_{i=1}^N \mathbf{B}_i^\top \mathbf{B}_i \end{bmatrix} + \lambda \mathbf{I} \right) \Delta_{\mathbf{p}} = - \begin{bmatrix} \mathbf{A}^\top \epsilon_{\mathbf{x}} \\ \mathbf{B}^\top \epsilon_{\mathbf{x}} \end{bmatrix} \end{aligned}$$

Sparse LM

$$\mathbf{J}^\top \mathbf{J} = \left[\begin{array}{c|cccc} \sum_{i=1}^N \mathbf{A}_i^\top \mathbf{A}_i & \mathbf{A}_1^\top \mathbf{B}_1 & \dots & \mathbf{A}_i^\top \mathbf{B}_i & \dots & \mathbf{A}_N^\top \mathbf{B}_N \\ \hline \mathbf{B}_1^\top \mathbf{A}_1 & \mathbf{B}_1^\top \mathbf{B}_1 & & & & \\ \vdots & & \ddots & & & \\ \mathbf{B}_i^\top \mathbf{A}_i & & & \mathbf{B}_i^\top \mathbf{B}_i & & \\ \vdots & & & & \ddots & \\ \mathbf{B}_N^\top \mathbf{A}_N & & & & & \mathbf{B}_N^\top \mathbf{B}_N \end{array} \right]$$

Sparse LM

$$\mathbf{J}^\top \boldsymbol{\epsilon}_x = \begin{bmatrix} \sum_{i=1}^N \mathbf{A}_i^\top \boldsymbol{\epsilon}_x \\ \hline \mathbf{B}_1^\top \boldsymbol{\epsilon}_x \\ \vdots \\ \mathbf{B}_i^\top \boldsymbol{\epsilon}_x \\ \vdots \\ \mathbf{B}_N^\top \boldsymbol{\epsilon}_x \end{bmatrix}$$

Sparse LM

When each image has different number of corresponding points ($M_i \neq M_j$, if $i \neq j$), each \mathbf{A}_i and \mathbf{B}_i have different size as

$$\left[\begin{array}{c}
 \left[\begin{array}{cccc}
 \frac{dx_1}{dfc(1)} & \frac{dy_1}{dfc(1)} & \dots & \frac{dx_{M_1}}{dkc(5)} & \frac{dy_{M_1}}{dkc(5)} \\
 \end{array} \right] \left[\begin{array}{cccc}
 \frac{dx_1}{domc_1(1)} & \frac{dy_1}{domc_1(1)} & \dots & \frac{dx_{M_1}}{dTc_1(3)} & \frac{dy_{M_1}}{dTc_1(3)} \\
 \end{array} \right] \\
 \\
 \left[\begin{array}{cccc}
 \frac{dx_1}{dfc(1)} & \frac{dy_1}{dfc(1)} & \dots & \frac{dx_{M_1}}{dkc(5)} & \frac{dy_{M_1}}{dkc(5)} \\
 \end{array} \right] \left[\begin{array}{cccc}
 \frac{dx_1}{domc_1(1)} & \frac{dy_1}{domc_1(1)} & \dots & \frac{dx_{M_1}}{dTc_1(3)} & \frac{dy_{M_1}}{dTc_1(3)} \\
 \end{array} \right] \\
 \\
 \left[\begin{array}{cccc}
 \frac{dx_1}{dfc(1)} & \frac{dy_1}{dfc(1)} & \dots & \frac{dx_{M_1}}{dkc(5)} & \frac{dy_{M_1}}{dkc(5)} \\
 \end{array} \right] \left[\begin{array}{cccc}
 \frac{dx_1}{domc_1(1)} & \frac{dy_1}{domc_1(1)} & \dots & \frac{dx_{M_1}}{dTc_1(3)} & \frac{dy_{M_1}}{dTc_1(3)} \\
 \end{array} \right]
 \end{array} \right]$$

Sparse LM

However, the difference does not matter because

$$\mathbf{A}^\top \mathbf{A} \in \mathbb{R}^{d_{\text{int}} \times d_{\text{int}}}$$

$$\mathbf{A}^\top \mathbf{B} \in \mathbb{R}^{d_{\text{int}} \times d_{\text{ex}}}$$

$$\mathbf{B}^\top \mathbf{A} \in \mathbb{R}^{d_{\text{ex}} \times d_{\text{int}}}$$

$$\mathbf{B}^\top \mathbf{B} \in \mathbb{R}^{d_{\text{ex}} \times d_{\text{ex}}}$$

where d_{int} denotes dimension of intrinsic params and d_{ex} denotes dimension of extrinsic params.