Survey on Camera calibration

Yuji Oyamada

${ }^{1}$ HVRL, Keio University
${ }^{2}$ Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München
April 3, 2012

Camera calibration

- Necessary to recover 3D metric from image(s).
- 3D reconstruction,
- Object/camera localization, and
- etc.
- Computes 3D (real world)-2D (camera image) relationship.

For quick literature review

Several review/survey papers and book chapters

- [Salvi et al., 2002]
- [Zhang, 2005]
- [Remondino and Fraser, 2006]

For camera calibration

REFORMAT: Important issues for calibration should be synchronized with the following text.

- Camera modeling:
- Parameters estimation:

A point in camera geometry

A point is expressed with several coordinate system.
3D points in world coordinate
A point $\mathbf{X}_{w}=\left(X_{w}, Y_{w}, Z_{w}\right)^{\boldsymbol{\top}}$ in a world coordinate.

3D points in camera coordinate
A point $\mathbf{X}_{c}=\left(X_{c}, Y_{c}, Z_{c}\right)^{\boldsymbol{\top}}$ in a camera coordinate.

2D points in image coordinate
A point $\mathbf{x}=(x, y)^{\boldsymbol{\top}}$ in an image plane.

Projection matrix

A 3×4 projection matrix \mathbf{P} denotes relationship between \mathbf{X}_{w} and \mathbf{x} as

$$
\begin{align*}
& \mathbf{x}=\mathbf{P X}_{w}, \tag{1}\\
& \rightarrow s\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] . \tag{2}
\end{align*}
$$

Intrinsic and extrinsic parameters

A projection matrix can be decomposed into two components, intrinsic and extrinsic parameters, as

$$
\begin{align*}
\mathbf{x} & =\mathbf{P} \mathbf{X}_{w}=\mathbf{A}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{w}, \tag{3}\\
& \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right], \tag{4}
\end{align*}
$$

where

- Intrinsic: 3×3 calibration matrix \mathbf{A}.
- Extrinsic: 3×3 Rotation matrix \mathbf{R} and 3×1 translation vector \mathbf{t}.

Extrinsic parameters

Denotes transformation between \mathbf{X}_{w} and \mathbf{X}_{c} as

$$
\begin{align*}
& \mathbf{X}_{c}=[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{w}, \tag{5}\\
& {\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] .} \tag{6}
\end{align*}
$$

Intrinsic parameters

Project a 3D point \mathbf{X}_{c} to image plane as

$$
\begin{align*}
\mathbf{x} & =\mathbf{A}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{w}=\mathbf{A} \mathbf{X}_{c}, \tag{7}\\
& \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right], \tag{8}
\end{align*}
$$

where

- α_{x} and α_{y} are focal lengths in pixel unit.
- x_{0} and y_{0} are image center in pixel unit.
- s is skew parameter.

4 steps projecting a 3D world point to a 2D image point

A 3×4 projection matrix \mathbf{P} denotes relationship between ${ }^{w} \mathbf{X}_{w}$ and ${ }^{\prime} \mathbf{x}$ as

$$
\begin{align*}
& { }^{\prime} \mathbf{x}=\mathbf{P}^{W} \mathbf{X}_{w}, \tag{9}\\
& \rightarrow s\left[\begin{array}{c}
{ }^{\prime} X_{d} \\
y_{d} \\
y_{d}
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
W^{W} X_{w} \\
W_{w} \\
W_{w} \\
Z_{w} \\
1
\end{array}\right] . \tag{10}
\end{align*}
$$

1/4: A 3D world point to a 3D camera point

Change the world coordinate system to the camera one.

- From a 3D point ${ }^{W} \mathbf{X}_{w}$ in metric system w.r.t. the world coordinate
- To a 3D point ${ }^{C} \mathbf{X}_{w}$ in metric system w.r.t. the camera coordinate

$$
\begin{align*}
{ }^{C} \mathbf{X}_{w} & =\left[{ }^{C} \mathbf{R}_{w} \mid{ }^{C} \mathbf{T}_{w}\right]^{W} \mathbf{X}_{w}, \tag{11}\\
\rightarrow s\left[\begin{array}{c}
{ }^{C} X_{w} \\
{ }^{C} Y_{w} \\
{ }^{C} Z_{w} \\
1
\end{array}\right] & =\left[\begin{array}{llll}
R_{11} & R_{12} & R_{13} & t_{14} \\
R_{21} & R_{22} & R_{23} & t_{24} \\
R_{31} & R_{32} & R_{33} & t_{34}
\end{array}\right]\left[\begin{array}{c}
W X_{w} \\
W^{W} Y_{w} \\
{ }^{W} Z_{w} \\
1
\end{array}\right] . \tag{12}
\end{align*}
$$

Change the 3D camera coordinate system to the 2D camera one.

