
A Thesis for the Degree of Ph.D. in Engineering

Pre/Post Blur Correction
from a Single Photo Shooting

August 2011

Graduate School of Science and Technology

Keio University

Yuji Oyamada



c⃝Copyright by Yuji Oyamada 2011

All Rights Reserved



Abstract

Recently, projector based display technologies have attracted much attention.

In contrast to computer monitors, projectors have a big merit that projectors can

fit their projection to arbitrary shape display. In addition to the development of

computer power, miniaturization and price reduction of cameras and projectors

encourages researches on such technologies. Such systems implicitly assume that

we can display observation as high quality as we expect. However, this assump-

tion is sometimes violated by motion/defocus blur occurred during imaging pro-

cess.

This thesis focuses on image restoration problem aiming to remove blur effect.

I propose single shoot based blur estimation method using constraints on target

blur and scene.

To remove motion blur effect occurred during image acquisition process, it is

required to know how the image is blurred. Proposed method analytically esti-

mates this blur information by using target blur as constraints. The method takes

a single blurred image captured by a normal camera and the blur on the captured

image is assumed to be uniform on the entire image. Under such conditions, the

cepstrum of the blurred image has partial information of target blur. Using the

characteristics, I propose a PSF estimation method estimating a PSF from the

cepstrum of a blurred image. Since the method uses constraints on target blur, the

method is applicable to various types of images.

In-focus projection removes the projector defocus occurred during image dis-

play process. To realize it, we have to know the amount of defocus blur on the

display. Furthermore, the amount of defocus varies across the display. Addition

to an image captured by a camera, an image projected by a projector is also used

as input. Proposed method estimates spatially varying defocus blur information
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using the projector-camera image pair. Since the method does not require fiducial

pattern projection, the method is available on on-line systems.

To validate the proposed methods, both synthesized images and real world

images are used. Experimental results show that the proposed methods enable

blur correction under the assumed conditions.
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Chapter 1

Introduction

When we convey a thing to others, how do we do? In face to face commu-

nication, we rely on both oral and non-verbal communication. Oral communica-

tion, spoken verbal communication in other words, typically relies on words. In

contrast, non-verbal communication meaning wordless communication relies on

gesture and facial expression andetc.

When we want to do it across time and space, what should we do? The old-

fashioned way follows the above type of communications. For example, folk

stories and songs passed by word of mouth are categorized into this type. How-

ever, the reprise of such style varies the terms and the expression of the contents,

thus we may lose the part of the contents as a result. Using telephone and video

chat such as SkypeTM, indirect communication can be achieved across space but

not time. For communication across time, the better way is written communi-

cation. Ancient people used pictograph, resemblance of objects for the purpose.

They painted images onto walls or incised into stones using mineral pigments.

Figure1.1shows a cave painting of a horse drawn by Cro-Magnon peoples. Even

though we have no idea what they wanted to tell by such pictograph, the graph can

tell the information of the era. Printing technology further encouraged this type

of communications, especially for text. A big leap in the technology occurred by

printing-press technology intended in the 15th century. The printing-press devices

enabled rapid and precise copy of text document. This is the reason why the inven-

tion and spread of the technology are regarded as the revolutionizing events in the
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Figure 1.1:Written communication at ancient time: Cave painting of a horse at
Lascaux drawn by Cro-Magnon peoples.

second millennium. With the printing technology, the contents can be preserved

semi-permanently.

An idiom Seeing is believingmeans that physical or concrete evidence is con-

vincing. This indicates that conveying a thing prefers showing the thing rather

than telling the thing. Thus, it is natural that we have developed devices taking a

photograph, an image of projecting lights of a scene. Before the first photographs,

the principal of pinhole camera was mentioned by Mo Di, Chinese philosopher,

and Aristotle, Greek mathematician, in the fifth and fourth centuries BC.Camera

obscuraconsisting of a box or a room with a hole in one side is the concrete device

of pinhole camera. Light from an external scene of the camera passes through the

hole and then reaches a surface inside. The image of the scene can be projected

onto the surface, and can then be manually traced to produce a photograph of the

scene. Joseph Nicéphore Níepce, a French inventor, invented revolutionizing cam-

era like printing-press technology for text [Gernsheim, 1977]. His key idea is to

omit manual drawing from imaging process by relying on photochemical action so

that we can automatically obtain a photograph. Before Niépce, photographs were

not permanent, unable to permanently secure the images from fading. Gorman

mentioned that his camera was designed based on heliograph [Gorman, 2002].

