Singular and Non-singular Matrix

Yuji Oyamada

${ }^{1}$ HVRL, Keio University
${ }^{2}$ Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München
April 10, 2012

Non-Singular

\mathbf{A} is non-singular means that \mathbf{A} is invertible (\mathbf{A}^{-1} exists).

- Can solve $\mathbf{A x}=\mathbf{b}$ as $\hat{\mathbf{x}}=\mathbf{A}^{-1} \mathbf{b}$.
- The above solution is unique.
- For homogeneous system $\mathbf{A x}=\mathbf{0}$, the only solution is $\mathbf{x}=\mathbf{0}$.

Singular

\mathbf{A} is singular means that \mathbf{A} is not invertible (\mathbf{A}^{-1} doet not exist).

- Either
- a solution to $\mathbf{A x}=\mathbf{b}$ does not exist,
- there is more than one solution (not unique).
- The homogeneous system $\mathbf{A x}=\mathbf{0}$ has more than one solution.
- Infinitely many non-trivial solutions.

Comparison

	Non-singular	Singular
\mathbf{A} is	invertible	not invertible
Columns	independent	dependent
Rows	independent	dependent
$\operatorname{det}(\mathbf{A})$	$=0$	$=0$
$\mathbf{A} \mathbf{x}=\mathbf{0}$	one solution $\mathbf{x}=\mathbf{0}$	infinitely many solution
$\mathbf{A x}=\mathbf{b}$	one solution	no solution or infinitely many
\mathbf{A} has	n (nonzero) pivots	$r<n$ pivots
\mathbf{A} has	full rank $r=n$	rank $r<n$
Column space	is all of \mathbb{R}^{n}	has dimension $r<n$
Row space	is all of \mathbb{R}^{n}	has dimension $r<n$
Eigenvalue	All eigenvalues are non-zero	Zero is an eigenvalue of \mathbf{A}
$\mathbf{A}^{\top} \mathbf{A}$	is symmetric positive definite	is only semidefinite
Singular value of \mathbf{A}	has n (positive) singular values	has $r<n$ singular values

