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Bundle adjustment is an algorithm that estimates all unknown parameters using all available observation.

1 Problem statement

Suppose m cameras observe a static scene/objects at same time and n feature points are totally detected. Our goal
is to estimate the 3D positions of the points and camera parameters.

The 3D position of j-th feature point is represented by a 3D vector as

X, =[X;,Y;,2]", j=1,...,n.

VEESE]
A feature point X ; observed by i-th camera is represented by a 2D vector as x;; = [z}, yij]T. With a 3 x 4
matrix P;, x;; is described as
Lij Xj
x P; 5 1
where
Pi = Ki [Rzltz] . (2)

Here, K;, R;, t; denote the intrinsic parameter, the rotation matrix and the translation vector respectively. Figure I]
shows the camera geometry of target scene.

Bundle adjustment estimates unknown camera parameters and 3D positions of feature points under following
assumption. Let a vector p; pack all unknown parameters of i-th camera. If we have ground truth {p;} and { X },

re-projected feature point

T
TLij [xij yij:|

T
= [comp(x;pi,Xj) comp(y;pi,Xj)}
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should be same on the i-th image. Here, ((P;); denotes k-th row vector of P;) and its observation x;; Thus, the
difference of observation and this re-projection ||x;; — &;;]| |§ should be slight, not zero due to observation error.

Figure [2]illustrates the geometrical relationship.
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Figure 1: Camera Geometry

Figure 2: Re-projection: 2D point case.



Figure 3: Re-projection: 3D point case.

Based on this assumption, Bundle adjustment estimates camera parameters and 3D position of features points

by minimizing the following cost function:

Plph 1) = % 2 (i — comp(@; pi, X;))* + (435 — comp(y; pi, X;))’] 3)
- %Z [(mlj - jij)Q + (yij - Qij)Q] . @)

The cost function Eq. (B) is called re-projection error. This style simultaneous optimization of both unknown
camera parameters and scene structure is called Bundle Adjustment.

Now, we consider applying bundle adjustment to depth camera. Let X;; = [X;; Y;; Zij]T denotes a depth
information of j-th point observed by i-th camera and X; ; denotes re-projected X;; as

. R . " T
Xy = Xy Yy 2y

T
= [Comp(X;pivXj) comp(Y; pi, X;) Comp(Z;pi,Xj)]
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Then, the cost function Eq. (3)) is re-formulated for depth camera as

E({p:}, {X;}) = % Z [(Xz'j - Xij)z + (Vi — ?z‘j)2 + (Zi; — Zij)2] . ®))

%

Figure [3]illustrates the geometrical relationship.



2 Numerical optimization

Let x represent a set of all unknown variables. The cost function E(x) = E (p1,...,Pm,X;,...,X,) is non-
linear function of x, thus, finding x minimizing Eq. (3) is achieved by iterative numerical optimization. Given an
initial guess x, we iteratively update the solution as x — x + éx until the current solution satisfies some conditions.

The core of bundle adjustment is minimization of re-projection error F'(x). Usually, cost function E'(x) forms

sum of squares, popular solution is least-squares method.

2.1 Newton’s method

Newton’s method computes second order derivative, or its approximation.

2.1.1 Gauss-Newton method

The solution x minimizing the cost function should satisfy dE'/dx.
Newton’s method updates current estimate x with an update 0x as x — x + 0x and iterates this update until

convergence. Applying Tailor expansion around current x, we obtain
1
E(x 4+ 6x) = E(x) + g%ox + §5XTH6X, (6)

where g and H are gradient and Hessian at x as

g= Cfo R % ) )

Regarding x as constant, the update x minimizing the right hand side of Eq. (6) is
Hox = —g. ®
Therefore, is H is invertible, the update is 6x = —H~'g. If the current solution x is enough closer to the minimum

value, H is positive-definite that means all eigenvalue is positive. If it’s a case, rapid convergence of the above
udpate is guaranteed.
However, when x is far from the minimum, there is no guarantee that H is positive-definite. Furthermore,

computing H is heavy cost. For this issue, Gauss-Newton method approximates textttH as

Ha~Aa=J77, ©)
where J is Jacovian matrix of F(x) as
dE
5= 4EX) (10)
dx
With Jacobian, Eq. is rewritten as
Adx = a, 11
where a = —g = —JTe.



2.1.2 Levenberg-Marquardt

Levenberg-Marquardt algorithm changes Eq. (T1)) as
(A4 AI)dx = a, (12)

where A < 0 is a dumping factor. When A = 0, LM becomes Gauss-Newton while LM becomes steepest descent
with big .
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