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Camera calibration

@ Necessary to recover 3D metric from image(s).

» 3D reconstruction,
» Object/camera localization, and
> etc.

e Computes 3D (real world)-2D (camera image) relationship.
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For quick literature review

Several review/survey papers and book chapters
e [Salvi et al., 2002]

@ [Zhang, 2005]

@ [Remondino and Fraser, 2006]
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For camera calibration

the following text.

REFORMAT: Important issues for calibration should be synchronized with
e Camera modeling:

@ Parameters estimation:
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A point in camera geometry

A point is expressed with several coordinate system.

3D points in world coordinate
A point X,, = (Xu, Yw, Zw)T in a world coordinate.

3D points in camera coordinate

A point X = (X, Ye, Zc)T in a camera coordinate.

2D points in image coordinate

A point x = (x,y)T in an image plane.
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Projection matrix

A 3 x 4 projection matrix P denotes relationship between X,, and x as

x = PX,,, (1)
Xw
X P11 P12 P13 P14 Y,
=S|yl = [P P2 P23 pu| |, (2)
1 P31 P32 P33 P34 1W
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Intrinsic and extrinsic parameters

A projection matrix can be decomposed into two components, intrinsic
and extrinsic parameters, as

x = PX,, = A[R|t] Xy, (3)

= N
S

X ax S Xo| |n1 n2 n3 t
=yl =10 a yo| |1 n2 n3 b
1 0 0 1 31 rp 33 t3

where
@ Intrinsic: 3 x 3 calibration matrix A.

@ Extrinsic: 3 x 3 Rotation matrix R and 3 x 1 translation vector t.
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Extrinsic parameters

Denotes transformation between X,, and X. as

Xc = [R]t] Xy,
X
Y. rni rn2 n3 t
Z. = |n1 hn2 n3 I
1 r3s1 r2 r3 t3
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Intrinsic parameters

Project a 3D point X, to image plane as

x = A[R|t] X,, = AX,, (7)
Xe
X ax S Xp Y

— y = 0 ay }’O ZC 9 (8)
1 0 0 1 lc

where
@ ay and «y, are focal lengths in pixel unit.
@ xp and yp are image center in pixel unit.

@ s is skew parameter.
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4 steps projecting a 3D world point to a 2D image point

A 3 x 4 projection matrix P denotes relationship between VX, and 'x as

'x =P"X,, (9)
I W X
Xd P11 P12 P13 P14 Wy
—s|'lya| = |pa1 P22 P23 poa WZW . (10)
1 P31 P32 P33 P34 1 v
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1/4: A 3D world point to a 3D camera point

Change the world coordinate system to the camera one.
e From a 3D point WX, in metric system w.r.t. the world coordinate

e To a 3D point X, in metric system w.r.t. the camera coordinate

CXW = [CRW|CTW]WXW; (11)
<X, WX,
Cy Rii R Riz tua| |w Y
—s|c ZW = |Ra R Rz ta| |w ZW (12)
1W R31 R Raz ta 1 v
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2/4: A 8D camera point to a 2D camera point

Change the 3D camera coordinate system to the 2D camera one.
e From a 3D point X, in metric system w.r.t. the camera coordinate

e To a 2D point ¢X,, in metric system w.r.t. the camera coordinate

Xy = [“Ru|“Tw]"Xu, (13)
w
X, f 000 W);W
—s|CY,[ =10 f 0 0 wo | (14)
1 0010 w
1
f f
C _ w C _ w
Xu—WZW X Yu—WZW Yws

where f denotes focal length in metric system.

Y. Oyamada (Keio Univ. and TUM) Camera Calibration April 3, 2012 12 / 44



3/4: Lens distortion

Practical lens distort the previous 3D—2D projection.
CXU = CXd + (SX CYu - CYd + 5ya (15)

where 0, and ¢, denote distortion parameter along with each axis.
In the case of no lens distortion,

5x=0 5, =0 (16)

e Radial distortion 0, and 4,
@ Decentering distortoin d,g and 4,4,

@ Thin prism distortion dx, and d,.
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3/4: Lens distortion: Radial distortion

@ Caused by flawed radial curvature of lens.
e Modeled by [Tsai, 1987] .

Oxr = leXd(CX3 + CY(?) 6yr = klcyd(cxg + CY(?) (17)

1R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. IEEE Transactions on Robotics and Automation, 3(4):323-344,.1987
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3/4: Lens distortion: Weng’s model

the distorted one €X,.

