Lens Distortion

Yuji Oyamada ${ }^{1,2}$

${ }^{1}$ HVRL, Keio University

${ }^{2}$ Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München

April 15, 2012

1 Pinhole camera model

Let $\boldsymbol{X}_{c}=\left[X_{c}, Y_{c}, Z_{c}\right]^{\top}$ denotes a point in the camera reference frame and $\boldsymbol{x}=[x, y]^{\top}$ denotes its projection onto the image plane in the camera coordinate. The homogeneous coordinate of a point is described by its tilde as $\tilde{\boldsymbol{x}}=\left[\boldsymbol{x}^{\top}, 1\right]^{\top}$.

Intrinsic parameters. The intrinsic parameters transform a point in 3D coordinate into the pixel coordinate. The point \boldsymbol{X}_{c} is projected onto the canonical image plane as

$$
\boldsymbol{x}_{n}=\left[\begin{array}{l}
x_{n} \tag{1}\\
y_{n}
\end{array}\right]=\frac{1}{Z_{c}}\left[\begin{array}{l}
X_{c} \\
Y_{c}
\end{array}\right] .
$$

Following a polynomial lens distortion model Faugeras and Toscani [1986]; Weng et al. [1992], the lens distorted point $\boldsymbol{x}_{d}=\left[x_{d}, y_{d}\right]^{\top}$ is described as

$$
\begin{align*}
\boldsymbol{x}_{d} & =D\left(\boldsymbol{x}_{n}, \boldsymbol{\delta}\right) \tag{2}\\
& =\boldsymbol{x}_{n}+\boldsymbol{d} \tag{3}\\
& =\boldsymbol{x}_{n}+\boldsymbol{d}_{\mathrm{rad}}+\boldsymbol{d}_{\mathrm{tan}}, \tag{4}\\
\boldsymbol{d}_{\mathrm{rad}} & =\left[\begin{array}{l}
\left(\delta_{1} r^{2}+\delta_{2} r^{4}+\delta_{5} r^{6}\right) x_{n} \\
\left(\delta_{1} r^{2}+\delta_{2} r^{4}+\delta_{5} r^{6}\right) y_{n}
\end{array}\right], \tag{5}\\
\boldsymbol{d}_{\mathrm{tan}} & =\left[\begin{array}{l}
2 \delta_{3} x_{n} y_{n}+\delta_{4}\left(3 x_{n}^{2}+y_{n}^{2}\right) \\
2 \delta_{4} x_{n} y_{n}+\delta_{3}\left(x_{n}^{2}+3 y_{n}^{2}\right)
\end{array}\right], \tag{6}\\
r & =\sqrt{x_{n}^{2}+y_{n}^{2}}, \tag{7}
\end{align*}
$$

where D denotes a lens distortion function that distorts \boldsymbol{x}_{n} given lens distortion parameter $\boldsymbol{\delta}=\left[\delta_{1}, \ldots, \delta_{5}\right]^{\top}$ and $\boldsymbol{d}_{\mathrm{rad}}$ and $\boldsymbol{d}_{\mathrm{tan}}$ denote the radial distortion and tangential distortion vector respectively. The final pixel coordinate \boldsymbol{x} is described using calibration matrix $\boldsymbol{A} \in \mathbb{R}^{3 \times 3}$ as

$$
\begin{align*}
& \boldsymbol{A}=\left[\begin{array}{ccc}
f_{x} & \theta & o_{x} \\
0 & f_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right], \tag{8}\\
& \tilde{\boldsymbol{x}}=\boldsymbol{A} \tilde{\boldsymbol{x}}_{d}, \tag{9}
\end{align*}
$$

where $\left[f_{x}, f_{y}\right]^{\top}$ denotes the focal length along x and y axes respectively, θ the skew parameter, and $\left[o_{x}, o_{y}\right]^{\top}$ the principle point.

