
Split Bregman Image Restoration

Yuji Oyamada 1

1 HVRL, Keio University

January 20, 2012

I wrote this document when I tried to understand Split Bregman Iteration for image restoration. Practical
examples written in Sec. 4, 5, 6 are inspired by Gilles [2011].

1 Linear image model

Suppose a linear measuring system
f = Au + n, (1)

where f ∈ Rn denotes an observed image, u ∈ Rm denotes an unknown original image, A ∈ Rn×m represents
a measurement matrix, and n ∈ Rn denotes image noise.

When n < m, the system is under-determined meaning there is no unique answer. Due to the under-
determinedness, solving the system requires additional queues, i.e., reqularizers. Our task is to find u by solving
the minimization problem as

u = arg min
u

J(u) +H(u) (2)

where H(u) is the data fidelity term and J(u) is the regularization term.

2 Sparsity-based image restoration

One well-used prior knowledge is that the original signal u can be represented by a sparse vector d = Θ(u) in a
certain domain. When the number of non-zero entries is less than the length of the observation f , the system can
be regarded as an over-determined system.

Under certain conditions, such problems are known to be solvable by l1 minimization. Simple unconstrained
l1 minimization is formulated as

u = arg min
u

J(u) +H(u)

J(u) = ‖u‖1 or ‖Θ(u)‖1
H(u) =

µ

2
‖Au− f‖22

(3)

for µ > 0.

1

mailto:charmie@hvrl.ics.keio.ac.jp
http://hvrl.ics.keio.ac.jp/

Figure 1: Bregman distance

2.1 Sparse image model

2.2 Sparsity-based image restoration

3 Split Bregman image restoration

3.1 Bregman distance

The Bregman distance is similar to a metric but does not satisfy the triangle inequality nor symmetryBregman
[1967]. The Bregman distance is associated with a convex function J between points u and f is defined as

BJ(u,f) = J(u)− J(f)− 〈p,u− f〉, (4)

where p ∈ ∂J(f) is an element in the sub-gradient of J at the point f . This can be thought of as the difference
between the value of J an point u (J(u)) and the value of the first-order Taylor expansion of J around point f
evaluated at point u (J(f) + 〈p,u− f〉). Figure 3.1 depicts the Bregman distance.

3.1.1 Properties

The Bregman distance has following properties:

Non-negativity BJ(u,uk) ≥ 0 for all u, f . This is a consequence of the convexity of J .

Convexity BJ(u,f) is convex in its first argument, but not necessarily in the second argument.

Linearity If we think of the Bregman distance as an operator on the function J , then it is linear w.r.t. non-negative
coefficients. In other words, for J1, J2 strictly convex and differentiable, and λ > 0,

BJ1+λJ2(u,f) = BJ1(u,f) + λBJ2(u,f). (5)

2

Duality The function J has a convex conjugate J∗. The Bregman distance defined w.r.t. J∗ has an interesting
relationship to BJ(u,f) as

BJ∗(∇J(u),∇J(f)) = BJ(f ,u) (6)

A key result about Bregman distance is that, given a random vector, the mean vector minimizes the expected
Bregman distance from the random vector. This result generalizes the textbook result that the mean of a set
minimizes total squared error to elements in the set. This result was proved for the vector case and extended
to the case of functions/distributions. This result is important because it further justifies using a mean as a
representative of a random set, particularly in Bayesian estimation.

3.1.2 Examples

• Squared Euclidean distance BJ(x,y) = ‖x− y‖2 is the canonical example of a Bregman distance, gener-
ated by the convex function J(x) = ‖x‖2.

• The squared Mahalanobis distance BJ(x,y) = 1
2 (x − y)TQ(x − y) which is generated by the convex

function J(x) = 1
2x

TQx. This can be thought of as a generalization of the above squared Euclidean
distance.

• The generalized Kullback-Leibler divergence BJ(p, q) =
∑

p(i) log p(i)
q(i) −

∑
p(i) +

∑
q(i) is generated

by the convex function J(p) =
∑

p(i) logp(i)−
∑

p(i).