Figure1.2shows the earliest surviving photograph taken by Niépce. The big lim-
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Figure 1.2:The earliest surviving photograph of a scene from nature taken with
a camera obscura:View from the Window at Le Gras. [Joseph Nićephore Níepce,
1826]

itation of Niépce’s camera is its exposure time. It takes about eight hours for the

camera to yield the photochemical action. Thus, his follower focused on achieving

shorter exposure time. Through the 19th century, many advances in photographic

glass plates and printing were made in. George Eastman replaced photographic

plates to photographic film. This replacement was distributed through the late 19

century and results the technology of today’s film camera. Nowadays, digital cam-

era is one of the most popular devices for photo shooting. The difference between

digital camera and film camera is their memory media. As memory medium, film

camera uses photographic film while digital camera does memory devices such as

memory card by converting the received light to digital data format via an elec-

tronic image sensor.

Digital camera takes two steps to provide the observation of the photograph

as shown in Fig.1.3 while Niépce’s camera directly generated a photo of the

scene via one process. First process is image acquisition process. The process

receives lights from the scene and then converts the received light as the latent

image. For this process, film camera uses photographic film or plate while digital

camera uses imaging sensor,e.g., a Charge-Coupled Device (CCD) image sensor

or Complementary Metal-Oxide-Semiconductor (CMOS) sensor. Next is image

display process. This step transforms the latent image into a visible image. For
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Digital image
Target scene

Image on a display

Acquisition process

Display process
Camera

Display device
Figure 1.3: Imaging processes of digital camera: Image acquisition process con-
verts the energy of lights coming from the target scene to measurable value. Image
display process shows the digital image using a display device.

images saved on the film, we follow photographic processing, which is the chemi-

cal ways to produce a negative or positive image. On the other hand, digital image

has various ways of displaying the photo. One may use printers to make the photo

permanent while another may use display devices to see the photo temporarily.

Typical display device is computer monitors including Cathode Ray Tubes (CRT)

display and Liquid Crystal Display (LCD). Thanks to the recent development of

display technologies, bigger and brighter display is available with cheaper cost.

In contrast to such monitors, projectors only have light emitting devices. To form

an image, projectors require display surface, onto which they emit the light.

1.1 State-of-the-art imaging technologies

Where can the imaging technologies do so far? Here, I briefly overview the

state-of-the-art acquisition and display technologies independently.

State-of-the-art acquisition technology

As I mentioned in the previous section, camera has evolutionary been devel-

oped. Ancient cameras like Niépce’s camera realized automatic photo shooting

resulting permanent photo even though single shot takes longer than our senses.
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Due to the direct imaging style, this type of cameras lacks reproducibility. Since

film cameras split the imaging process into two sub processes, this type of cam-

eras enabled reproduction of taken photo. With the development of high-speed

Internet and high-power computer, digital cameras provided ease of reproducibil-

ity and editability.

