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I wrote this document when I tried to understand Split Bregman Iteration for image restoration. Practical
examples written in Sec. 4, 5, 6 are inspired by Gilles [2011].

1 Linear image model

Suppose a linear measuring system
f = Au + n, (1)

where f ∈ Rn denotes an observed image, u ∈ Rm denotes an unknown original image, A ∈ Rn×m represents
a measurement matrix, and n ∈ Rn denotes image noise.

When n < m, the system is under-determined meaning there is no unique answer. Due to the under-
determinedness, solving the system requires additional queues, i.e., reqularizers. Our task is to find u by solving
the minimization problem as

u = arg min
u

J(u) +H(u) (2)

where H(u) is the data fidelity term and J(u) is the regularization term.

2 Sparsity-based image restoration

One well-used prior knowledge is that the original signal u can be represented by a sparse vector d = Θ(u) in a
certain domain. When the number of non-zero entries is less than the length of the observation f , the system can
be regarded as an over-determined system.

Under certain conditions, such problems are known to be solvable by l1 minimization. Simple unconstrained
l1 minimization is formulated as

u = arg min
u

J(u) +H(u)

J(u) = ‖u‖1 or ‖Θ(u)‖1
H(u) =

µ

2
‖Au− f‖22

(3)

for µ > 0.
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Figure 1: Bregman distance

2.1 Sparse image model

2.2 Sparsity-based image restoration

3 Split Bregman image restoration

3.1 Bregman distance

The Bregman distance is similar to a metric but does not satisfy the triangle inequality nor symmetryBregman
[1967]. The Bregman distance is associated with a convex function J between points u and f is defined as

BJ(u,f) = J(u)− J(f)− 〈p,u− f〉, (4)

where p ∈ ∂J(f) is an element in the sub-gradient of J at the point f . This can be thought of as the difference
between the value of J an point u (J(u)) and the value of the first-order Taylor expansion of J around point f
evaluated at point u (J(f) + 〈p,u− f〉). Figure 3.1 depicts the Bregman distance.

3.1.1 Properties

The Bregman distance has following properties:

Non-negativity BJ(u,uk) ≥ 0 for all u, f . This is a consequence of the convexity of J .

Convexity BJ(u,f) is convex in its first argument, but not necessarily in the second argument.

Linearity If we think of the Bregman distance as an operator on the function J , then it is linear w.r.t. non-negative
coefficients. In other words, for J1, J2 strictly convex and differentiable, and λ > 0,

BJ1+λJ2(u,f) = BJ1(u,f) + λBJ2(u,f). (5)
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Duality The function J has a convex conjugate J∗. The Bregman distance defined w.r.t. J∗ has an interesting
relationship to BJ(u,f) as

BJ∗(∇J(u),∇J(f)) = BJ(f ,u) (6)

A key result about Bregman distance is that, given a random vector, the mean vector minimizes the expected
Bregman distance from the random vector. This result generalizes the textbook result that the mean of a set
minimizes total squared error to elements in the set. This result was proved for the vector case and extended
to the case of functions/distributions. This result is important because it further justifies using a mean as a
representative of a random set, particularly in Bayesian estimation.

3.1.2 Examples

• Squared Euclidean distance BJ(x,y) = ‖x− y‖2 is the canonical example of a Bregman distance, gener-
ated by the convex function J(x) = ‖x‖2.

• The squared Mahalanobis distance BJ(x,y) = 1
2 (x − y)TQ(x − y) which is generated by the convex

function J(x) = 1
2x

TQx. This can be thought of as a generalization of the above squared Euclidean
distance.

• The generalized Kullback-Leibler divergence BJ(p, q) =
∑

p(i) log p(i)
q(i) −

∑
p(i) +

∑
q(i) is generated

by the convex function J(p) =
∑

p(i) logp(i)−
∑

p(i).

• The Itakura-Saito distance BJ(p, q) =
∑
i

(
p(i)
q(i) − log p(i)

q(i) − 1
)

is generated by the convex function
J(p) = −

∑
log p(i).