• The Itakura-Saito distance BJ(p, q) =
∑
i

(
p(i)
q(i) − log p(i)

q(i) − 1
)

is generated by the convex function
J(p) = −

∑
log p(i).

3.2 Bregman image restoration

The Bregman image restoration iteratively solves Eq. (3) based on Bregman distance measure as

uk+1 = arg min
u
BJ(u,uk) +

λ

2
H(u). (7)

From Eq. (4), Eq. (7) is formulated as uk+1 = arg min
u
J(u)− J(uk)− 〈pk,u− uk〉+ λ

2 ‖Au− f‖22
pk+1 = pk + λAT(f −Auk+1).

(8)

Omitting the constant variables, the solution uk+1 is obtained as

uk+1 = arg min
u
J(u)− J(uk)− 〈pk,u− uk〉+

λ

2
‖Au− f‖22

= arg min
u
J(u)− 〈pk,u〉+

λ

2
‖Au− f‖22 − J(uk) + 〈pk,uk〉

→ arg min
u
J(u)− 〈pk,u〉+

λ

2
‖Au− f‖22

(9)

The difference between Eq. (3) and Eq. (7) is in the use of regularization. Equation Eq. (7) regularizes u

by minimizing the Bregman distance of J(u) to a previous solution uk while Eq. (3) regularizes u by directly
minimizing J(u).

3

Two key results for the sequence {uk} obtained by Eq. (7). First,
∥∥uk − b

∥∥ converges to 0 monotonically;
second, uk also gets closer to u, the unknown noiseless image, monotonically in terms of the Bregman distance,
at least while

∥∥uk − b
∥∥ ≥ ‖u− b‖.

Interestingly, not only for the first iteration k = 0 but for all k, the new problem Eq. (7) can be reduced to the
original problem Eq. (3) with the input bk+1 := b + (bk − uk) starting with b0 = u0 = 0; i.e., the iterations
Eq. (7) are equivalent to

uk+1 ← min
u

BJ +
1

2

∥∥u− bk+1
∥∥2
2
, where bk+1 = b + (bk − uk). (10)

The algorithm of the Bregman image restoration is given in Alg. 1.

Algorithm 1 Bregman image restoration
Task: Recover the original signal u.
Input: Observation signal f and measuring matrix A.

Initialization: set
u0 = 0
p0 = 0
while until convergence do
uk+1 = arg min

u
J(u)− 〈pk,u〉+ λ

2 ‖Au− f‖22
pk+1 = pk −AT(f −Auk+1)

end while
Output: Recovered signal u = uk.

3.3 Adding back the residual

The iterative procedure Eq. (10) has an intriguing interpretation: Let w represent the noise in b, i.e., b = u + w,
and let µ be large enough. At k = 0, bk −uk = 0, so Eq. (10) decomposes the input noisy image b into u1 + v1.
The residual v1 = b− u1 = (u− u1) + w, hence, is the sum of the un-recovered good signal (u− u1) and the
bad noise w. Adding back the residual algorithm turns out to be both better and non-intuitive. The algorithm
adds the residual v1 back to the original input b. Thus, the new input of Eq. (10) in the second iteration is

b + v1 = (u1 + v1) + v1 = u1 + 2(u− u1) + 2w. (11)

Compared to the original input b, the new input contains twice as much of both the un-recovered good signal and
the bad noise. As a result, the new decomposition u2 is a better approximation of u than u1. The adding back the
residual algorithm is given in Alg. 2.

Algorithm 2 Bregman image restoration: Adding back the residual
Task: Recover the original signal û.
Input: Observation signal f and measuring matrix A.

Initialization: set
u0 = 0
f0 = 0
while until convergence do
fk+1 = fk + (f −Auk)

uk+1 = arg min
u
J(u) + λ

2

∥∥Au− fk+1
∥∥2
2

end while
Output: Recovered signal û = uk.