Contrast to the change of form, its basic model has still been same as the

camera obscura, which was originally mentioned more than two thousands year

ago. What makes the revolution of image acquisition? I think computational

photography has great potential for this question. The concept of computational

photography is to redefine/reconstruct the acquisition process by considering the

post-processing scheme as a part of acquisition process so that we can optimize the

optics and processing scheme for the purpose. One famous example is a plenoptic

camera for light field acquisition [Ng et al., 2005]. Light field describes light in

every direction of the scene. Once we obtain the light field of a scene, it allows

us to: view the scene from another point of view; refocus the image; and change

perspective of the image. In conventional camera, a pixel receives the light pass-

ing through the lens but not consider the direction. To obtain light field with a

conventional camera, we take photos from multiple positions,e.g., by single mov-

ing camera [Levoy and Hanrahan, 1996] or multiple fixed cameras [Wilburn et al.,

2005]. Ng et al. enabled a single fixed camera to capture a light field by integrat-

ing microlens array in the optical design [Ng et al., 2005]. For further information

including theory and applications, readers can refer to the articles on this topic

[Cohen and Szeliski, 2006; Debevec, 2006; Levoy, 2006; Nayar, 2006].

State-of-the-art display technology

Different from acquisition technologies, display technologies are heading in

different directions.

One direction considers display 3D information similar to the light field acqui-

sition. One way is to show several images on a 2D display to the viewer so as to

perceive the images as 3D. Very typical one is stereoscopic display. The display

separately shows two offset images to the left and right eye of the viewer.The off-

set is combined in the brain and then be perceived as they have 3D depth. Another
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type use a lenticular lens that emits different images to different angles [Roberts,

2003]. With the lens, a 2D display can show the different images to both eyes. The

limitation of this type of displays is that the position of the viewer is restricted.

Another way uses volumetric displays rather than 2D displays. To form 3D

image on volumetric object, we generally use projector(s). By changing the pro-

jecting image, we can change the appearance of the volumetric object so that the

lit object looks like textured object. Paul Debevec and his colleague proposed an

interactive 3D display [Jones et al., 2007]. The display consists of a high-speed

video projector, a spinning mirror covered by a holographic diffuser, and FPGA

circuitry to decode specially rendered DVI video signals. Since the spinning mir-

ror reflects the projected 3D object to all angles, multiple viewers around the dis-

play can simultaneously see the 3D object. They further enhanced the display to

work it on-line such as 3D video teleconference [Jones et al., 2009]. The system

captures the user’s 3D face data by real-time 3D scanning technique. Then, the

captured data is transmitted to the remote location and showed the 3D face data

using the 3D display.

As mentioned by Bimber and Raskar in their book [Bimber and Raskar, 2005],

projectors allow daily objects, not only a spinning mirror, to be 3D display. We can

control the appearance of the display object by somehow adjusting the projection

on the display shape.Famous example isShader Lampsoriginally proposed by

Raskar et al. [Raskar et al., 2001]. Figure1.4 shows Shader Lamps series. Orig-

inal Shader Lamps uses multiple projectors to render a virtual texture onto the

physical object of the same shape [Raskar et al., 2001]. As shown in Fig.1.4 (a),

the appearance of the non-textured wooden model becomes painted Taj Mahal.

Dynamic Shader Lamps is an extension of the original Shader Lamps to movable

objects [Bandyopadhyay et al., 2001]. The Dynamic Shader Lamps allows the

display object movable and provides a 3D painting interface as interaction with

the display as shown in Fig.1.4 (b). Shader Lamps Avatars focuses on person-

person communication [Lincoln et al., 2011]. Both the dynamic motion and the

appearance of a real person is captured and projected onto a human-shaped dis-

play surface as shown in Fig.1.4 (c). For more information about 3D display

with projectors including Shader Lamps, readers can refer to a book on the topic

[Bimber and Raskar, 2005].
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(a) Shader Lamps (b) Dynamic Shader Lamps

(c) Shader Lamps Avatars
Figure 1.4: Shader Lamps series: (a) Shader Lamps: (Left) Original appearance
of wooden Taj Mahal model. (Right) The same model enhanced by adjusted pro-
jection. Courtesy of [Raskar et al., 2001]. (b) Dynamic Shader Lamps: A user
is painting on movable object. Courtesy of [Bandyopadhyay et al., 2001]. (c)
Shader Lamps Avatars: Implementation and diagram of the system. (Left) A user
captured by a camera at the capture site. (Middle) An avatar projected by a pro-
jector at the display site. (Right) The un-illuminated avator. Used courtesy of
Department of Computer Science, UNC Chapel Hill from [Lincoln et al., 2011].

