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Bundle adjustment is an algorithm that estimates all unknown parameters using all available observation.

1 Problem statement

Suppose m cameras observe a static scene/objects at same time and n feature points are totally detected. Our goal
is to estimate the 3D positions of the points and camera parameters.

The 3D position of j-th feature point is represented by a 3D vector as

Xj = [Xj , Yj , Zj ]
T
, j = 1, . . . , n.

A feature point Xj observed by i-th camera is represented by a 2D vector as xij = [xij , yij ]
T. With a 3 × 4

matrix Pi, xij is described as [
xij

1

]
∝ Pi

[
Xj

1

]
, (1)

where
Pi ≡ Ki [Ri|ti] . (2)

Here, Ki, Ri, ti denote the intrinsic parameter, the rotation matrix and the translation vector respectively. Figure 1
shows the camera geometry of target scene.

Bundle adjustment estimates unknown camera parameters and 3D positions of feature points under following
assumption. Let a vector pi pack all unknown parameters of i-th camera. If we have ground truth {pi} and {Xj},
re-projected feature point

x̂ij =
[
x̂ij ŷij

]T
=

[
comp(x;pi,Xj) comp(y;pi,Xj)

]T
=

[
(Pi)1[X

T
j 1]T

(Pi)3[XT
j 1]T

(Pi)3[X
T
j 1]T

(Pi)3[XT
j 1]T

]T
should be same on the i-th image. Here, ((Pi)k denotes k-th row vector of Pi) and its observation xij Thus, the
difference of observation and this re-projection ||xij − x̂ij ||22 should be slight, not zero due to observation error.
Figure 2 illustrates the geometrical relationship.
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Figure 1: Camera Geometry

Figure 2: Re-projection: 2D point case.
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Figure 3: Re-projection: 3D point case.

Based on this assumption, Bundle adjustment estimates camera parameters and 3D position of features points
by minimizing the following cost function:

E ({pi}, {Xj}) =
1

2

∑
i,j

[
(xij − comp(x;pi,Xj))

2 + (yij − comp(y;pi,Xj))
2
]

(3)

=
1

2

∑
i,j

[
(xij − x̂ij)2 + (yij − ŷij)2

]
. (4)

The cost function Eq. (3) is called re-projection error. This style simultaneous optimization of both unknown
camera parameters and scene structure is called Bundle Adjustment.

Now, we consider applying bundle adjustment to depth camera. Let Xij = [Xij Yij Zij ]
T denotes a depth

information of j-th point observed by i-th camera and X̂ij denotes re-projected Xij as

X̂ij =
[
X̂ij Ŷij Ẑij

]T
=

[
comp(X;pi,Xj) comp(Y ;pi,Xj) comp(Z;pi,Xj)

]T
=

[
(Pi)1[X

T
j 1]T (Pi)2[X

T
j 1]T (Pi)3[X

T
j 1]T

]T
.

Then, the cost function Eq. (3) is re-formulated for depth camera as

E ({pi}, {Xj}) =
1

2

∑
i,j

[
(Xij − X̂ij)

2 + (Yij − Ŷij)2 + (Zij − Ẑij)
2
]
. (5)

Figure 3 illustrates the geometrical relationship.
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2 Numerical optimization

Let x represent a set of all unknown variables. The cost function E(x) = E (p1, . . . ,pm,Xj , . . . ,Xn) is non-
linear function of x, thus, finding x minimizing Eq. (3) is achieved by iterative numerical optimization. Given an
initial guess x, we iteratively update the solution as x→ x+δx until the current solution satisfies some conditions.

The core of bundle adjustment is minimization of re-projection error E(x). Usually, cost function E(x) forms
sum of squares, popular solution is least-squares method.

2.1 Newton’s method

Newton’s method computes second order derivative, or its approximation.

2.1.1 Gauss-Newton method

The solution x minimizing the cost function should satisfy dE/dx.
Newton’s method updates current estimate x with an update δx as x → x + δx and iterates this update until

convergence. Applying Tailor expansion around current x, we obtain

E(x + δx) ≈ E(x) + gTδx +
1

2
δxTHδx, (6)

where g and H are gradient and Hessian at x as

g =
dE

dx

∣∣∣∣
x
, H =

d2E

dx2

∣∣∣∣
x

(7)

Regarding x as constant, the update δx minimizing the right hand side of Eq. (6) is

Hδx = −g. (8)

Therefore, is H is invertible, the update is δx = −H−1g. If the current solution x is enough closer to the minimum
value, H is positive-definite that means all eigenvalue is positive. If it’s a case, rapid convergence of the above
udpate is guaranteed.

However, when x is far from the minimum, there is no guarantee that H is positive-definite. Furthermore,
computing H is heavy cost. For this issue, Gauss-Newton method approximates textttH as

H ≈ A ≡ JTJ, (9)

where J is Jacovian matrix of E(x) as

J =
dE(x)
dx

. (10)

With Jacobian, Eq. (8) is rewritten as
Aδx = a, (11)

where a = −g = −JTe.
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2.1.2 Levenberg-Marquardt

Levenberg-Marquardt algorithm changes Eq. (11) as

(A+ λI)δx = a, (12)

where λ ≤ 0 is a dumping factor. When λ = 0, LM becomes Gauss-Newton while LM becomes steepest descent
with big λ.
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