4

3.4 Split Bregman image restoration

When the optimization function is differentiable as

û = arg min
u
H(u) = arg min

u
‖Au− f‖22 , (12)

or is solvable by shrinkage algorithm as

û = arg min
u
J(u) +H(u) = arg min

u
‖Φ(u)‖1 + ‖u− f‖22 , (13)

the problems are easy to solve. However, when the optimization function couples l1 and l2 terms as

û = arg min
u
J(u) +H(u) = arg min

u
‖Φ(u)‖1 +

µ

2
‖Au− f‖22 , (14)

the problem is hard to solve.
The Split Bregman Iteration Goldstein and Osher [2009] splits the problem (Eq. (14)), into l1 and l2 compo-

nents as
(û, d̂) = arg min

u,d
J(d) +H(u)

subject to d = Φ(u),
(15)

where J(d) = ‖d‖1. With a Lagrange multiplier λ, we obtain the following minimization problem:

(û, d̂) = arg min
u,d

J(d) +Hu(u) +Hd(d)

= arg min
u,d
‖d‖1 +

µ

2
‖Au− f‖22 +

λ

2
‖d− Φ(u)‖22

= arg min
u,d

E(u,d) +
λ

2
‖d− Φ(u)‖22 ,

(16)

where
E(u,d) = J(d) +Hu(u) = ‖d‖1 +

µ

2
‖Au− f‖22 . (17)

To enforce the constraint condition, we now plug this problem into the Bregman formulation as

(uk+1,dk+1) = arg min
u,d

B(u,uk,d,dk) +
λ

2
‖d− Φ(u)‖22 , (18)

where
B(u,uk,d,dk) = E(u,d)− 〈pku,u− uk〉+ 〈pkd,d− dk〉. (19)

By simplifying the equations, we get the following two line algorithm

(uk+1,dk+1) = arg min
u,d

E(u,d) +
λ

2

∥∥d− Φ(u)− bk
∥∥2
2

bk+1 = bk − (Φ(uk+1)− dk+1).

(20)

5

Thus, the update of each variable is written as

uk+1 = arg min
u
Hu(u) + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2
,

= arg min
u
‖Au− f‖22 + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2
,

dk+1 = arg min
d
J(d) + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2
,

= arg min
d
‖d‖1 + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2
,

bk+1 = bk + (Φ(uk+1)− dk+1).

(21)

Since the update of u is differentiable, we can directly solve it with Gauss-Seidel, Conjugate Gradient, etc. The
update of d is solvable by shrinkage algorithm and one of b is explicit. The algorithm of the split Bregman image
restoration is given in Alg. 3.

Algorithm 3 Split Bregman image restoration
Task: Recover the original signal û.
Input: Observation signal f and measuring matrix A.

Initialization: Set d0 = 0 and b0 = 0.
while until convergence do
uk+1 = arg min

u
‖Au− f‖22 + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2

bk+1 = bk + (Φ(uk+1)− dk+1)
end while

Output: Recovered signal û = uk.

6

Algorithm 4 Sparse signal recovery by Split Bregman Iteration
Task: Recover the original signal u.
Input: Observation signal f and measuring matrix A.

Initialization: Set d0 = 0 and b0 = 0.
while until convergence do
uk+1 = (µATA + λI)−1(µATf + λ(dk − bk))
dk+1 = Shrink(uk+1 + bk, 1

λ)
bk+1 = bk + (uk+1 − dk+1)

end while
Output: Recovered signal u = f .

4 Sparse Signal Recovery

The purpose is to recover a sparse signal u from its observation f . Here, we assume that u is altered by a known
linear operator A. By setting

D = I (Identity matrix) ,

Θ(d) = ‖d‖1 ,

Φu(u) =
µ

2
‖Au− f‖22 ,

(22)

the variable update of Split Bregman Iteration is written as
uk+1 = arg min

u

µ
2 ‖Au− f‖22 + λ

2

∥∥dk − u− bk
∥∥2
2
,

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d− uk+1 − bk
∥∥2
2
,

bk+1 = bk + (uk+1 − dk+1).

(23)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Au− f‖22 +

λ

2

∥∥dk − u− bk
∥∥2
2

)
= 0

→µAT(Auk+1 − f)− λ(dk − uk+1 − bk) = 0

→uk+1 = (µATA + λI)−1(µATf + λ(dk − bk))

(24)

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1 = Shrink(uk+1 + bk,
1

λ
), (25)

where the component-wise shrinkage operator is applied on each component i of the vector:

Shrink(ui, δ) = sign(ui) max(0, |ui| − δ). (26)

The algorithm of the Split Bregman Iteration is given in Alg. 4.

