Bundle Adjustment

Yuji Oyamada ${ }^{1,2}$

${ }^{1}$ HVRL, Keio University
${ }^{2}$ Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München

March 23, 2012

Bundle adjustment is an algorithm that estimates all unknown parameters using all available observation.

1 Problem statement

Suppose m cameras observe a static scene/objects at same time and n feature points are totally detected. Our goal is to estimate the 3 D positions of the points and camera parameters.

The 3D position of j-th feature point is represented by a 3D vector as

$$
\boldsymbol{X}_{j}=\left[X_{j}, Y_{j}, Z_{j}\right]^{\mathbf{T}}, j=1, \ldots, n
$$

A feature point \boldsymbol{X}_{j} observed by i-th camera is represented by a 2D vector as $\boldsymbol{x}_{i j}=\left[x_{i j}, y_{i j}\right]^{\mathbf{T}}$. With a 3×4 matrix $\mathrm{P}_{i}, \boldsymbol{x}_{i j}$ is described as

$$
\left[\begin{array}{c}
\boldsymbol{x}_{i j} \tag{1}\\
1
\end{array}\right] \propto \mathrm{P}_{i}\left[\begin{array}{c}
\boldsymbol{X}_{j} \\
1
\end{array}\right]
$$

where

$$
\begin{equation*}
\mathrm{P}_{i} \equiv \mathrm{~K}_{i}\left[\mathrm{R}_{i} \mid \mathbf{t}_{i}\right] . \tag{2}
\end{equation*}
$$

Here, $K_{i}, \mathrm{R}_{i}, \mathbf{t}_{i}$ denote the intrinsic parameter, the rotation matrix and the translation vector respectively. Figure 1 shows the camera geometry of target scene.

Bundle adjustment estimates unknown camera parameters and 3D positions of feature points under following assumption. Let a vector \boldsymbol{p}_{i} pack all unknown parameters of i-th camera. If we have ground truth $\left\{\boldsymbol{p}_{i}\right\}$ and $\left\{\boldsymbol{X}_{j}\right\}$, re-projected feature point

$$
\left.\begin{array}{rl}
\hat{\boldsymbol{x}}_{i j} & =\left[\begin{array}{ll}
\hat{x}_{i j} & \hat{y}_{i j}
\end{array}\right]^{\mathbf{T}} \\
& =\left[\begin{array}{ll}
\operatorname{comp}\left(x ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right) & \operatorname{comp}\left(y ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right)
\end{array}\right]^{\mathbf{T}} \\
& =\left[\begin{array}{ll}
\frac{\left(\mathrm{P}_{i}\right)_{1}\left[\begin{array}{ll}
\boldsymbol{X}_{j}^{\mathbf{T}} & 1
\end{array}\right]^{\mathbf{T}}}{\left(\mathrm{P}_{i}\right)_{3}\left[\boldsymbol{X}_{j}^{\mathbf{T}}\right.} & 1]^{\mathbf{T}}
\end{array} \frac{\left(\mathrm{P}_{i}\right)_{3}\left[\boldsymbol{X}_{j}^{\mathbf{T}}\right.}{\left(\mathrm{P}_{i}\right)_{3}\left[\boldsymbol{X}_{j}^{\mathbf{T}}\right.} 1\right]^{\mathbf{T}}
\end{array}\right]^{\mathbf{T}} .
$$

should be same on the i-th image. Here, $\left(\left(\mathrm{P}_{i}\right)_{k}\right.$ denotes k-th row vector of $\left.\mathrm{P}_{i}\right)$ and its observation $\boldsymbol{x}_{i j}$ Thus, the difference of observation and this re-projection $\left\|\boldsymbol{x}_{i j}-\hat{\boldsymbol{x}}_{i j}\right\|_{2}^{2}$ should be slight, not zero due to observation error. Figure 2 illustrates the geometrical relationship.

Figure 1: Camera Geometry

Figure 2: Re-projection: 2D point case.

Figure 3: Re-projection: 3D point case.

Based on this assumption, Bundle adjustment estimates camera parameters and 3D position of features points by minimizing the following cost function:

$$
\begin{align*}
E\left(\left\{\boldsymbol{p}_{i}\right\},\left\{\boldsymbol{X}_{j}\right\}\right) & =\frac{1}{2} \sum_{i, j}\left[\left(x_{i j}-\operatorname{comp}\left(x ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right)\right)^{2}+\left(y_{i j}-\operatorname{comp}\left(y ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right)\right)^{2}\right] \tag{3}\\
& =\frac{1}{2} \sum_{i, j}\left[\left(x_{i j}-\hat{x}_{i j}\right)^{2}+\left(y_{i j}-\hat{y}_{i j}\right)^{2}\right] \tag{4}
\end{align*}
$$

The cost function Eq. (3) is called re-projection error. This style simultaneous optimization of both unknown camera parameters and scene structure is called Bundle Adjustment.