Extrinsic parameters. The extrinsic parameters transform the 3D world coordinate to the 3D camera reference coordinate. A point \boldsymbol{X}_{c} in the world coordinate is transformed to one in the camera reference coordinate by extrinsic parameters as

$$
\begin{align*}
\boldsymbol{X}_{c} & =[\boldsymbol{R} \boldsymbol{t}] \boldsymbol{X} \tag{10}\\
& =\boldsymbol{R} \boldsymbol{X}+\boldsymbol{t} \tag{11}\\
\rightarrow\left[\begin{array}{l}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right] & =\left[\begin{array}{llll}
R_{11} & R_{12} & R_{13} & t_{1} \\
R_{21} & R_{22} & R_{23} & t_{2} \\
R_{31} & R_{32} & R_{33} & t_{3}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \tag{12}\\
& =\left[\begin{array}{l}
R_{11} X+R_{12} Y+R_{13} Z+t_{1} \\
R_{21} X+R_{22} Y+R_{23} Z+t_{2} \\
R_{31} X+R_{32} Y+R_{33} Z+t_{3}
\end{array}\right] \tag{13}\\
\lambda \tilde{\boldsymbol{x}}_{n} & =[\boldsymbol{R} \boldsymbol{t}] \tilde{\boldsymbol{X}} \tag{14}
\end{align*}
$$

where $\boldsymbol{R} \in \mathbb{R}^{3 \times 3}$ denotes the rotation matrix and $\boldsymbol{t} \in \mathbb{R}^{3}$ denotes the translation vector.
Considering the all above components (Eqs. (1), (3), (9), and (10p), the 2D pixel position of a given 3D point is obtained with a 3D point projection function $\operatorname{Proj}(\cdot)$ as

$$
\begin{align*}
\tilde{\boldsymbol{x}}_{p} & =\operatorname{Proj}(\tilde{\boldsymbol{X}}, \boldsymbol{A}, \boldsymbol{\delta}, \boldsymbol{R}, \boldsymbol{t}) \tag{15}\\
& =\boldsymbol{A}[D([\boldsymbol{R} \boldsymbol{t}] \tilde{\boldsymbol{X}}, \boldsymbol{\delta})] \tag{16}\\
& =\boldsymbol{A}[[\boldsymbol{R} \boldsymbol{t}] \tilde{\boldsymbol{X}}+\tilde{\boldsymbol{d}}] \tag{17}\\
& =\boldsymbol{A}\left[\tilde{\boldsymbol{x}}_{n}+\tilde{\boldsymbol{d}}\right] \tag{18}
\end{align*}
$$

2 Projection matrix and lens distortion

In Salvi's survey paper on camera calibration Salvi et al. [2002] that compares several calibration method Faugeras and Toscani|[1986]; Hall et al. [1982]; Tsai [1987]; Weng et al. [1992], two important observations are mentioned. One observation is that the calibration method considering lens distortion Tsai [1987]; Weng et al. [1992] provides more accurate result than ones do not consider lens distortion Tsai [1987]; Weng et al. [1992]. The other observation is that a method solving projection matrix Hall et al. [1982] performs better than one solving intrinsic and extrinsic parameters Faugeras and Toscani [1986] because it computes the transformation matrix without any constraint. From these two observations, we are wondering if there is a method that solves projection matrix considering lens distortion.

Here, we consider rewriting Eq. 18] with a projection matrix $\boldsymbol{P} \equiv \boldsymbol{A}[\boldsymbol{R} \boldsymbol{t}]$. Expanding Eq. 18), we obtain

```
Algorithm 1 Single cameras calibration algorithm.
Input: Corresponding points \(\left\{\boldsymbol{X}_{j} \leftrightarrow \boldsymbol{x}_{i, j}\right\}\).
    Step1: Solve intrinsic and extrinsic parameters
    : for \(i=1\) to \(N\) do
        Compute a homography \(\boldsymbol{H}_{i}\) given \(\left\{\boldsymbol{X}_{j} \leftrightarrow \boldsymbol{x}_{i, j}\right\}\).
    end for
    Compute intrinsic parameters \(\boldsymbol{A}\).
    for \(i=1\) to \(N\) do
        Compute extrinsic parameters \(\left(\boldsymbol{R}_{i}, \boldsymbol{t}_{i}\right)\).
    end for
    Estimate lens distortion parameters \(\boldsymbol{\delta}\) and refine \(\boldsymbol{A}\) by minimizing
\[
\begin{equation*}
\sum_{i} \sum_{j} \tilde{\boldsymbol{x}}_{p, i, j}-\operatorname{Proj}\left(\tilde{\boldsymbol{X}}_{j}, \boldsymbol{A}, \boldsymbol{\delta}, \boldsymbol{R}_{i}, \boldsymbol{t}_{i}\right) . \tag{26}
\end{equation*}
\]
```


