Singular and Non-singular Matrix

Yuji Oyamada

¹HVRL, Keio University

²Chair for Computer Aided Medical Procedure (CAMP), Technische Universität München

April 10, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Non-Singular

- **A** is non-singular means that **A** is invertible (\mathbf{A}^{-1} exists).
 - Can solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ as $\hat{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{b}$.
 - The above solution is unique.
 - For homogeneous system Ax = 0, the only solution is x = 0.

Singular

- **A** is singular means that **A** is not invertible (\mathbf{A}^{-1} doet not exist).
 - Either
 - a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ does not exist,
 - there is more than one solution (not unique).
 - The homogeneous system Ax = 0 has more than one solution.
 - Infinitely many non-trivial solutions.

Comparison

	Non-singular	Singular
A is	invertible	not invertible
Columns	independent	dependent
Rows	independent	dependent
$\det(\mathbf{A})$	$\neq 0$	= 0
Ax = 0	one solution $\mathbf{x} = 0$	infinitely many solution
Ax = b	one solution	no solution or infinitely many
A has	<i>n</i> (nonzero) pivots	r < n pivots
A has	full rank $r = n$	rank <i>r < n</i>
Column space	is all of \mathbb{R}^n	has dimension $r < n$
Row space	is all of \mathbb{R}^n	has dimension $r < n$
Eigenvalue	All eigenvalues are non-zero	Zero is an eigenvalue of ${f A}$
A ^T A	is symmetric positive definite	is only semidefinite
Singular value of ${\bf A}$	has <i>n</i> (positive) singular values	has $r < n$ singular values

・ロト ・聞ト ・ヨト ・ヨト