Another direction of display technologies uses natural material as display

object as shown in Fig.1.5. The infernoptix Digital Pyrotechnic Matrix uses

computer-controlled bursts of fire as a display [NAO Design]. Barunm et al. use

water drops as display [Barnum et al., 2009]. The display is created by a projec-

tor that illuminates water drops falling from a drop generator. Detecting the 3D

position of the drop based on the computer vision technique, the display projects

an image to the drops. Display shape varies according to the set up of the drop

generator. Heiner et al. use air bubbles rising up tubes of water [Heiner et al.,

1999]. Accurate control of air release enables scrolling up display of image. This

type of displays is well-reviewed by Moere [Moere, 2008].
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(a) Fire display (b) Water drops display (c) Air bubble display
Figure 1.5: (a) Fire display showing a character ‘N’. Courtesy of [NAO Design].
(b) Curved water drop display showing the 3D model of a globe. Courtesy of
[Barnum et al., 2009]. (c) Air bubble display showing text ‘UIST’. Courtesy of
[Heiner et al., 1999].

1.2 For the next generation imaging technology

At this point, let us take a moment to imagine the configuration of imaging

technology in the future. There exist several issues to be considered.

I think cheaper and more readily available device is preferred by consumers

and such devices also provide the opportunity to researchers more. Famous ex-

ample is iPhone [Apple Inc.] and Kinect [Xbox.com]. Before iPhone (or other

current smartphone), Augmented Reality (AR) researches were mainly done with

desktop/laptop PC and camera(s) connected to the PC. This set up limits where

the application runs. Since smartphone consists of CPU, camera, and display, it

is regarded as a mobile AR set up. As a result, the concept and potential benefit

of AR have rapidly become public knowledge. Same as iPhone, Kinect opens

the door to Human Computer Interaction (HCI) researchers. One way of HCI re-

searches uses human action,e.g., gesture and pose, as the interface. This way is

very straightforward and intuitive strategy but requires human action recognition

technique. With its SDK provided by Microsoft, human pose can be recognized in

real time so that we can focus on interaction design more. These situations insist

that cheaper mass product device is preferred for the configuration of next imaging

process. Readers can check how much the devices mentioned here get attention

in the world by searching keywords ‘iPhone AR’ and ‘Kinect’ on Internet.

Considering the cost and portability, camera and projector is a reasonable con-

figuration candidate. State-of-the-art display technologies indicate that we are
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going to use projector in dynamic scene. Currently, projected content is simple

image and computer graphics objects. In a sense, such content is static, somehow

generated beforehand. Let me show some related works of static contents projec-

tion. Shader Lamps [Raskar et al., 2001] mentioned above is an example of static

contents projection in static scene. The system projects pre-rendered textured 3D

model to fixed wooden model, the position of which is known. Yotsukura et al.

proposed HyperMask [Yotsukura et al., 2002] that is an example of static contents

projection in dynamic scene. HyperMask projects an animated face onto a phys-

ical mask worn by a moving actor. Using infrared LED embedded on the mask,

the system adjusts the projection onto the moving display, the actor’s mask. Au-

det et al. proposed a method for static content projection in dynamic scene [Audet

et al., 2010]. Their method is based on gradient method based object tracking

algorithm [Baker and Matthews, 2004]. Tracking the textured planar screen and,

their method can adjust the projection to the moving screen in real time. Short

conclusion of the literature is that

• projected contents are static such as pre-taken photo/movie and pre-rendered

3D model, and

• display object is moving plane or fixed volumetric objects.

What kind of configuration we should develop in the future? My tentative an-

swer is dynamic contents projection in dynamic scene,e.g., Shader Lamps Avatars

[Lincoln et al., 2011]. Figure1.6 illustrates the concept. We capture a scene of

interest, moving people. Virtual information, hair, is overlaid on the captured

contents and then projected on the volumetric and deformable objects, probably

mannequin like object, in real time. The point of this dynamic contents projection

in dynamic scene is that all materials in the scene can be dynamic. Once the guy

moves, overlaid hair should be synchronized to the motion to fit on his head. Fur-

thermore, display object also should be synchronized to his motion. This is my

answer to the question.

