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Variables Optimization

Variables

Assumption:

• N cameras observing L key-points resulting M images for each
sequence.

• The cameras are fixed meaning relative positions among them
are same through the sequence.

Variables:

• aj : Intrinsic parameters of j-th camera.

• bij : Extrinsic parameters of i-th image of j-th camera.

• xijk : k-th key-point of i-th image of j-th camera.

where

• j = 1, . . . ,N

• i = 1, . . . ,M

• k = 1, . . . , Lij



Variables Optimization

Variables

The set of extrinsic parameters {bij} has redundancy because the
cameras are fixed.
Introduce another variable r:

• bi : Extrinsic parameters of i-th image of 1st camera.

• rj : Extrinsic parameters of j-th camera w.r.t. 1st camera.

Note that r1 is equivalent to identity matrix.



Variables Optimization

Variables

We have observation vector x and parameters vector p where

x = (x>111, . . . , x
>
11L11 , x

>
1N1, . . . , x

>
1NL1N

, . . . , x>MN1, . . . , x
>
MNLMN

)>

= (x>11, x
>
1N , . . . , x

>
MN , . . . , x

>
MN)>

p = (a>1 , . . . , a
>
N , r
>
2 , . . . , r

>
N ,b

>
1 , . . . ,b

>
M)>

where xij = (x>ij1, . . . , x
>
ijLij

)>



Variables Optimization

Non-linear optimization

Finds optimal parameters p as

{{âj}{r̂j}{b̂i}} = arg min
{aj}{rj}{bi}

M∑
i=1

N∑
j=1

Lij∑
k=1

vijkdist(x̂ijk , xijk)2

where

• x̂ijk = Q(aj ,bi ) denotes a reprojected point of xijk with
parameters aj and bi ,

• a visibility term vijk = 1 iff k-th point is visible in i-th image
observed by j-th camera.



Variables Optimization

Normal equations

J>Jδ = −J>ε

where

J =
∂x̂

∂p
=

[
∂x̂

∂a

∂x̂

∂r

∂x̂

∂b

]
= [ARB]

A =
∂x̂

∂a
,R =

∂x̂

∂r
,B =

∂x̂

∂b

Aij =
∂x̂ij
∂aj

,Rij =
∂x̂ij
∂rj

,Bij =
∂x̂ij
∂bi



Variables Optimization

Structure of Jacobian matrix J



Variables Optimization

Sparse LM

• LM is suitable for minimization w.r.t. a small number of
parameters.

• The central step of LM, solving the normal equations,
• has complexity N3 in the number of parameters and
• is repeated many times.

• The normal equation matrix has a certain sparse block
structure.



Variables Optimization

Sparse LM

• Let p ∈ RM be the parameter vector that is able to be
partitioned into parameter vectors as p = (a>,b>)>.

• Given a measurement vector x ∈ RN

• Let
∑

x be the covariance matrix for the measurement vector.

• A general function f : RM → RN takes p to the estimated
measurement vector x̂ = f (p).

• ε denotes the difference x− x̂ between the measured and the
estimated vectors.



Variables Optimization

Sparse LM

The set of equations Jδ = ε solved as the central step in the LM
has the form

Jδ = [A|B]

(
δa
δb

)
= ε.

Then, the normal equations J>
∑∑∑−1

x Jδ = J>
∑∑∑−1

x ε to be solved
at each step of LM are of the form[

A>
∑∑∑−1

x A A>
∑∑∑−1

x B

B>
∑∑∑−1

x A B>
∑∑∑−1

x B

](
δa
δb

)
=

(
A>
∑∑∑−1

x ε

B>
∑∑∑−1

x ε

)



Variables Optimization

Sparse LM

Let

• U = A>
∑∑∑−1

x A

• W = A>
∑∑∑−1

x B

• V = B>
∑∑∑−1

x B

and ·∗ denotes augmented matrix by λ.
The normal equations are rewritten as[

U∗ W
W> V∗

](
δa
δb

)
=

(
εA
εB

)
→
[
U∗ −WV∗−1W> 0

W> V∗

](
δa
δb

)
=

(
εA −WV∗−1εB

εB

)
This results in the elimination of the top right hand block.



Variables Optimization

Sparse LM

The top half of this set of equations is

(U∗ −WV∗−1W>)δa = εA −WV∗−1εB

Subsequently, the value of δa may be found by back-substitution,
giving

V∗δb = εB −W>δa



Variables Optimization

Sparse LM

p = (a>,b>)>, where a = (fc>, cc>, alpha c>, kc>)> and
b = ({omc i> Tc i>})>
The Jacobian matrix is

J =
∂x̂

∂p
=

[
∂x̂

∂a
,
∂x̂

∂b

]
= [A,B]

where

∂x̂

∂a
=

[
∂x̂

∂fc
,
∂x̂

∂cc
,

∂x̂

∂alpha c
,
∂x̂

∂kc

]
∂x̂

∂b
=

[
∂x̂

∂omc 1
,

∂x̂

∂Tc 1
, · · · , ∂x̂

∂omc i

∂x̂

∂Tc i
· · · , ∂x̂

∂omc N

∂x̂

∂Tc N

]



Variables Optimization

Sparse LM

The normal equation is rewritten as([
A>

B>

] [
A B

]
+ λI

)
∆p = −

[
A>

B>

]
εx

→




N∑
i=1

A>i Ai

N∑
i=1

A>i Bi

N∑
i=1

B>i Ai

N∑
i=1

B>i Bi

+ λI

∆p = −
[
A>εx
B>εx

]



Variables Optimization

Sparse LM

J>J =



N∑
i=1

A>i Ai A>1 B1 · · · A>i Bi · · · A>NBN

B>1 A1 B>1 B1
...

. . .

B>i Ai B>i Bi
...

. . .

B>NAN B>NBN





Variables Optimization

Sparse LM

J>εx =



N∑
i=1

A>i εx

B>1 εx
...

B>i εx
...

B>Nεx


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Sparse LM

When each image has different number of corresponding points
(Mi 6= Mj , if i 6= j), each Ai and Bi have different size as



Variables Optimization

Sparse LM

However, the difference does not matter because

A>A ∈ Rdint×dint

A>B ∈ Rdint×dex

B>A ∈ Rdex×dint

B>B ∈ Rdex×dex

where dint denotes dimension of intrinsic params and dex denotes
dimension of extrinsic params.
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