Step2: Solve projection matrix

9: Undistort control points $\boldsymbol{x}_{u}=\boldsymbol{x}_{p}-\boldsymbol{d}_{p}$ using the estimated parameters $\boldsymbol{A}, \boldsymbol{R}, \boldsymbol{t}, \boldsymbol{\delta}$.
10: Estimate projection matrix \boldsymbol{P} by minimizing

$$
\begin{equation*}
\sum_{i} \sum_{j} \tilde{\boldsymbol{x}}_{u, i, j}-\boldsymbol{P}_{i} \tilde{\boldsymbol{X}}_{j} . \tag{27}
\end{equation*}
$$

Output: Estimated parameters \boldsymbol{P} and the undistorted images.
the following expression:

$$
\begin{align*}
\tilde{\boldsymbol{x}}_{p} & =\boldsymbol{A}\left[\tilde{\boldsymbol{x}}_{n}+\tilde{\boldsymbol{d}}\right] \tag{19}\\
\rightarrow\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right] & =\left[\begin{array}{ccc}
f_{x} & \theta & o_{x} \\
0 & f_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{n}+d_{x} \\
y_{n}+d_{y} \\
1
\end{array}\right] \tag{20}\\
& =\left[\begin{array}{c}
f_{x}\left(x_{n}+d_{x}\right)+\theta\left(y_{n}+d_{y}\right)+o_{x} \\
f_{y}\left(y_{n}+d_{y}\right)+o_{y} \\
1
\end{array}\right] \tag{21}\\
& =\left[\begin{array}{c}
f_{x} x_{n}+\theta y_{n}+o_{x} \\
f_{y} y_{n}+o_{y} \\
1
\end{array}\right]+\left[\begin{array}{c}
f_{x} d_{x}+\theta d_{y} \\
f_{y} d_{y} \\
1
\end{array}\right] \tag{22}\\
& =\boldsymbol{A} \tilde{\boldsymbol{x}}_{n}+\tilde{\boldsymbol{d}}_{p} \tag{23}\\
& =\tilde{\boldsymbol{x}}_{u}+\tilde{\boldsymbol{d}}_{p} \tag{24}
\end{align*}
$$

Since lens distortion vector \boldsymbol{d} is computed on the canonical view, considering lens distortion implicitly assumes that we decompose a projection matrix into intrinsic and extrinsic parameters.

To solve a projection matrix considering lens distortion, we first undistort \boldsymbol{x} and then solve the parameters. With correct projection matrix \boldsymbol{P}, the following equation should be held for any corresponding points:

$$
\begin{equation*}
\boldsymbol{P} \tilde{\boldsymbol{X}}=\tilde{\boldsymbol{x}}_{u} \tag{25}
\end{equation*}
$$

Since the equation is linear w.r.t. \boldsymbol{P}, we can solve \boldsymbol{P} by direct linear transformation. Combining this strategy into typical camera calibration method Zhang [1998, 2000], we derive the following algorithm.

Bibliography

O. D. Faugeras and G. Toscani. The calibration problem for stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Publ.86CH2290-5, pages 15-20. IEEE, 1986. 1. 2
E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi. Measuring curved surfaces for robot vision. Computer, 15(12):42-54, 1982. ISSN 0018-9162. doi: 10.1109/MC.1982.1653915. URL http: //dx.doi.org/10.1109/MC.1982.1653915 2

Joaquim Salvi, Xavier Armangue, and Joan Batlle. A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition, 35:1617-1635, 2002. 2

Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Transactions on Robotics and Automation, 3(4):323-344, 1987. 2

Juyang Weng, Paul Cohen, and Marc Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):965-980, 1992. ISSN 0162-8828. doi: 10.1109/34.159901. URL http://dx.doi.org/10.1109/34.159901. 1. 2

Zhengyou Zhang. A flexible new technique for camera calibration. Technical report, Microsoft Research, 1998. 3
Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. ISSN 0162-8828. doi: 10.1109/34.888718. URL http: //dx.doi.org/10.1109/34.888718 3