3.2 Bregman image restoration

The Bregman image restoration iteratively solves Eq. (3) based on Bregman distance measure as

uk+1 = arg min
u
BJ(u,uk) +

λ

2
H(u). (7)

From Eq. (4), Eq. (7) is formulated as uk+1 = arg min
u
J(u)− J(uk)− 〈pk,u− uk〉+ λ

2 ‖Au− f‖22
pk+1 = pk + λAT(f −Auk+1).

(8)

Omitting the constant variables, the solution uk+1 is obtained as

uk+1 = arg min
u
J(u)− J(uk)− 〈pk,u− uk〉+

λ

2
‖Au− f‖22

= arg min
u
J(u)− 〈pk,u〉+

λ

2
‖Au− f‖22 − J(uk) + 〈pk,uk〉

→ arg min
u
J(u)− 〈pk,u〉+

λ

2
‖Au− f‖22

(9)

The difference between Eq. (3) and Eq. (7) is in the use of regularization. Equation Eq. (7) regularizes u

by minimizing the Bregman distance of J(u) to a previous solution uk while Eq. (3) regularizes u by directly
minimizing J(u).
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Two key results for the sequence {uk} obtained by Eq. (7). First,
∥∥uk − b

∥∥ converges to 0 monotonically;
second, uk also gets closer to u, the unknown noiseless image, monotonically in terms of the Bregman distance,
at least while

∥∥uk − b
∥∥ ≥ ‖u− b‖.

Interestingly, not only for the first iteration k = 0 but for all k, the new problem Eq. (7) can be reduced to the
original problem Eq. (3) with the input bk+1 := b + (bk − uk) starting with b0 = u0 = 0; i.e., the iterations
Eq. (7) are equivalent to

uk+1 ← min
u

BJ +
1

2

∥∥u− bk+1
∥∥2
2
, where bk+1 = b + (bk − uk). (10)

The algorithm of the Bregman image restoration is given in Alg. 1.

Algorithm 1 Bregman image restoration
Task: Recover the original signal u.
Input: Observation signal f and measuring matrix A.

Initialization: set
u0 = 0
p0 = 0
while until convergence do
uk+1 = arg min

u
J(u)− 〈pk,u〉+ λ

2 ‖Au− f‖22
pk+1 = pk −AT(f −Auk+1)

end while
Output: Recovered signal u = uk.

3.3 Adding back the residual

The iterative procedure Eq. (10) has an intriguing interpretation: Let w represent the noise in b, i.e., b = u + w,
and let µ be large enough. At k = 0, bk −uk = 0, so Eq. (10) decomposes the input noisy image b into u1 + v1.
The residual v1 = b− u1 = (u− u1) + w, hence, is the sum of the un-recovered good signal (u− u1) and the
bad noise w. Adding back the residual algorithm turns out to be both better and non-intuitive. The algorithm
adds the residual v1 back to the original input b. Thus, the new input of Eq. (10) in the second iteration is

b + v1 = (u1 + v1) + v1 = u1 + 2(u− u1) + 2w. (11)

Compared to the original input b, the new input contains twice as much of both the un-recovered good signal and
the bad noise. As a result, the new decomposition u2 is a better approximation of u than u1. The adding back the
residual algorithm is given in Alg. 2.

Algorithm 2 Bregman image restoration: Adding back the residual
Task: Recover the original signal û.
Input: Observation signal f and measuring matrix A.

Initialization: set
u0 = 0
f0 = 0
while until convergence do
fk+1 = fk + (f −Auk)

uk+1 = arg min
u
J(u) + λ

2

∥∥Au− fk+1
∥∥2
2

end while
Output: Recovered signal û = uk.
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3.4 Split Bregman image restoration

When the optimization function is differentiable as

û = arg min
u
H(u) = arg min

u
‖Au− f‖22 , (12)

or is solvable by shrinkage algorithm as

û = arg min
u
J(u) +H(u) = arg min

u
‖Φ(u)‖1 + ‖u− f‖22 , (13)

the problems are easy to solve. However, when the optimization function couples l1 and l2 terms as