To realize this dynamic projection in dynamic scene, we have to tackle several

difficulties and one of them is image degradation.Figure1.7 shows a projector

based 3D human face display I have developed [Oyamada and Saito, 2006] and

its fatal problem. In the system, a user holds a white mannequin and changes
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Projector

Volumetric and deformabledisplay object
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Figure 1.6:Configuration of imaging process in the future: Concept of dynamic
projection in dynamic scene. Target object, moving people, is captured by a cam-
era. Virtual information, hair, is overlaid on the captured contents and then a
projector projects the contents on the volumetric and deformable surface.

its position and orientation. A camera tracks the mannequin and then a projector

fits projected 3D face model by using tracking information. Since projector has

narrow depth-of-field, the appearance on the display object may be blurred by

projector defocus as shown in Fig.1.7 (c). Such degradation is occurred during

imaging processes. Addition to projector defocus, degradation occurred during

the image acquisition process,e.g., motion blur, may occur if the projected texture

is captured/rendered in real time. Even with expensive devices and experienced

users, satisfying visualization is difficult and challenging task. Figure1.8 shows

examples of image degradation. When camera/target object moves during the

exposure time, obtained photograph is blurred by the motion. On an unoptimized

display, displayed image forms on the display may contain defocus effect due

to projector’s narrow depth-of-field. Comparing with Fig.1.3, the top figure is

horizontally blurred and the bottom figure is defocus blurred by the projection.

To prevent such degradation, manufactures integrate solutions directly into

devices. Anti-motion blur technologies use hardware support for the purpose.

Image Stabilizer[Canon, 1995], Vibration Reduction[Nikon, 2000], and Anti-
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(b) In-focus projection

(c) Defocus projection(a) Running system
Figure 1.7:Projector based 3D human face display [Oyamada and Saito, 2006]
and its fatal problem. (a) Figures of running system. (b) In-focus projection. (c)
Defocus projection.

Shake[KonicaMinolta, 2003] detect camera motion by motion sensors in the cam-

era,e.g., gyro sensor, and shift lens [Canon, 1995; Nikon, 2000] or CCD array

[KonicaMinolta, 2003]. Shifting lens or CCD arrays, geometric relation between

the scene and the CCD array is stabilized, thus blur effect of camera motion can be

cancelled on the observed image. Projector manufactures also provide image ad-

justment functions such asKeystone correction[NEC Display Solutions Europe,

a] andWall color correction[NEC Display Solutions Europe, b]. Keystone func-

tion fits projection onto slanted surface that is not perpendicular to the projector.

There are two types of keystone functions, optical or digital. Optical keystone

adjusts the image by physically modifying the light-path through the lens sys-

tem while digital one does the image by shrinking the image before projection.

Wall color correction function enables projection onto colored surface such as

blackboard. When a user specifies the color of wall, the projector modifies the

projecting color based on the pre-defined color lookup table.

We, computer vision researchers, have also provided solutions. Image restora-

tion means recovering the degradation-free image given degraded image(s). For

example, denoising targets noisy image damaged during acquisition process and

deblurring restores blurred image degraded by motion during its exposure time.

Stretching the notion of image restoration, projector image adjustment onto un-
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Figure 1.8: Image degradation during the imaging processes. Motion blur during
the acquisition process and defocus blur during the display process.

optimized surface can be regarded as one of restoration works. When we use a

projector under unoptimized situation,e.g., off-axis projection and projection onto

volumetric surface, normal projection results degraded display on the surface. To

adjust the projection, we have to adjust the projection somehow. This adjustment

can be considered as restoration operation.