Model the lens distortion from the undistorted image point ¢X,, instead of

Xy = X, + 0,

CYy=CY,+94,

(18)
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3/4: Lens distortion: Decentering distortion

@ Since the optical center of the lens is not correctly aligned with the
center of the camera.

e Modeled by [Weng et al., 1992] 2,

0d = P13 X2+ CY2) 42, X, Y, (19)
Sya = 2p1“ X, Yu + pa( X +3°Y7) (20)

2
J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and accuracy evaluation. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 14(10):965-980, 1992. ISSN 0162-8828. doi: 10.1109/34.159901.
URL http://dx.doi.org/10.1109/34.159901

Y. Oyamada (Keio Univ. and TUM) Camera Calibration April 3, 2012 16 / 44


http://dx.doi.org/10.1109/34.159901

3/4: Lens distortion: Thin prism distortion

@ From imperfection in lens design and manufacturing as well as camera
assembly.

@ Modeled by adding a thin prism to the optic system, causing radial
and tangential distortions [Weng et al., 1992].

Sup = s1(CX2+€Y2) =2 XG+YZ)  (21)
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3/4: Lens distortion: Merged distortion

Merge the all distortion as

5xp = (gl +g3)CX3 +g4CXuCYu +g1CYu2 + kICXu(CX3 + CYL?), (22)
Oyp = X2+ & X Yu+ (2 + &) Y2+ ki Yu( X2+ YD), (23)

where

Y. Oyamada (Keio Univ. and TUM)

81 =51+ p1
& =%+p
83 =2p1
g4 =2p2
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4/4: A 2D camera point to a 2D image point

Change the 2D camera coordinate system to the 2D image one.
e From a 2D point ¢Xg in metric system w.r.t. the camera coordinate

e To a 2D point !Xy in pixel system w.r.t. the camera coordinate

Xy ks 0w [CXy
S IYd = 0 —kv Vo CYd 5 (24)
1 0 0 1 1
'Xg = —ky Xy + o 'Yy = —k,C Yy + v,

where
e parameters (ky, k,) transform from metric measures to pixel.

@ (up, vp) define the projection of the focal point in the plain.
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Camera calibration: General idea

Task
Compute camera parameters:
@ Packed parameters P.

@ Each components A, R, and t.

Given
e Known 3D points {X;|i =1,..., N}.
@ Observed 2D points {x;|i =1,..., N}.
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Camera calibration: Projective matrixz estimation

Setting p34 = 1, i-th image point x; is written as

_ Xip11 + Yip12 + Zip13 + p1a
~ Xips1+ Yips2 + Zipsz + 1
_ Xip21 + Yip2 + Zip23 + paa
~ Xips1+ Yips2 + Zipsz + 1

Solve as an optimization problem w.r.t. P such as
@ Linear method 1 solves as Ax = b.
@ Linear method 2 solves as Ax = 0.

© Non-linear method solves non-linearly.
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Camera calibration: Linear method 1

Proposed by [Hall et al., 1982] 3.
Eq. (25) and Eq. (26) is rewritten as

Xip11 + Yipi2 + Zip13 + p1a — xiXips1 — xi Yips2 — xiZip3z = x;  (27)
Xipo1 + Yipoo + Zipoz + poa — yiXips1 — yiYip2 — viZipss = yi - (28)

Given N corresponding points {X;} and {x;}, generate following equation:

X Vi oz 1 0 0 0 0 —xX —aY  —xZ]|m "
0 0 0 0 XX Y1 1 @ —-ynX —n" —nZi
. . . . B . . . . . = : (29)
Xy Yy Zy 1 0 0 0 0 —xyXy —xyYnv o —xnZy .
0 0 0 0 Xy Yv Zy 1 —ywXn —ynYn —ynZyl |P32 N
P33 YN

— Ap=b

where A € R?VX11 b e R1! and b € R?V.

3E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi. Measuring curved surfaces for robot vision. Computer, 15
(12):42—54, 1982. ISSN 0018-9162. doi: 10.1109/MC.1982.1653915. URL http://dx.doiorg/10.1109/MC. 19821653915
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Camera calibration: Linear method 1 cont.
Considering an energy function E; = ||Ap — b|]2, projection matrix is
obtained by minimizing E; as

p = argmin £; = arg min(Ap — b)T(Ap — b) (30)
P P

Differentiating E; w.r.t. p,
OE;
=0
op
— AT(Ap—b) =0
—~ATAp=ATb
—p=(ATA)'ATb (31)

p can be estimated if ATA is invertible.
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Camera calibration: Linear method 1 cont.