- From a 3D point ${ }^{C} \mathbf{X}_{w}$ in metric system w.r.t. the camera coordinate
- To a 2D point ${ }^{C} \mathbf{X}_{u}$ in metric system w.r.t. the camera coordinate

$$
\begin{align*}
&{ }^{C} \mathbf{X}_{u}=\left[{ }^{C} \mathbf{R}_{w}{ }^{C} \mathbf{T}_{w}\right]^{W} \mathbf{X}_{w} \tag{13}\\
& \rightarrow s\left[\begin{array}{c}
{ }^{C} X_{u} \\
{ }^{C} Y_{u} \\
1
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
{ }^{W} X_{w} \\
{ }^{W} Y_{w} \\
{ }^{W} Z_{w} \\
1
\end{array}\right], \tag{14}\\
&{ }^{c} X_{u}=\frac{f}{{ }^{W} Z_{w}}{ }^{w} X_{w}
\end{align*}
$$

where f denotes focal length in metric system.

3/4: Lens distortion

Practical lens distort the previous $3 \mathrm{D} \rightarrow 2 \mathrm{D}$ projection.

$$
\begin{equation*}
{ }^{c} X_{u}={ }^{c} X_{d}+\delta_{x} \quad{ }^{c} Y_{u}={ }^{c} Y_{d}+\delta_{y} \tag{15}
\end{equation*}
$$

where δ_{x} and δ_{y} denote distortion parameter along with each axis. In the case of no lens distortion,

$$
\delta_{x}=0 \quad \delta_{y}=0
$$

- Radial distortion $\delta_{x r}$ and $\delta_{y r}$,
- Decentering distortoin $\delta_{x d}$ and $\delta_{y d}$,
- Thin prism distortion $\delta_{x p}$ and $\delta_{y p}$.

3/4: Lens distortion: Radial distortion

- Caused by flawed radial curvature of lens.
- Modeled by [Tsai, 1987] ${ }^{1}$.

$$
\begin{equation*}
\delta_{x r}=k_{1}{ }^{C} X_{d}\left({ }^{C} X_{d}^{2}+{ }^{C} Y_{d}^{2}\right) \quad \delta_{y r}=k_{1}{ }^{C} Y_{d}\left({ }^{C} X_{d}^{2}+{ }^{C} Y_{d}^{2}\right) \tag{17}
\end{equation*}
$$

${ }^{1}$ R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Transactions on Robotics and Automation, 3(4):323-344, 1987

3/4: Lens distortion: Weng's model

Model the lens distortion from the undistorted image point ${ }^{C} \mathbf{X}_{u}$ instead of the distorted one ${ }^{C} \mathbf{X}_{d}$.

$$
{ }^{c} X_{d}={ }^{c} X_{u}+\delta_{x} \quad{ }^{c} Y_{d}={ }^{c} Y_{u}+\delta_{y}
$$

- Since the optical center of the lens is not correctly aligned with the center of the camera.
- Modeled by [Weng et al., 1992] ${ }^{2}$,

$$
\begin{align*}
& \delta_{x d}=p_{1}\left(3^{C} X_{u}^{2}+{ }^{C} Y_{u}^{2}\right)+2 p_{2}{ }^{C} X_{u}{ }^{C} Y_{u} \tag{19}\\
& \delta_{y d}=2 p_{1}{ }^{C} X_{u}{ }^{C} Y_{u}+p_{2}\left({ }^{C} X_{u}^{2}+3^{C} Y_{u}^{2}\right) \tag{20}
\end{align*}
$$

[^0] URL http://dx.doi.org/10.1109/34.159901

3/4: Lens distortion: Thin prism distortion

- From imperfection in lens design and manufacturing as well as camera assembly.
- Modeled by adding a thin prism to the optic system, causing radial and tangential distortions [Weng et al., 1992].

$$
\begin{equation*}
\delta_{x p}=s_{1}\left({ }^{C} X_{u}^{2}+{ }^{C} Y_{u}^{2}\right) \quad \delta_{y p}=s_{2}\left({ }^{C} X_{u}^{2}+{ }^{C} Y_{u}^{2}\right) \tag{21}
\end{equation*}
$$