û = arg min
u
J(u) +H(u) = arg min

u
‖Φ(u)‖1 +

µ

2
‖Au− f‖22 , (14)

the problem is hard to solve.
The Split Bregman Iteration Goldstein and Osher [2009] splits the problem (Eq. (14)), into l1 and l2 compo-

nents as
(û, d̂) = arg min

u,d
J(d) +H(u)

subject to d = Φ(u),
(15)

where J(d) = ‖d‖1. With a Lagrange multiplier λ, we obtain the following minimization problem:

(û, d̂) = arg min
u,d

J(d) +Hu(u) +Hd(d)

= arg min
u,d
‖d‖1 +

µ

2
‖Au− f‖22 +

λ

2
‖d− Φ(u)‖22

= arg min
u,d

E(u,d) +
λ

2
‖d− Φ(u)‖22 ,

(16)

where
E(u,d) = J(d) +Hu(u) = ‖d‖1 +

µ

2
‖Au− f‖22 . (17)

To enforce the constraint condition, we now plug this problem into the Bregman formulation as

(uk+1,dk+1) = arg min
u,d

B(u,uk,d,dk) +
λ

2
‖d− Φ(u)‖22 , (18)

where
B(u,uk,d,dk) = E(u,d)− 〈pku,u− uk〉+ 〈pkd,d− dk〉. (19)

By simplifying the equations, we get the following two line algorithm

(uk+1,dk+1) = arg min
u,d

E(u,d) +
λ

2

∥∥d− Φ(u)− bk
∥∥2
2

bk+1 = bk − (Φ(uk+1)− dk+1).

(20)
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Thus, the update of each variable is written as

uk+1 = arg min
u
Hu(u) + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2
,

= arg min
u
‖Au− f‖22 + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2
,

dk+1 = arg min
d
J(d) + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2
,

= arg min
d
‖d‖1 + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2
,

bk+1 = bk + (Φ(uk+1)− dk+1).

(21)

Since the update of u is differentiable, we can directly solve it with Gauss-Seidel, Conjugate Gradient, etc. The
update of d is solvable by shrinkage algorithm and one of b is explicit. The algorithm of the split Bregman image
restoration is given in Alg. 3.

Algorithm 3 Split Bregman image restoration
Task: Recover the original signal û.
Input: Observation signal f and measuring matrix A.

Initialization: Set d0 = 0 and b0 = 0.
while until convergence do
uk+1 = arg min

u
‖Au− f‖22 + λ

2

∥∥dk − Φ(u)− bk
∥∥2
2

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d− Φ(uk+1)− bk
∥∥2
2

bk+1 = bk + (Φ(uk+1)− dk+1)
end while

Output: Recovered signal û = uk.
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Algorithm 4 Sparse signal recovery by Split Bregman Iteration
Task: Recover the original signal u.
Input: Observation signal f and measuring matrix A.

Initialization: Set d0 = 0 and b0 = 0.
while until convergence do
uk+1 = (µATA + λI)−1(µATf + λ(dk − bk))
dk+1 = Shrink(uk+1 + bk, 1

λ )
bk+1 = bk + (uk+1 − dk+1)

end while
Output: Recovered signal u = f .

4 Sparse Signal Recovery

The purpose is to recover a sparse signal u from its observation f . Here, we assume that u is altered by a known
linear operator A. By setting

D = I (Identity matrix) ,

Θ(d) = ‖d‖1 ,

Φu(u) =
µ

2
‖Au− f‖22 ,

(22)

the variable update of Split Bregman Iteration is written as
uk+1 = arg min

u

µ
2 ‖Au− f‖22 + λ

2

∥∥dk − u− bk
∥∥2
2
,

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d− uk+1 − bk
∥∥2
2
,

bk+1 = bk + (uk+1 − dk+1).