For upcoming imaging technologies era, how can the computer vision tech-

nique contribute to enjoy dynamic projection in dynamic scene? From my per-

spective, image restoration technique is necessary. But how to do that? Two so-

lutions are considered. First solution is for a simpler system just display the raw

dynamic contents, no virtual contents. In such applications, what we should take

care is final observation, intermediate observation,e.g., the captured photo, is not

important. Thus, a single restoration operation performed on the display process

side is enough. On the other hand, the other solution for a system adding virtual

contents requires several restoration operations. Since the system add the virtual

information to the captured dynamic contents, the captured contents should be

stabilized. Therefore, we have to take care of intermediate observation not only

final one. From a resolvability point of view, the latter type is easier than the for-

mer one. Restoration of single process should solve several types of degradations

merged on the final observation within a step while one of several processes does

it step by step. Even though we have to separate the data flow somehow, sequential

solution is generally easier than batch solution.

This thesis assumes that blur occurred during imaging processes is separable
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(separating process is not discussed here) so that we can separately address image

restoration technique upcoming imaging technologies era. Specifically, I focus on

blur estimation of the following topics:

• Motion deblurring : removing motion blur effect occurred during acquisi-

tion process, and

• In-focus projection: removing projector defocus blur effect occurred dur-

ing display process.

Figure 1.9 illustrates these two issues. Even though both topics seem to be in

different research categories, they share the same purpose that removes the blur

effect from observation. Motion deblurring removes the motion blur effect after

the image is blurred while in-focus projection enhances the image component to

cancel the defocus blur effect before the image is blurred. This means that both

they are blur correction researches but the type of correction differs. Motion de-

blurring is a post blur correction while in-focus projection is a pre blur correction.

1.3 Summary of original contributions

This section outlines major contributions of this thesis. The proposed method

should consider the conditions of upcoming imaging technologies,i.e., dynamic

projection in dynamic scene. To reduce the hardware constraint, simple set up

is preferred. Thus, I put constraints on target blur and estimate blur information

from a single photo shooting based on traditional signal processing ways. Here,

the contributions are described for each of topics.

Cepstral Analysis based Non-Linear Motion PSF Estimation

Motion deblurring is one of the long existing problems in computer vision re-

search field. For motion deblurring, there are two research issues to be solved.

One is to estimate Point Spread Function (PSF) that represents degradation pro-

cess,e.g., motion path in the case. The other is to recover the unknown latent
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Motion deblurring

In-focus projection
Figure 1.9: Two blur correction addressed in this thesis. (Top) Deblurring for
motion blur occurred during acquisition process. (Bottom) In-focus projection for
projector defocus blur occurred during display process.

image, namely removing the blur effect from the blur image. In this thesis, I focus

on the former issue, namely PSF estimation of motion deblurring.

There exist several types of PSF estimation approaches, detail of the literature

is mentioned in Ch.2. Typically, the cepstral approach is used only for parametric

PSFs,e.g., linear motion. For more complicated PSF,e.g., non-parametric motion,

state-of-the-art works follow natural image statistics and estimate such PSF based

on regularized minimization algorithms. The main contribution of this work is that

I extend the cepstral analysis based PSF estimation to handle non-linear motion

PSF. To introduce the cepstral approach for non-linear motion PSF estimation, I

will analyze the cepstral behavior of non-linear motion. Then, I propose a non-

linear motion PSF estimation method based on the analyzed cepstral behavior.

The proposed method is validated with both synthesized images and real world

images. The experimental results show that cepstral analysis based method can

work for non-linear motion PSF estimation.
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In-Focus Projection from a Single Projector-Camera Image Pair

Projector is well-used display devices with strong limitations. Since it was

released to the world, we have wondered flexible usage of the device. Suppose

that we can fully control the projection, the device can contribute to wide range

of research fields and also our daily life as mentioned in Sec.4.1. Projector image

adjustment is to adjust a projector image onto unoptimized surface,e.g., off-axis

projection and projection onto volumetric surface. There exist three types of ad-

justment works; geometric adjustment, color adjustment, and focal adjustment.