Now, we consider applying bundle adjustment to depth camera. Let $\boldsymbol{X}_{i j}=\left[X_{i j} Y_{i j} Z_{i j}\right]^{\mathbf{T}}$ denotes a depth information of j-th point observed by i-th camera and $\hat{\boldsymbol{X}}_{i j}$ denotes re-projected $\boldsymbol{X}_{i j}$ as

$$
\begin{aligned}
\hat{\boldsymbol{X}}_{i j} & =\left[\begin{array}{lll}
\hat{X}_{i j} & \hat{Y}_{i j} & \hat{Z}_{i j}
\end{array}\right]^{\mathbf{T}} \\
& =\left[\begin{array}{llll}
\operatorname{comp}\left(X ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right) & \operatorname{comp}\left(Y ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right) & \operatorname{comp}\left(Z ; \boldsymbol{p}_{i}, \boldsymbol{X}_{j}\right)
\end{array}\right]^{\mathbf{T}} \\
& =\left[\begin{array}{llll}
\left(\mathrm{P}_{i}\right)_{1}\left[\begin{array}{ll}
\boldsymbol{X}_{j}^{\mathbf{T}} & 1
\end{array}\right]^{\mathbf{T}} & \left(\mathrm{P}_{i}\right)_{2}\left[\begin{array}{lll}
\boldsymbol{X}_{j}^{\mathbf{T}} & 1
\end{array}\right]^{\mathbf{T}} & \left(\mathrm{P}_{i}\right)_{3}\left[\begin{array}{ll}
\boldsymbol{X}_{j}^{\mathbf{T}} & 1
\end{array}\right]^{\mathbf{T}}
\end{array}\right]^{\mathbf{T}} .
\end{aligned}
$$

Then, the cost function Eq. (3) is re-formulated for depth camera as

$$
\begin{equation*}
E\left(\left\{\boldsymbol{p}_{i}\right\},\left\{\boldsymbol{X}_{j}\right\}\right)=\frac{1}{2} \sum_{i, j}\left[\left(X_{i j}-\hat{X}_{i j}\right)^{2}+\left(Y_{i j}-\hat{Y}_{i j}\right)^{2}+\left(Z_{i j}-\hat{Z}_{i j}\right)^{2}\right] \tag{5}
\end{equation*}
$$

Figure 3 illustrates the geometrical relationship.

2 Numerical optimization

Let x represent a set of all unknown variables. The cost function $E(\mathrm{x})=E\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}, \boldsymbol{X}_{j}, \ldots, \boldsymbol{X}_{n}\right)$ is nonlinear function of x , thus, finding x minimizing Eq. (3) is achieved by iterative numerical optimization. Given an initial guess x , we iteratively update the solution as $\mathrm{x} \rightarrow \mathrm{x}+\delta \mathrm{x}$ until the current solution satisfies some conditions.

The core of bundle adjustment is minimization of re-projection error $E(\mathrm{x})$. Usually, cost function $E(\mathrm{x})$ forms sum of squares, popular solution is least-squares method.

2.1 Newton's method

Newton's method computes second order derivative, or its approximation.

2.1.1 Gauss-Newton method

The solution x minimizing the cost function should satisfy $d E / d \mathrm{x}$.
Newton's method updates current estimate x with an update $\delta \mathrm{x}$ as $\mathrm{x} \rightarrow \mathrm{x}+\delta \mathrm{x}$ and iterates this update until convergence. Applying Tailor expansion around current x , we obtain

$$
\begin{equation*}
E(\mathrm{x}+\delta \mathrm{x}) \approx E(\mathrm{x})+\mathrm{g}^{\mathbf{T}} \delta \mathrm{x}+\frac{1}{2} \delta \mathrm{x}^{\mathbf{T}} \mathrm{H} \delta \mathrm{x} \tag{6}
\end{equation*}
$$

where g and H are gradient and Hessian at x as

$$
\begin{equation*}
\mathrm{g}=\left.\frac{d E}{d \mathrm{x}}\right|_{\mathrm{x}}, \mathrm{H}=\left.\frac{d^{2} E}{d \mathrm{x}^{2}}\right|_{\mathrm{x}} \tag{7}
\end{equation*}
$$

Regarding x as constant, the update $\delta \mathrm{x}$ minimizing the right hand side of Eq. (6) is

$$
\begin{equation*}
\mathrm{H} \delta \mathrm{x}=-\mathrm{g} . \tag{8}
\end{equation*}
$$

Therefore, is H is invertible, the update is $\delta \mathrm{x}=-\mathrm{H}^{-1} \mathrm{~g}$. If the current solution x is enough closer to the minimum value, H is positive-definite that means all eigenvalue is positive. If it's a case, rapid convergence of the above udpate is guaranteed.

However, when x is far from the minimum, there is no guarantee that H is positive-definite. Furthermore, computing H is heavy cost. For this issue, Gauss-Newton method approximates $t e x t t t H$ as

$$
\begin{equation*}
\mathrm{H} \approx \mathrm{~A} \equiv \mathrm{~J}^{\mathrm{T}} \mathrm{~J}, \tag{9}
\end{equation*}
$$

where J is Jacovian matrix of $E(\mathrm{x})$ as

$$
\begin{equation*}
\mathrm{J}=\frac{d E(\mathrm{x})}{d \mathrm{x}} . \tag{10}
\end{equation*}
$$

With Jacobian, Eq. (8) is rewritten as

$$
\begin{equation*}
\mathrm{A} \delta \mathrm{x}=\mathrm{a} \tag{11}
\end{equation*}
$$

where $\mathrm{a}=-\mathrm{g}=-\mathrm{J}^{\mathrm{T}} \mathrm{e}$.

2.1.2 Levenberg-Marquardt

Levenberg-Marquardt algorithm changes Eq. (11) as

$$
\begin{equation*}
(\mathrm{A}+\lambda \mathrm{I}) \delta \mathrm{x}=\mathrm{a}, \tag{12}
\end{equation*}
$$

where $\lambda \leq 0$ is a dumping factor. When $\lambda=0$, LM becomes Gauss-Newton while LM becomes steepest descent with big λ.