7

5 ROF denoising

5.1 Anisotropic case

The purpose is to recover an unknown image u from its noisy observation f . Here, the relationship of the images
are f = u + e. The anisotropic denoising Rudin-Osher-Fatemi model is formulated as

u = arg min
u
‖∇xu‖1 + ‖∇yu‖1 +

µ

2
‖u− f‖22 . (27)

By setting
d = Du = dx + dy = ∇xu +∇yu,

Θ(d) = ‖dx‖1 + ‖dy‖1 ,

Φu(u) =
µ

2
‖u− f‖22 ,

(28)

the variable update of Split Bregman Iteration is written as

uk+1 = arg min
u

µ
2 ‖u− f‖22 + λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+ λ
2

∥∥dky −∇yu− bky
∥∥2
2
,

dk+1
x = arg min

dx

‖dx‖1 + λ
2

∥∥dx −∇xuk+1 − bkx
∥∥2
2
,

dk+1
y = arg min

dy

‖dy‖1 + λ
2

∥∥dy −∇yuk+1 − bky
∥∥2
2
,

bk+1
x = bkx + (∇xuk+1 − dk+1

x),

bk+1
y = bky + (∇yuk+1 − dk+1

y).

(29)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖u− f‖22 +

λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+
λ

2

∥∥dky −∇yu− bky
∥∥2
2

)
= 0

→µ(uk+1 − f)− λ∇T
x (dkx −∇xuk+1 − bkx)− λ∇T

y (dky −∇yuk+1 − bky) = 0

→µuk+1 − λ∇T
x∇xuk+1 − λ∇T

y ∇yuk+1 = µf − λ∇x(dkx − bkx)− λ∇y(dky − bky)

→µuk+1 − λ∆uk+1 = µf − λ
(
∇x(dkx − bkx) +∇y(dky − bky)

)
→(µI − λ∆)uk+1 = µf − λ · div

(
dk − bk

)
→(µ · F(I)− λ · F(∆))F(uk+1) = µ · F(f)− λ · F(div

(
dk − bk

)
)

→F(uk+1) = (µ · F(I)− λ · F(∆))
−1 (

µ · F(f)− λ · F(div
(
dk − bk

)
)
)

→uk+1 = F−1
(

(µ · F(I)− λ · F(∆))
−1 (

µ · F(f)− λ · F(div
(
dk − bk

)
)
))

(30)

Thus,
uk+1 = F−1

(
WF k

)
, (31)

where
W = (µ · F(I)− λ · F(∆))

−1

F k = µ · F(f)− λ · F
(
div
(
dk − bk

))
= µ · F(f)− λ · F

(
∇x
(
dkx − bkx

)
+∇y

(
dky − bky

)) (32)

8

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1
x = Shrink

(
∇xuk+1 + bkx,

1

λ

)
,

dk+1
y = Shrink

(
∇yuk+1 + bky ,

1

λ

)
.

(33)

The algorithm of the Split Bregman Iteration is given in Alg. 5.

Algorithm 5 Anisotropic ROF denoising by Split Bregman Iteration
Task: Recover the noise-free image u.
Input: Observed noisy image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1
x = Shrink

(
∇xuk+1 + bkx,

1
λ

)
dk+1
y = Shrink

(
∇yuk+1 + bky ,

1
λ

)
bk+1
x = bkx + (∇xuk+1 − dk+1

x)
bk+1
y = bky + (∇yuk+1 − dk+1

y)
end while

Output: Denoised image u = f .

5.2 Isotropic case

Similar to the anisotropic case, we consider the isotropic total variation norm as

u = arg min
u

√
|∇xu|2 + |∇yu|2 +

µ

2
‖u− f‖22 . (34)

Similar to the anisotropic case, we denote dx = ∇xu and dy = ∇yu, then the only difference with the anisotropic
case is concerning the minimization w.r.t. dx and dy . Let sk be

sk+1 =

√
|∇xuk+1 + bkx|

2
+
∣∣∇yuk+1 + bky

∣∣2, (35)

then dx and dy are updated by

dk+1
x = max

(
sk+1 − 1

λ
, 0

)
∇xuk+1 + bkx

sk+1

dk+1
y = max

(
sk+1 − 1

λ
, 0

) ∇yuk+1 + bky
sk+1

.