3/4: Lens distortion: Merged distortion

Merge the all distortion as

$$
\begin{align*}
& \delta_{x p}=\left(g_{1}+g_{3}\right)^{C} X_{u}^{2}+g_{4}{ }^{C} X_{u}{ }^{C} Y_{u}+g_{1}{ }^{C} Y_{u}^{2}+k_{1}{ }^{C} X_{u}\left({ }^{C} X_{u}^{2}+{ }^{C} Y_{u}^{2}\right), \tag{22}\\
& \delta_{y p}=g_{2}{ }^{C} X_{u}^{2}+g_{3}{ }^{C} X_{u}{ }^{C} Y_{u}+\left(g_{2}+g_{4}\right)^{C} Y_{u}^{2}+k_{1}{ }^{C} Y_{u}\left({ }^{C} X_{u}^{2}+{ }^{C} Y_{u}^{2}\right), \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
& g_{1}=s_{1}+p_{1} \\
& g_{2}=s_{2}+p_{2} \\
& g_{3}=2 p_{1} \\
& g_{4}=2 p_{2}
\end{aligned}
$$

4/4: A 2D camera point to a $2 D$ image point

Change the 2D camera coordinate system to the 2D image one.

- From a 2D point ${ }^{C} \mathbf{X}_{d}$ in metric system w.r.t. the camera coordinate
- To a 2D point ${ }^{\prime} \mathbf{X}_{d}$ in pixel system w.r.t. the camera coordinate

$$
\begin{gather*}
s\left[\begin{array}{c}
{ }^{\prime} X_{d} \\
{ }^{\prime} Y_{d} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
-k_{u} & 0 & u_{0} \\
0 & -k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]
\end{gather*}\left[\begin{array}{c}
{ }^{C} X_{d} \tag{24}\\
{ }^{C} Y_{d} \\
1
\end{array}\right], \quad{ }^{\prime} Y_{d}=-k_{v}{ }^{C} Y_{d}+v_{0}, ~ ل{ }^{C} X_{d}+u_{0} \quad, \quad .
$$

where

- parameters $\left(k_{u}, k_{v}\right)$ transform from metric measures to pixel.
- $\left(u_{0}, v_{0}\right)$ define the projection of the focal point in the plain.

Camera calibration: General idea

Task

Compute camera parameters:

- Packed parameters P.
- Each components A, R, and \mathbf{t}.

Given

- Known 3D points $\left\{\mathbf{X}_{i} \mid i=1, \ldots, N\right\}$.
- Observed 2D points $\left\{\mathbf{x}_{i} \mid i=1, \ldots, N\right\}$.

Camera calibration: Projective matrix estimation

Setting $p_{34}=1, i$-th image point \mathbf{x}_{i} is written as

$$
\begin{align*}
x_{i} & =\frac{X_{i} p_{11}+Y_{i} p_{12}+Z_{i} p_{13}+p_{14}}{X_{i} p_{31}+Y_{i} p_{32}+Z_{i} p_{33}+1} \tag{25}\\
y_{i} & =\frac{X_{i} p_{21}+Y_{i} p_{22}+Z_{i} p_{23}+p_{24}}{X_{i} p_{31}+Y_{i} p_{32}+Z_{i} p_{33}+1} \tag{26}
\end{align*}
$$

Solve as an optimization problem w.r.t. \mathbf{P} such as
(1) Linear method 1 solves as $\mathbf{A x}=\mathbf{b}$.
(2) Linear method 2 solves as $\mathbf{A x}=\mathbf{0}$.
(3) Non-linear method solves non-linearly.

Camera calibration: Linear method 1

Proposed by [Hall et al., 1982] ${ }^{3}$.
Eq. (25) and Eq. (26) is rewritten as

$$
\begin{align*}
& x_{i} p_{11}+Y_{i} p_{12}+Z_{i} p_{13}+p_{14}-x_{i} X_{i} p_{31}-x_{i} Y_{i} p_{32}-x_{i} Z_{i} p_{33}=x_{i} \tag{27}\\
& x_{i} p_{21}+Y_{i} p_{22}+Z_{i} p_{23}+p_{24}-y_{i} X_{i} p_{31}-y_{i} Y_{i} p_{32}-y_{i} Z_{i} p_{33}=y_{i} \tag{28}
\end{align*}
$$

Given N corresponding points $\left\{\mathbf{X}_{i}\right\}$ and $\left\{\mathbf{x}_{i}\right\}$, generate following equation:

