Eigen vector

Yuji Oyamada

${ }^{1}$ HVRL, Keio University

${ }^{2}$ Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München
April 9, 2012

Prerequisities

Let $\mathbf{b}=\mathbf{A x}$ be a linear transformation system of n dimension. A square matrix \mathbf{A} is a function that transforms an n dimensional vector \mathbf{x} to another n dimensional vector \mathbf{b}.

Eigenvector

Eigen vector \mathbf{x} is a non-zero vector that is imaged into a vector $\lambda \mathbf{x}$ by \mathbf{A} as

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
$$

where the scalar λ is called eigen value.

Eigenvector (cont.)

Eq. (1) is equivalent to

$$
\lambda \mathbf{x}-\mathbf{A} \mathbf{x}=\mathbf{0} \text { or } \lambda \mathbf{I} \mathbf{x}-\mathbf{A} \mathbf{x}=\mathbf{0}
$$

that is

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{x}=\left[\begin{array}{cccc}
\lambda-a_{11} & -a_{12} & \cdots & -a_{1 n} \tag{2}\\
-a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{m 1} & -a_{m 2} & \cdots & \lambda-a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]=\mathbf{0} .
$$

This equation is homogeneous!

Homogeneous system

Homogeneous systems form as

$$
A x=0 .
$$

Homogeneous systems have at least trivial solution

$$
\mathbf{x}=\mathbf{0}
$$

A non-trivial solution is any solution that

$$
\mathbf{x} \neq \mathbf{0}
$$

Homogeneous systems have non-trivial solutions if and only if the determinant of the coefficient matrix is equal to zero as

$$
\operatorname{det}(\mathbf{A})=|\mathbf{A}|=0
$$

Characteristic equation

Non-trivial solutoin of Eq. (2) should satisfy

$$
\begin{equation*}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=|\lambda \mathbf{I}-\mathbf{A}|=0 \tag{3}
\end{equation*}
$$

The expansion of the equation forms as

$$
\begin{equation*}
\phi(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0} . \tag{4}
\end{equation*}
$$

This equation is called characteristic equation of matrix \mathbf{A}.

Eigenvalues and eigenvectors computation

(1) Compute eigenvalues $\left\{\lambda_{i}\right\}$ by solving Eq. (3).
(2) Compute eigenvector \mathbf{x}_{i} by solving Eq. (2) for each eigenvalue λ_{i}.