(36)

The detail of the algorithm is described in Alg. 6.

9

Algorithm 6 Isotropic ROF denoising by Split Bregman Iteration
Task: Recover the noise-free image u.
Input: Observed noisy image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
sk+1 =

√
|∇xuk+1 + bkx|

2
+
∣∣∇yuk+1 + bky

∣∣2
dk+1
x = max

(
sk+1 − 1

λ , 0
) ∇xu

k+1+bk
x

sk+1

dk+1
y = max

(
sk+1 − 1

λ , 0
) ∇yu

k+1+bk
y

sk+1

bk+1
x = bkx + (∇xuk+1 − dk+1

x)
bk+1
y = bky + (∇yuk+1 − dk+1

y)
end while

Output: Denoised image u = f .

10

6 Non-Blind Deconvolution

6.1 Total Variation

The purpose is to recover an unknown image u from its blurry observation f = Ku where K represents blur
information. Non-blind TV deconvolution is formulated as

u = arg min
u
‖∇xu‖1 + ‖∇yu‖1 +

µ

2
‖Ku− f‖22 . (37)

By setting
d = Du = dx + dy = ∇xu +∇yu,

Θ(d) = ‖dx‖1 + ‖dy‖1 ,

Φu(u) =
µ

2
‖Ku− f‖22 ,

(38)

the variable update of Split Bregman Iteration is written as

uk+1 = arg min
u

µ
2 ‖Ku− f‖22 + λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+ λ
2

∥∥dky −∇yu− bky
∥∥2
2
,

dk+1
x = arg min

dx

‖dx‖1 + λ
2

∥∥dx −∇xuk+1 − bkx
∥∥2
2
,

dk+1
y = arg min

dy

‖dy‖1 + λ
2

∥∥dy −∇yuk+1 − bky
∥∥2
2
,

bk+1
x = bkx + (∇xuk+1 − dk+1

x),

bk+1
y = bky + (∇yuk+1 − dk+1

y).

(39)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Ku− f‖22 +

λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+
λ

2

∥∥dky −∇yu− bky
∥∥2
2

)
= 0

→µKT(Kuk+1 − f)− λ∇T
x (dkx −∇xuk+1 − bkx)− λ∇T

y (dky −∇yuk+1 − bky) = 0

→µKTKuk+1 − λ∆uk+1 = µKTf − λ
(
∇x(dkx − bkx) +∇y(dky − bky)

)
→(µKTK − λ∆)uk+1 = µKTf − λ · div

(
dk − bk

)
→
(µ
λ
· F(K)2 −<(∆)

)
F(uk+1) =

µ

λ
· F(KT)F(f)−F(div

(
dk − bk

)
)

→F(uk+1) =
(µ
λ
· F(K)2 −<(∆)

)−1 (µ
λ
· F(KT)F(f)−F(div

(
dk − bk

)
)
)

→uk+1 = F−1
((µ

λ
· F(K)2 −<(∆)

)−1 (µ
λ
· F(KT)F(f)−F(div

(
dk − bk

)
)
))

(40)

Thus,
uk+1 = F−1

(
WF k

)
, (41)

where
W =

(µ
λ
· F(K)2 −<(∆)

)−1
F k =

µ

λ
· F(KT)F(f)−F

(
div
(
dk − bk

))
=
µ

λ
· F(KT)F(f)−F

(
∇x
(
dkx − bkx

)
+∇y

(
dky − bky

)) (42)

11

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1
x = Shrink

(
∇xuk+1 + bkx,

1

λ

)
,

dk+1
y = Shrink

(
∇yuk+1 + bky ,

1

λ

)
.

(43)

The algorithm of the Split Bregman Iteration is given in Alg. 7.