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccccc}
x_{1} & Y_{1} & z_{1} & 1 & 0 & 0 & 0 & 0 & -x_{1} x_{1} & -x_{1} Y_{1} & -x_{1} z_{1} \\
0 & 0 & 0 & 0 & x_{1} & Y_{1} & z_{1} & 1 & -y_{1} x_{1} & -y_{1} y_{1} & -y_{1} z_{1} \\
\dot{y_{N}} & Y_{N} & z_{N} & \cdot & 1 & 0 & 0 & 0 & 0 & -x_{N} x_{N} & -x_{N} y_{N} \\
x_{N} & -x_{N} z_{N} \\
0 & 0 & 0 & 0 & x_{N} & Y_{N} & z_{N} & 1 & -y_{N} x_{N} & -y_{N} Y_{N} & -y_{N} z_{N}
\end{array}\right]\left[\begin{array}{c}
p_{11} \\
p_{12} \\
\vdots \\
\vdots \\
p_{32} \\
p_{33}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
y_{1} \\
\dot{\vdots} \\
x_{N} \\
y_{N}
\end{array}\right]} \\
& \rightarrow \mathbf{A p}=\mathbf{b}
\end{aligned}
$$

where $\mathbf{A} \in \mathbb{R}^{2 N \times 11}, \mathbf{p} \in \mathbb{R}^{11}$, and $\mathbf{b} \in \mathbb{R}^{2 N}$.

[^1]
Camera calibration: Linear method 1 cont.

Considering an energy function $E_{1}=\|\mathbf{A p}-\mathbf{b}\|^{2}$, projection matrix is obtained by minimizing E_{1} as

$$
\begin{equation*}
\hat{\mathbf{p}}=\arg \min _{p} E_{1}=\arg \min _{p}(\mathbf{A p}-\mathbf{b})^{\boldsymbol{\top}}(\mathbf{A p}-\mathbf{b}) \tag{30}
\end{equation*}
$$

Differentiating E_{1} w.r.t. p,

$$
\begin{align*}
& \frac{\partial E_{1}}{\partial \mathbf{p}}=0 \\
& \rightarrow \mathbf{A}^{\top}(\mathbf{A} \hat{\mathbf{p}}-\mathbf{b})=0 \\
& \rightarrow \mathbf{A}^{\top} \mathbf{A} \hat{\mathbf{p}}=\mathbf{A}^{\top} \mathbf{b} \\
& \rightarrow \hat{\mathbf{p}}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} \tag{31}
\end{align*}
$$

\mathbf{p} can be estimated if $\mathbf{A}^{\top} \mathbf{A}$ is invertible.

Camera calibration: Linear method 1 cont.

This method heavily relies on whether the matrix $\mathbf{A}^{\top} \mathbf{A}$ is invertible or not. Alternatively, we solve the problem by solving $\mathbf{A x}=\mathbf{0}$ as Linear method 2 does.

Camera calibration: Linear method 2

Eq. (25) and Eq. (26) is rewritten as

$$
\begin{align*}
& X_{i} p_{11}+Y_{i} p_{12}+Z_{i} p_{13}+p_{14}-x_{i} X_{i} p_{31}-x_{i} Y_{i} p_{32}-x_{i} Z_{i} p_{33}-x_{i} p_{34}=0 \tag{32}\\
& X_{i} p_{21}+Y_{i} p_{22}+Z_{i} p_{23}+p_{24}-y_{i} X_{i} p_{31}-y_{i} Y_{i} p_{32}-y_{i} Z_{i} p_{33}-y_{i} p_{34}=0 \tag{3}\\
& {\left[\begin{array}{cccccccccccc}
x_{1} & Y_{1} & z_{1} & 1 & 0 & 0 & 0 & 0 & -x_{1} x_{1} & -x_{1} Y_{1} & -x_{1} z_{1} & -x_{1} \\
0 & 0 & 0 & 0 & x_{1} & Y_{1} & z_{1} & 1 & -y_{1} x_{1} & -y_{1} Y_{1} & -y_{1} z_{1} & -y_{1} \\
\dot{x_{N}} & \dot{Y}_{N} & z_{N} & . & \cdot & 0 & 0 & 0 & 0 & 0 & -x_{N} x_{N} & -x_{N} Y_{N} \\
0 & 0 & 0 & 0 & x_{N} & y_{N} & z_{N} z_{N} & -x_{N} \\
0 & 1 & -y_{N} X_{N} & -y_{N} Y_{N} & -y_{N} z_{N} & -y_{N}
\end{array}\right]\left[\begin{array}{c}
p_{11} \\
p_{12} \\
\vdots \\
\vdots \\
p_{33} \\
p_{34}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]} \\
& \rightarrow \mathbf{A p}=\mathbf{0}
\end{align*}
$$

where $\mathbf{A} \in \mathbb{R}^{2 N \times 12}$ is points matrix, $\mathbf{p} \in \mathbb{R}^{12}$ is unknown projection matrix parameters vector, and $\mathbf{b} \in \mathbb{R}^{2 N}$ is 2 D points vector

Camera calibration: Linear method 2 cont.