This method heavily relies on whether the matrix ATA is invertible or not.
Alternatively, we solve the problem by solving Ax = 0 as Linear method 2
does.
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Camera calibration: Linear method 2

Eq. (25) and Eq. (26) is rewritten as

Xip11 + Yip12 + Zip13 + p1a — xi Xip31 — x; Yip32 — xiZip33 — xjp3a = 0

(32)
Xip21 + Yip22 + Zip23 + paa — yiXip31 — yi Yips2 — yiZip33 — yip3a =0
(33)
P11 0
i v oz 1 0 0 0 0 —xX -V —xaZ —x] |po 0
0 0 0 0 X Yi Zz 1 —ynX -n" -1 - (3)
. . S . Do . . . : =1 34
Xy Yy Zy 1 0 0 0 0 —xyXy —xvYn —xvZy  —xwl | - .
0 0 0 0 Xy Yy Zv 1 —wXv —ywYn —ynZn  —ynd |P3 8
P3a

— Ap =0

where A € R?2VX12 is points matrix, p € R!? is unknown projection matrix
parameters vector, and b € R?N is 2D points vector
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Camera calibration: Linear method 2 cont.

To obtain the non-trivial solution of homogeneous system Ap = 0, apply
constrained optimization.

Considering an energy function E, = ||Ap|]2 subject to the constraint
Ipll> =1 =0, prevents p from becoming a zero vector.

With a Lagrange multiplier A > 0, we obtain the following energy function

Ex(p, ) = ||Ap|I*> = A(|lp[* - 1)
= (Ap)T(Ap) — A(p"P—1). (35)

p = argmin Ex(p, \) = arg min(Ap)T(Ap) — A\(p"p — 1) (36)
P P
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Camera calibration: Linear method 2 cont.
Differentiating E; w.r.t. p

OE,
B
—~ATAp—\p=0
— ATAp = \p
Differentiating E; w.r.t. A

(37)

Y. Oyamada (Keio Univ. and TUM)
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Camera calibration: Linear method 2 cont.

Pre-multiplying both sides of Eq. (37) by p" gives

pTATAp = A\pTp
— (AD)T(Ap) = AL
— [|AB[I* = A (39)

Eq. (39) is the same expression that £, = ||Ap||°>. This means that
minimizing ||Ap]||? is to minimize A.
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Camera calibration: Linear method 2 cont.

Differencing the energy function E; tells that

@ Since Eq. (37) forms like Ax = Ax, p should be an eigenvector of the
matrix ATA whose corresponding eigenvalue is .

e Eq. (38) minimizes A\ as much as possible (ideally 0)

Thus, p should be the eigenvector corresponding to the smallest
eigenvalue of the matrix ATA.
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Camera calibration: Non-linear method

N

Enp =)

i —
i=1

Consider the following reprojection error:

Xip11 + Yip12 + Zip13 + p1a

Xip31 + Yip32 + Zip33 + p3a

2

Xip21 + Yip22 + Zip23 + p2a
@ Need good initial guess (use linear method's result).

2

Xip31 + Yips2 + Zip33 + p3a

(40)
Y. Oyamada (Keio Univ. and TUM)
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The method of Faugeras with radial distortion

Let's derive the Formulation

T f T

[Xa Y] = (X W] (41)

X = 1" Xo + 2V + 132, + t,
Yy =m"Xo + VY + 32, + t, (42)

CZw=ra1"" Xy + 2"V +r3VZ, + t,
(X, Y] = [ Xg+6, Yat6,]" (43)
Sxr = k1S Xg(CX2+€Y3) (44)

Syr = k1€ Ya(C X3+ CY2)

[Xg Vo] = [~k Xg+ w0 —kVg+wo]" (45)

Y. Oyamada (Keio Univ. and TUM) Camera Calibration April 3, 2012 31/ 44



The method of Faugeras with radial distortion cont.

Since we only know [V X,, WY, WZ,]Tand ['Xy 'v4]",

{f%ﬁ CXg+ kiCXg(CX3+CY2) =0

C
2t = Y+ kCY(CX3+CYZ) =0

where

(X = 1"V X + n2VYu + 132, + t.
Yo =" Xo + WYy + 32, + t,
CZW =r3 WXW + r32WYW + r33WZW + £, (47)
CXd — le_—qu

ly
CYd = Y_kvo
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The method of Faugeras with radial distortion cont.