Algorithm 7 Anisotropic TV non-blind deconvolution by Split Bregman Iteration
Task: Recover the blur-free image u.
Input: Observed blurred image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1
x = Shrink

(
∇xuk+1 + bkx,

1
λ

)
dk+1
y = Shrink

(
∇yuk+1 + bky ,

1
λ

)
bk+1
x = bkx + (∇xuk+1 − dk+1

x)
bk+1
y = bky + (∇yuk+1 − dk+1

y)
end while

Output: Deblurred image u = f .

6.2 Tight Frame

Let D and DT be a frame decomposition and frame reconstruction operators respectively. Here, we assume tight
frame satisfying DTD = I . The corresponding model is

u = arg min
u
‖Du‖1 +

µ

2
‖Ku− f‖22 . (44)

By setting
d = Du,

Θ(d) = ‖d‖1 ,

Φu(u) =
µ

2
‖Ku− f‖22 ,

(45)

the variable update of Split Bregman Iteration is written as
uk+1 = arg min

u

µ
2 ‖Ku− f‖22 + λ

2

∥∥dk −Du− bk
∥∥2
2
,

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d−Duk+1 − bk
∥∥2
2
,

bk+1 = bk + (Duk+1 − dk+1).

(46)

To solve uk+1,

12

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Ku− f‖22 +

λ

2

∥∥dk −Du− bk
∥∥2
2

)
= 0

→µKT(Kuk+1 − f)− λDT(dk −Duk+1 − bk) = 0

→
(
µKTK + λI

)
uk+1 − µKTf − λDT(dk − bk) = 0

→
(
µKTK + λI

)
uk+1 = µKTf + λDT(dk − bk)

→uk+1 =
(
µKTK + λI

)−1 (
µKTf + λDT(dk − bk)

)
→F(uk+1) =

(
µ |F(K)|2 + λ

)−1 (
µF(KT)F(f) + λ · F

(
DT(dk − bk)

))
→uk+1 = F−1

((
µ |F(K)|2 + λ

)−1 (
µF(KT)F(f) + λ · F

(
DT(dk − bk)

)))

(47)

Thus,
uk+1 = F−1

(
WF k

)
, (48)

where
W =

(
µ · |F(K)|2 − λ

)−1
F k = µF(KT)F(f) + λ · F

(
DT(dk − bk)

)
.

(49)

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1 = Shrink

(
Duk+1 + bk,

1

λ

)
. (50)

The algorithm of the Split Bregman Iteration is given in Alg. 8.

Algorithm 8 Tight frame non-blind deconvolution by Split Bregman Iteration
Task: Recover the blur-free image u.
Input: Observed blurred image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1 = Shrink

(
Duk+1 + bk, 1

λ

)
bk+1 = bk + (Duk+1 − dk+1)

end while
Output: Deblurred image u = f .

Bibliography

L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to the
solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics,
7:200–217, 1967. 2

Jérôme Gilles. The bregman cookbook. http://www.math.ucla.edu/~jegilles/BregmanCookbook.html,
2011. 1

Tom Goldstein and Stanley Osher. The split Bregman method for l1-regularized problems. SIAM Journal on

13

http://www.math.ucla.edu/~jegilles/BregmanCookbook.html

Imaging Sciences, 2:323–343, 2009. ISSN 1936-4954. doi: 10.1137/080725891. URL http://dl.acm.org/

citation.cfm?id=1658384.1658386. 5

14

http://dl.acm.org/citation.cfm?id=1658384.1658386
http://dl.acm.org/citation.cfm?id=1658384.1658386

	1 Linear image model
	2 Sparsity-based image restoration
	2.1 Sparse image model
	2.2 Sparsity-based image restoration

	3 Split Bregman image restoration
	3.1 Bregman distance
	3.1.1 Properties
	3.1.2 Examples

	3.2 Bregman image restoration
	3.3 Adding back the residual
	3.4 Split Bregman image restoration

	4 Sparse Signal Recovery
	5 ROF denoising
	5.1 Anisotropic case
	5.2 Isotropic case

	6 Non-Blind Deconvolution
	6.1 Total Variation
	6.2 Tight Frame

	Bibliography