To obtain the non-trivial solution of homogeneous system $\mathbf{A p}=\mathbf{0}$, apply constrained optimization.
Considering an energy function $E_{2}=\|\mathbf{A} \mathbf{p}\|^{2}$ subject to the constraint $\|\mathbf{p}\|^{2}-1=0$, prevents \mathbf{p} from becoming a zero vector.
With a Lagrange multiplier $\lambda>0$, we obtain the following energy function

$$
\begin{align*}
E_{2}(\mathbf{p}, \lambda) & =\|\mathbf{A} \mathbf{p}\|^{2}-\lambda\left(\|\mathbf{p}\|^{2}-1\right) \\
& =(\mathbf{A p})^{\boldsymbol{\top}}(\mathbf{A} \mathbf{p})-\lambda\left(\mathbf{p}^{\boldsymbol{\top}} \mathbf{p}-1\right) . \tag{35}
\end{align*}
$$

$$
\begin{equation*}
\hat{\mathbf{p}}=\arg \min _{\mathbf{p}} E_{2}(\mathbf{p}, \lambda)=\arg \min _{\mathbf{p}}(\mathbf{A} \mathbf{p})^{\boldsymbol{\top}}(\mathbf{A p})-\lambda\left(\mathbf{p}^{\boldsymbol{\top}} \mathbf{p}-1\right) \tag{36}
\end{equation*}
$$

Camera calibration: Linear method 2 cont.

Differentiating E_{2} w.r.t. \mathbf{p}

$$
\begin{align*}
& \frac{\partial E_{2}}{\partial \mathbf{p}}=0 \\
& \rightarrow \mathbf{A}^{\top} \mathbf{A} \hat{\mathbf{p}}-\lambda \hat{\mathbf{p}}=0 \\
& \rightarrow \mathbf{A}^{\top} \mathbf{A} \hat{\mathbf{p}}=\lambda \hat{\mathbf{p}} \tag{37}
\end{align*}
$$

Differentiating E_{2} w.r.t. λ

$$
\begin{align*}
& \frac{\partial E_{2}}{\partial \lambda}=0 \\
& \rightarrow \hat{\mathbf{p}}^{\top} \hat{\mathbf{p}}-1=0 \\
& \rightarrow\|\hat{\mathbf{p}}\|^{2}=1 \tag{38}
\end{align*}
$$

Camera calibration: Linear method 2 cont.

Pre-multiplying both sides of Eq. (37) by $\hat{\mathbf{p}}^{\mathbf{\top}}$ gives

$$
\begin{align*}
& \hat{\mathbf{p}}^{\top} \mathbf{A}^{\top} \mathbf{A} \hat{\mathbf{p}}=\lambda \hat{\mathbf{p}}^{\boldsymbol{\top}} \hat{\mathbf{p}} \\
& \rightarrow(\mathbf{A} \hat{\mathbf{p}})^{\boldsymbol{\top}}(\mathbf{A} \hat{\mathbf{p}})=\lambda 1 \\
& \rightarrow\|\mathbf{A} \hat{\mathbf{p}}\|^{2}=\lambda \tag{39}
\end{align*}
$$

Eq. (39) is the same expression that $E_{2}=\|\mathbf{A p}\|^{2}$. This means that minimizing $\|\mathbf{A} \mathbf{p}\|^{2}$ is to minimize λ.

Camera calibration: Linear method 2 cont.

Differencing the energy function E_{2} tells that

- Since Eq. (37) forms like $\mathbf{A x}=\lambda \mathbf{x}, \hat{\mathbf{p}}$ should be an eigenvector of the matrix $\mathbf{A}^{\top} \mathbf{A}$ whose corresponding eigenvalue is λ.
- Eq. (38) minimizes λ as much as possible (ideally 0)

Thus, $\hat{\mathbf{p}}$ should be the eigenvector corresponding to the smallest eigenvalue of the matrix $\mathbf{A}^{\top} \mathbf{A}$.