Finally, we derive the two energy function

WX, Wy, Wz, +t.  IXy;-— Ix, —

U(x) = fr11 + ri2 + ri3 Tt Xd—Uo s d Uorz (48)
I’31WXW+I‘32WYW+I’33WZW+I'Z _ku _ku
WX, Wy, Wz, +t ly, — ly, —

V(x) = fr21w +r22W +r23W + £, _Yd—Ww s d V0r2 (49)
31 Xw+r32 Yw+r33 Zw"’tz _kv _kv

where x packs all unknown parameters and

IX, — ug\ 2 Y, — v\ 2
2 d 0 d 0
,_ﬂ o) () (50)
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The method of Faugeras with radial distortion cont.

Since the rotation matrix can be described by 3 rotation angles, instead of
rij, we use 3 parameters o, 3, and 7y as

Y. Oyamada (Keio Univ. and TUM)

1 0 0
0 cosa —sina
|0 sina  cosa |

[ cos3 0 sinf]
0 1 0
| —sin3 0 cosf]

[cosy —siny 0]
siny cosy O
0 0 1
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The method of Faugeras with radial distortion cont.

Since our energy functions, Eq. (48) and Eq. (49), are non-linear, the
method of Faugeras solves the problem with iterative non-linear
optimization as

G(Xk) ~ G(Xk_l) + JAxy, (54)

where x denotes the k-th estimated parameters, G(x) is the minimization
function, and J denotes its Jacobian matrix as

_ - [OUi(xk—1) OUi(xk—1) . OUi(xk—1)7]
U]_(Xk—l) 8V1?)?Z 1) avl?)ﬁ 1) 8V1(?)I§i 1)
Vl(Xk—l) 8(1_ 35— 8—k1_
G(xk-1) = : J= : : - : (55)
Un(xk—1) OUn(xi-) 8U"((3f3k—1) ... ?Unéﬁ—l)
| Vi (xk—1) | WValxie1)  OVale1) . OValxi1)
L™ da B okt J
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The method of Faugeras with radial distortion cont

Then, we compute Ax, using J and G(xx_1) as

Axe = —(JT NI G(xk_1)

and update the current estimate as xx = xx_1 + Axk.

(56)

Y. Oyamada (Keio Univ. and TUM)
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How to choose the points set

Simply speaking, 6 corresponding points are required because
@ we have 12 or 11 unknowns.
@ One corresponding points give two equations.

Any points are fine for optimization?
The answer is NO.

Y. Oyamada (Keio Univ. and TUM) Camera Calibration April 3, 2012 37 / 44



Rank issues

For a n x m matrix A, n < m,
rank (A) + null (A) = min(n, m), (57)

where null (A) represents the dimension of the null space of A.
Since n < m = 12 in our case, we have to consider three cases:
@ rank (P) = 12: The null space has 0 dimension means there is only
one solution, namely p = 0.
@ rank (P) = 11: The null space has 1 dimension and there is a unique
solution up to s scale factor.

© rank (P) < 11: The null space has 2 or more dimension. The null
vector p can be any vector in the dimensional space. This means that
there exist infinite number of solutions.

The third case happens when all the points {X;} are located on a plane.
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Camera calibration: Projective matrixz decomposition

Now, we have
@ An estimate of projective matrix P.
@ A set of corresponding points {X;} and {x;}.

Next task is to decompose P into A, R, and t.
Basically, we use constraint on matrix form
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Projective matriz decomposition cont.

where rJT = (rj1, rj2, rj3), for j =1,2,3.

Y. Oyamada (Keio Univ. and TUM)

Consider
P = A[R|t]
[ax s x| [n1 n2 n3 t
=10 a, | |r1 2 n3 b
|0 0 1] [m1 r2 r33 t3
[ax s x| [r] t
= 0 ay Yo r; tr
|0 0 1] _rg t3
[axr] +st] +xor] oty + 5t + xot,
= Oéyr.2r —l—yor:{ axty, + Yotz
rT t.
L 3 z
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Projective matriz decomposition cont.

If the camera parameters follows Eq. (58) format, following conditions
should be satisfied:

Q |[/ps| =1, and

» Since p; =r3 and |r3]| = 1.

@ (p1Aps)-(pP2/AP3)=0.
» Using r; and rj, i # j, is orhothogonal.
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Camera calibration methods

© [Hall et al., 1982]

@ [Faugeras and Toscani, 1986]
© [Salvi et al., 2002]

Q [Tsai, 1987]

© [Weng et al., 1992]
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Camera calibration type

Lens distortion: Linear vs. Non-linear
Camera parameters: Intrinsic vs. Extrinsic

Computing camera parameters: Implicit vs. Explicit

Calibration pattern: known 3D points vs. a reduced set of 3D points
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