(23)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Au− f‖22 +

λ

2

∥∥dk − u− bk
∥∥2
2

)
= 0

→µAT(Auk+1 − f)− λ(dk − uk+1 − bk) = 0

→uk+1 = (µATA + λI)−1(µATf + λ(dk − bk))

(24)

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1 = Shrink(uk+1 + bk,
1

λ
), (25)

where the component-wise shrinkage operator is applied on each component i of the vector:

Shrink(ui, δ) = sign(ui) max(0, |ui| − δ). (26)

The algorithm of the Split Bregman Iteration is given in Alg. 4.
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5 ROF denoising

5.1 Anisotropic case

The purpose is to recover an unknown image u from its noisy observation f . Here, the relationship of the images
are f = u + e. The anisotropic denoising Rudin-Osher-Fatemi model is formulated as

u = arg min
u
‖∇xu‖1 + ‖∇yu‖1 +

µ

2
‖u− f‖22 . (27)

By setting
d = Du = dx + dy = ∇xu +∇yu,

Θ(d) = ‖dx‖1 + ‖dy‖1 ,

Φu(u) =
µ

2
‖u− f‖22 ,

(28)

the variable update of Split Bregman Iteration is written as

uk+1 = arg min
u

µ
2 ‖u− f‖22 + λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+ λ
2

∥∥dky −∇yu− bky
∥∥2
2
,

dk+1
x = arg min

dx

‖dx‖1 + λ
2

∥∥dx −∇xuk+1 − bkx
∥∥2
2
,

dk+1
y = arg min

dy

‖dy‖1 + λ
2

∥∥dy −∇yuk+1 − bky
∥∥2
2
,

bk+1
x = bkx + (∇xuk+1 − dk+1

x ),

bk+1
y = bky + (∇yuk+1 − dk+1

y ).

(29)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖u− f‖22 +

λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+
λ

2

∥∥dky −∇yu− bky
∥∥2
2

)
= 0

→µ(uk+1 − f)− λ∇T
x (dkx −∇xuk+1 − bkx)− λ∇T

y (dky −∇yuk+1 − bky) = 0

→µuk+1 − λ∇T
x∇xuk+1 − λ∇T

y ∇yuk+1 = µf − λ∇x(dkx − bkx)− λ∇y(dky − bky)

→µuk+1 − λ∆uk+1 = µf − λ
(
∇x(dkx − bkx) +∇y(dky − bky)

)
→(µI − λ∆)uk+1 = µf − λ · div

(
dk − bk

)
→(µ · F(I)− λ · F(∆))F(uk+1) = µ · F(f)− λ · F(div

(
dk − bk

)
)

→F(uk+1) = (µ · F(I)− λ · F(∆))
−1 (

µ · F(f)− λ · F(div
(
dk − bk

)
)
)

→uk+1 = F−1
(

(µ · F(I)− λ · F(∆))
−1 (

µ · F(f)− λ · F(div
(
dk − bk

)
)
))

(30)

Thus,
uk+1 = F−1

(
WF k

)
, (31)

where
W = (µ · F(I)− λ · F(∆))

−1

F k = µ · F(f)− λ · F
(
div
(
dk − bk

))
= µ · F(f)− λ · F

(
∇x
(
dkx − bkx

)
+∇y

(
dky − bky

)) (32)
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dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1
x = Shrink

(
∇xuk+1 + bkx,

1

λ

)
,

dk+1
y = Shrink

(
∇yuk+1 + bky ,

1

λ

)
.

(33)

The algorithm of the Split Bregman Iteration is given in Alg. 5.

Algorithm 5 Anisotropic ROF denoising by Split Bregman Iteration
Task: Recover the noise-free image u.
Input: Observed noisy image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1
x = Shrink

(
∇xuk+1 + bkx,

1
λ

)
dk+1
y = Shrink

(
∇yuk+1 + bky ,

1
λ

)
bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
end while

Output: Denoised image u = f .

5.2 Isotropic case

Similar to the anisotropic case, we consider the isotropic total variation norm as

u = arg min
u

√
|∇xu|2 + |∇yu|2 +

µ

2
‖u− f‖22 . (34)

Similar to the anisotropic case, we denote dx = ∇xu and dy = ∇yu, then the only difference with the anisotropic
case is concerning the minimization w.r.t. dx and dy . Let sk be

sk+1 =

√
|∇xuk+1 + bkx|

2
+
∣∣∇yuk+1 + bky

∣∣2, (35)

then dx and dy are updated by

dk+1
x = max

(
sk+1 − 1

λ
, 0

)
∇xuk+1 + bkx

sk+1

dk+1
y = max

(
sk+1 − 1

λ
, 0

) ∇yuk+1 + bky
sk+1

.