Camera calibration: Non-linear method

Consider the following reprojection error:

$$
\begin{equation*}
E_{N L}=\sum_{i=1}^{N}\left\|x_{i}-\frac{x_{i} p_{11}+Y_{i} p_{12}+z_{i} p_{13}+p_{14}}{x_{i} p_{31}+Y_{i} p_{32}+z_{i} p_{33}+p_{34}}\right\|^{2}+\left\|y_{i}-\frac{x_{i} p_{21}+Y_{i} p_{22}+z_{i} p_{23}+p_{24}}{x_{i} p_{31}+Y_{i} p_{32}+z_{i} p_{33}+p_{34}}\right\|^{2} . \tag{40}
\end{equation*}
$$

- Need good initial guess (use linear method's result).

The method of Faugeras with radial distortion
Let's derive the Formulation

$$
\begin{align*}
& {\left[\begin{array}{ll}
{ }^{C} X_{u} & { }^{C} Y_{u}
\end{array}\right]^{\mathbf{\top}}=\frac{f}{{ }^{C} Z_{w}}\left[\begin{array}{ll}
{ }^{C} X_{w} & { }^{C} Y_{w}
\end{array}\right]^{\mathbf{\top}}} \tag{41}\\
& \left\{\begin{array}{l}
{ }^{C} X_{w}=r_{11}{ }^{W} X_{w}+r_{12}{ }^{W} Y_{w}+r_{13}{ }^{W} Z_{w}+t_{x} \\
{ }^{c} Y_{w}=r_{21}{ }^{W} X_{w}+r_{22}{ }^{w} Y_{w}+r_{23}{ }^{W} Z_{w}+t_{y} \\
{ }^{c} Z_{w}=r_{31}{ }^{W} X_{w}+r_{32}{ }^{W} Y_{w}+r_{33}{ }^{W} Z_{w}+t_{z}
\end{array}\right. \tag{42}\\
& {\left[\begin{array}{ll}
{ }^{C} X_{u} & { }^{C} Y_{u}
\end{array}\right]^{\top}=\left[\begin{array}{ll}
{ }^{C} X_{d}+\delta_{x} & { }^{C} Y_{d}+\delta_{y}
\end{array}\right]^{\boldsymbol{\top}}} \tag{43}\\
& \left\{\begin{array}{l}
\delta_{x r}=k_{1}{ }^{C} X_{d}\left({ }^{C} X_{d}^{2}+{ }^{C} Y_{d}^{2}\right) \\
\delta_{y r}=k_{1}{ }^{C} Y_{d}\left({ }^{C} X_{d}^{2}+{ }^{C} Y_{d}^{2}\right)
\end{array}\right. \tag{44}\\
& {\left[\begin{array}{ll}
{ }^{\prime} X_{d} & { }^{\prime} Y_{d}
\end{array}\right]^{\mathbf{\top}}=\left[-k_{u}{ }^{C} X_{d}+u_{0} \quad-k_{v}{ }^{C} Y_{d}+v_{0}\right]^{\boldsymbol{\top}}} \tag{45}
\end{align*}
$$

The method of Faugeras with radial distortion cont.
Since we only know $\left[\begin{array}{lll}{ }^{w} X_{w} & { }^{w} Y_{w} & { }^{w} Z_{w}\end{array}\right]^{\top}$ and $\left[\begin{array}{ll}{ }^{\prime} X_{d} & { }^{\prime} Y_{d}\end{array}\right]^{\top}$,
where

$$
\left\{\begin{array}{l}
{ }^{c} X_{w}=r_{11}{ }^{w} X_{w}+r_{12}{ }^{w}{ }^{w} Y_{w}+r_{13}{ }^{w} Z_{w}+t_{x} \\
{ }^{c}{ }_{w}=r_{21}{ }^{w} X_{w}+r_{22}{ }^{w} Y_{w}+r_{23}{ }^{w} Z_{w}+t_{y} \tag{47}\\
{ }^{c} Z_{w}=r_{31}{ }^{w} X_{w}+r_{32}{ }^{w} Y_{w}+r_{33}{ }^{w} Z_{w}+t_{z} \\
{ }^{c} X_{d}=\frac{{ }^{\prime} X_{d}-u_{0}}{} \\
{ }^{c} Y_{d}=\frac{{ }^{c} Y_{d} Y_{d} V_{0}}{-k_{v}}
\end{array}\right.
$$

The method of Faugeras with radial distortion cont.