(36)

The detail of the algorithm is described in Alg. 6.
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Algorithm 6 Isotropic ROF denoising by Split Bregman Iteration
Task: Recover the noise-free image u.
Input: Observed noisy image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
sk+1 =

√
|∇xuk+1 + bkx|

2
+
∣∣∇yuk+1 + bky

∣∣2
dk+1
x = max

(
sk+1 − 1

λ , 0
) ∇xu

k+1+bk
x

sk+1

dk+1
y = max

(
sk+1 − 1

λ , 0
) ∇yu

k+1+bk
y

sk+1

bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
end while

Output: Denoised image u = f .
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6 Non-Blind Deconvolution

6.1 Total Variation

The purpose is to recover an unknown image u from its blurry observation f = Ku where K represents blur
information. Non-blind TV deconvolution is formulated as

u = arg min
u
‖∇xu‖1 + ‖∇yu‖1 +

µ

2
‖Ku− f‖22 . (37)

By setting
d = Du = dx + dy = ∇xu +∇yu,

Θ(d) = ‖dx‖1 + ‖dy‖1 ,

Φu(u) =
µ

2
‖Ku− f‖22 ,

(38)

the variable update of Split Bregman Iteration is written as

uk+1 = arg min
u

µ
2 ‖Ku− f‖22 + λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+ λ
2

∥∥dky −∇yu− bky
∥∥2
2
,

dk+1
x = arg min

dx

‖dx‖1 + λ
2

∥∥dx −∇xuk+1 − bkx
∥∥2
2
,

dk+1
y = arg min

dy

‖dy‖1 + λ
2

∥∥dy −∇yuk+1 − bky
∥∥2
2
,

bk+1
x = bkx + (∇xuk+1 − dk+1

x ),

bk+1
y = bky + (∇yuk+1 − dk+1

y ).

(39)

To solve uk+1,

uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Ku− f‖22 +

λ

2

∥∥dkx −∇xu− bkx
∥∥2
2

+
λ

2

∥∥dky −∇yu− bky
∥∥2
2

)
= 0

→µKT(Kuk+1 − f)− λ∇T
x (dkx −∇xuk+1 − bkx)− λ∇T

y (dky −∇yuk+1 − bky) = 0

→µKTKuk+1 − λ∆uk+1 = µKTf − λ
(
∇x(dkx − bkx) +∇y(dky − bky)

)
→(µKTK − λ∆)uk+1 = µKTf − λ · div

(
dk − bk

)
→
(µ
λ
· F(K)2 −<(∆)

)
F(uk+1) =

µ

λ
· F(KT)F(f)−F(div

(
dk − bk

)
)

→F(uk+1) =
(µ
λ
· F(K)2 −<(∆)

)−1 (µ
λ
· F(KT)F(f)−F(div

(
dk − bk

)
)
)

→uk+1 = F−1
((µ

λ
· F(K)2 −<(∆)

)−1 (µ
λ
· F(KT)F(f)−F(div

(
dk − bk

)
)
))

(40)

Thus,
uk+1 = F−1

(
WF k

)
, (41)

where
W =

(µ
λ
· F(K)2 −<(∆)

)−1
F k =

µ

λ
· F(KT)F(f)−F

(
div
(
dk − bk

))
=
µ

λ
· F(KT)F(f)−F

(
∇x
(
dkx − bkx

)
+∇y

(
dky − bky

)) (42)
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dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1
x = Shrink

(
∇xuk+1 + bkx,

1

λ

)
,

dk+1
y = Shrink

(
∇yuk+1 + bky ,

1

λ

)
.

(43)

The algorithm of the Split Bregman Iteration is given in Alg. 7.

Algorithm 7 Anisotropic TV non-blind deconvolution by Split Bregman Iteration
Task: Recover the blur-free image u.
Input: Observed blurred image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1
x = Shrink

(
∇xuk+1 + bkx,

1
λ

)
dk+1
y = Shrink

(
∇yuk+1 + bky ,

1
λ

)
bk+1
x = bkx + (∇xuk+1 − dk+1

x )
bk+1
y = bky + (∇yuk+1 − dk+1

y )
end while

Output: Deblurred image u = f .