Finally, we derive the two energy function

$$
\begin{align*}
& U(x)=f \frac{r_{11}{ }^{W} X_{w}+r_{12}{ }^{W} Y_{w}+r_{13}{ }^{W} Z_{w}+t_{x}}{r_{31}{ }^{W} X_{w}+r_{32}{ }^{W} Y_{w}+r_{33}{ }^{W} Z_{w}+t_{z}}-\frac{{ }^{\prime} X_{d}-u_{0}}{-k_{u}}+k_{1} \frac{{ }^{\prime} X_{d}-u_{0}}{-k_{u}} r^{2} \tag{48}\\
& V(x)=f \frac{r_{21}{ }^{W} X_{w}+r_{22}{ }^{W} Y_{w}+r_{23}{ }^{W} Z_{w}+t_{y}}{r_{31}{ }^{W} X_{w}+r_{32}{ }^{W} Y_{w}+r_{33}{ }^{W} Z_{w}+t_{z}}-\frac{{ }^{\prime} Y_{d}-v_{0}}{-k_{v}}+k_{1} \frac{{ }^{\prime} Y_{d}-v_{0}}{-k_{v}} r^{2} \tag{49}
\end{align*}
$$

where x packs all unknown parameters and

$$
\begin{equation*}
r^{2}=\sqrt{\left(\frac{{ }^{I} X_{d}-u_{0}}{-k_{u}}\right)^{2}+\left(\frac{{ }^{\prime} Y_{d}-v_{0}}{-k_{v}}\right)^{2}} . \tag{50}
\end{equation*}
$$

The method of Faugeras with radial distortion cont.

Since the rotation matrix can be described by 3 rotation angles, instead of $r_{i j}$, we use 3 parameters α, β, and γ as

$$
\begin{align*}
& R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] \tag{51}\\
& R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \tag{52}\\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right] \tag{53}
\end{align*}
$$

The method of Faugeras with radial distortion cont.
Since our energy functions, Eq. (48) and Eq. (49), are non-linear, the method of Faugeras solves the problem with iterative non-linear optimization as

$$
\begin{equation*}
G\left(x_{k}\right) \approx G\left(x_{k-1}\right)+J \Delta x_{k}, \tag{54}
\end{equation*}
$$

where x_{k} denotes the k-th estimated parameters, $G(x)$ is the minimization function, and J denotes its Jacobian matrix as

$$
G\left(x_{k-1}\right)=\left[\begin{array}{c}
U_{1}\left(x_{k-1}\right) \tag{55}\\
V_{1}\left(x_{k-1}\right) \\
\vdots \\
U_{n}\left(x_{k-1}\right) \\
V_{n}\left(x_{k-1}\right)
\end{array}\right] J=\left[\begin{array}{cccc}
\frac{\partial U_{1}\left(x_{k-1}\right)}{\partial \alpha} & \frac{\partial U_{1}\left(x_{k-1}\right)}{\partial \beta} & \cdots & \frac{\partial U_{1}\left(x_{k-1}\right)}{\partial k_{1}} \\
\frac{\partial V_{1}\left(x_{k-1}\right)}{\partial \alpha} & \frac{\partial V_{1}\left(x_{k-1}\right)}{\partial \beta} & \cdots & \frac{\partial V_{1}\left(x_{k-1}\right)}{\partial k_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial U_{n}\left(x_{k-1}\right)}{\partial x_{1}} & \frac{\partial U_{n}\left(x_{k-1}\right)}{\partial \beta} & \cdots & \frac{\partial U_{n}\left(x_{k-1}\right)}{\partial k_{1}} \\
\frac{\partial V_{n}\left(x_{k-1}\right)}{\partial \alpha} & \frac{\partial V_{n}\left(x_{k-1}\right)}{\partial \beta} & \cdots & \frac{\partial V_{n}\left(x_{k-1}\right)}{\partial k_{1}}
\end{array}\right]
$$

The method of Faugeras with radial distortion cont.

Then, we compute Δx_{k} using J and $G\left(x_{k-1}\right)$ as

$$
\begin{equation*}
\Delta x_{k}=-\left(J^{\top} J\right)^{-1} J^{\top} G\left(x_{k-1}\right) \tag{56}
\end{equation*}
$$

and update the current estimate as $x_{k}=x_{k-1}+\Delta x_{k}$.

How to choose the points set

Simply speaking, 6 corresponding points are required because

- we have 12 or 11 unknowns.
- One corresponding points give two equations.

Any points are fine for optimization?
The answer is NO.

Rank issues

For a $n \times m$ matrix $\mathbf{A}, n \leq m$,

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A})+\operatorname{null}(\mathbf{A})=\min (n, m) \tag{57}
\end{equation*}
$$

where null (\mathbf{A}) represents the dimension of the null space of \mathbf{A}. Since $n \leq m=12$ in our case, we have to consider three cases:
(1) $\operatorname{rank}(\mathbf{P})=12$: The null space has 0 dimension means there is only one solution, namely $\mathbf{p}=\mathbf{0}$.
(2) $\operatorname{rank}(\mathbf{P})=11$: The null space has 1 dimension and there is a unique solution up to s scale factor.
(3) $\operatorname{rank}(\mathbf{P})<11$: The null space has 2 or more dimension. The null vector \mathbf{p} can be any vector in the dimensional space. This means that there exist infinite number of solutions.
The third case happens when all the points $\left\{X_{i}\right\}$ are located on a plane.