6.2 Tight Frame

Let D and DT be a frame decomposition and frame reconstruction operators respectively. Here, we assume tight
frame satisfying DTD = I . The corresponding model is

u = arg min
u
‖Du‖1 +

µ

2
‖Ku− f‖22 . (44)

By setting
d = Du,

Θ(d) = ‖d‖1 ,

Φu(u) =
µ

2
‖Ku− f‖22 ,

(45)

the variable update of Split Bregman Iteration is written as
uk+1 = arg min

u

µ
2 ‖Ku− f‖22 + λ

2

∥∥dk −Du− bk
∥∥2
2
,

dk+1 = arg min
d
‖d‖1 + λ

2

∥∥d−Duk+1 − bk
∥∥2
2
,

bk+1 = bk + (Duk+1 − dk+1).

(46)

To solve uk+1,
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uk+1 update: Find u that sets the gradient zero as

∂u

(
µ

2
‖Ku− f‖22 +

λ

2

∥∥dk −Du− bk
∥∥2
2

)
= 0

→µKT(Kuk+1 − f)− λDT(dk −Duk+1 − bk) = 0

→
(
µKTK + λI

)
uk+1 − µKTf − λDT(dk − bk) = 0

→
(
µKTK + λI

)
uk+1 = µKTf + λDT(dk − bk)

→uk+1 =
(
µKTK + λI

)−1 (
µKTf + λDT(dk − bk)

)
→F(uk+1) =

(
µ |F(K)|2 + λ

)−1 (
µF(KT)F(f) + λ · F

(
DT(dk − bk)

))
→uk+1 = F−1

((
µ |F(K)|2 + λ

)−1 (
µF(KT)F(f) + λ · F

(
DT(dk − bk)

)))

(47)

Thus,
uk+1 = F−1

(
WF k

)
, (48)

where
W =

(
µ · |F(K)|2 − λ

)−1
F k = µF(KT)F(f) + λ · F

(
DT(dk − bk)

)
.

(49)

dk+1 update: Since the problem is l1 minimization problem, shrinkage algorithm is applicable as

dk+1 = Shrink

(
Duk+1 + bk,

1

λ

)
. (50)

The algorithm of the Split Bregman Iteration is given in Alg. 8.

Algorithm 8 Tight frame non-blind deconvolution by Split Bregman Iteration
Task: Recover the blur-free image u.
Input: Observed blurred image f .

Initialization: Set d0
x = 0, b0x = 0, d0

y = 0, and b0y = 0 .
while until convergence do
uk+1 = F−1

(
WF k

)
dk+1 = Shrink

(
Duk+1 + bk, 1

λ

)
bk+1 = bk + (Duk+1 − dk+1)

end while
Output: Deblurred image u = f .
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Jérôme Gilles. The bregman cookbook. http://www.math.ucla.edu/~jegilles/BregmanCookbook.html,
2011. 1

Tom Goldstein and Stanley Osher. The split Bregman method for l1-regularized problems. SIAM Journal on

13

http://www.math.ucla.edu/~jegilles/BregmanCookbook.html


Imaging Sciences, 2:323–343, 2009. ISSN 1936-4954. doi: 10.1137/080725891. URL http://dl.acm.org/

citation.cfm?id=1658384.1658386. 5

14

http://dl.acm.org/citation.cfm?id=1658384.1658386
http://dl.acm.org/citation.cfm?id=1658384.1658386

	1 Linear image model
	2 Sparsity-based image restoration
	2.1 Sparse image model
	2.2 Sparsity-based image restoration

	3 Split Bregman image restoration
	3.1 Bregman distance
	3.1.1 Properties
	3.1.2 Examples

	3.2 Bregman image restoration
	3.3 Adding back the residual
	3.4 Split Bregman image restoration

	4 Sparse Signal Recovery
	5 ROF denoising
	5.1 Anisotropic case
	5.2 Isotropic case

	6 Non-Blind Deconvolution
	6.1 Total Variation
	6.2 Tight Frame

	Bibliography