Camera calibration: Projective matrix decomposition

Now, we have

- An estimate of projective matrix \mathbf{P}.
- A set of corresponding points $\left\{\mathbf{X}_{i}\right\}$ and $\left\{\mathbf{x}_{i}\right\}$.

Next task is to decompose \mathbf{P} into \mathbf{A}, \mathbf{R}, and \mathbf{t}. Basically, we use constraint on matrix form

Projective matrix decomposition cont.

Consider

$$
\begin{align*}
\mathbf{P} & =\mathbf{A}[\mathbf{R} \mid \mathbf{t}] \\
& =\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{r}_{1}^{\top} & t_{1} \\
\mathbf{r}_{2}^{\top} & t_{2} \\
\mathbf{r}_{3}^{\top} & t_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha_{x} \mathbf{r}_{1}^{\top}+s \mathbf{r}_{2}^{\top}+x_{0} \mathbf{r}_{3}^{\top} & \alpha_{x} t_{x}+s \cdot t_{2}+x_{0} t_{z} \\
\alpha_{y} \mathbf{r}_{2}^{\top}+y_{0} \mathbf{r}_{3}^{\top} & \alpha_{x} t_{y}+y_{0} t_{z} \\
\mathbf{r}_{3}^{\mathbf{T}} & t_{z}
\end{array}\right] \tag{58}
\end{align*}
$$

where $\mathbf{r}_{j}^{\mathbf{\top}}=\left(r_{j 1}, r_{j 2}, r_{j 3}\right)$, for $j=1,2,3$.

Projective matrix decomposition cont.

If the camera parameters follows Eq. (58) format, following conditions should be satisfied:
(1) $\left\|\mathbf{p}_{3}\right\|=1$, and

- Since $\mathbf{p}_{3}=\mathbf{r}_{3}$ and $\left\|\mathbf{r}_{3}\right\|=1$.
(2) $\left(\mathbf{p}_{1} \wedge \mathbf{p}_{3}\right) \cdot\left(\mathbf{p}_{2} \wedge \mathbf{p}_{3}\right)=0$.
- Using \mathbf{r}_{i} and $\mathbf{r}_{j}, i \neq j$, is orhothogonal.

Camera calibration methods

(1) [Hall et al., 1982]
(2) [Faugeras and Toscani, 1986]
(3) [Salvi et al., 2002]
(4) [Tsai, 1987]
(5) [Weng et al., 1992]

Camera calibration type

- Lens distortion: Linear vs. Non-linear
- Camera parameters: Intrinsic vs. Extrinsic
- Computing camera parameters: Implicit vs. Explicit
- Calibration pattern: known 3D points vs. a reduced set of 3D points

References I

O. D. Faugeras and G. Toscani. The calibration problem for stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Publ.86CH2290-5, pages 15-20. IEEE, 1986.
E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi. Measuring curved surfaces for robot vision. Computer, 15(12):42-54, 1982. ISSN 0018-9162. doi: 10.1109/MC.1982.1653915. URL http://dx.doi.org/10.1109/MC.1982.1653915.
F. Remondino and C. Fraser. Digital camera calibration methods: Considerations and comparisons. In ISPRS Commision V Symposium, volume 6, pages 266-272, 2006.
J. Salvi, X. Armangue, and J. Batlle. A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition, 35:1617-1635, 2002.
R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Transactions on Robotics and Automation, 3(4):323-344, 1987.
J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10): 965-980, 1992. ISSN 0162-8828. doi: 10.1109/34.159901. URL http://dx.doi.org/10.1109/34.159901.
Z. Zhang. Camera calibration. In G. Medioni and S. B. Kang, editors, Emerging Topics in Computer Vision, chapter 2, pages 4-43. Prentice Hall, 2005.

[^0]: 2 J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):965-980, 1992. ISSN 0162-8828. doi: 10.1109/34.159901.

[^1]: ${ }^{3}$ E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi. Measuring curved surfaces for robot vision. Computer, 15 (12):42-54, 1982. ISSN 0018-9162. doi: 10.1109/MC.1982.1653915. URL http://dx.doi=org/10 1109/ME. 1982 . 1653915