In this thesis, I focus on focal adjustment, so called in-focus projection. Similar

to motion deblurring, there are also two research issues to be solved. One is to

estimate PSF,e.g., amount of projector defocus, here. The other is how to remove

the defocus effect occurring after projection. In this thesis, I tackle both issues but

mainly focus on PSF estimation.

Not only in-focus projection, almost the existing projector image adjustment

works use fiducial patterns,e.g., chess board like pattern, to estimate the informa-

tion of image degradation. This is straightforward strategy for projector-camera

systems that we project such fiducial patterns for estimation. In fact, there exist

few works that passively estimate the information of degradation. However, all the

existing in-focus projection works use fiducial patterns for estimation. To mount

focal adjustment framework on upcoming imaging technologies, we require pas-

sive blur estimation method. The main contribution of this work is that I introduce

PSF estimation strategy into this field so that the proposed method can passively

estimate the information of projector defocus without fiducial patterns projection.

The experimental results show that the proposed method achieves in-focus pro-

jection without using fiducial patterns.

1.4 Organization of the thesis

This thesis is divided into five chapters. This chapter stated global background

of this thesis and described the main contribution of the latter parts of the thesis.

In Ch. 2, the related works of blur correction are reviewed to clarify the position

of this thesis. Chapter3 describes motion deblurring work and Ch.4 presents
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in-focus projection work respectively. Finally, Ch.5 concludes this thesis with a

summary of the contributions and several directions of future works.
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Chapter 2

Related Works on Blur Correction

This chapter reviews the previous and related works. First of all, Sec.2.1and

Sec.2.2clarify the technical problems of blur correction. Next, the previous and

related works are reviewed. For ease of learning, image restoration algorithms are

first reviewed in Sec.2.4and then Sec.2.5reviews blur estimation algorithms.

2.1 Problem statement

A blurred imageg is described by a convolution of a latent imagef and a blur

kernelk plus image noisen as

g(x) = f(x)⊗ k(x) + n(x), (2.1)

wherex = (x, y)T denotes a pixel position. Since blur kernel represents how

the blur process spreads an ideal single point, blur kernelk is called Point Spread

Function (PSF).

The goal of image deblurring, deconvolution in other word, is to recover the

unknown latent imagef . The difficulty of image deblurring is its ill-posedness.

Figure2.1shows an example of the ill-posedness. The blurred image is generated

by middle row of(f, k) pair, woman face degraded by zigzag motion. Top and

bottom are wrong pairs. Top row pair is no-blur case and bottom one mistakes

blur as horizontal motion. Even though our perception can easily judge which

pair is the correct, all these pairs computationally well-explain the blurred image.
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Figure 2.1: Example of Ill-posedness of image deblurring. Middle row of(f, k)
pair is ground truth. Top and bottom pairs are wrong but theoretically well-
explains the blurred imageg.

As the figure shows, there is no unique answer. For such problems, we require

additional queue(s) to resolve the ambiguity.

2.2 Additional queues for disambiguation

What kind of information can be the helpful for deconvolution? The condi-

tions of target scene is considered as constraintse.g., blur type and available data.

2.2.1 Blur type

Blur type of PSF can be a constraint of deconvolution. There exist various

types of PSF as shown in Fig.2.2. When target PSF can be described by a

parametric form, it drastically decreases the ambiguity of potential PSF. Popu-

lar parametric models are a linear motion (LM) and defocus blur. An LM blur is

parameterized by two parameters, motion direction and motion length, as

kL(x) =


1

L
if ||x|| ≤ L

2
and

y

x
= tan θ

0 elsewhere
, (2.2)
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(a) Linear motion blur (b) Circle blurof small aperture (c) Gaussian blurof wide aperture (d) Non-parametric
Figure 2.2: Various types of PSF. (a) linear motion PSF. (b) Circular disk PSF.
(c) 2D Gaussian PSF. (d) non-parametric motion PSF.

whereθ andL denote motion direction and length respectively. Defocus blur is

parameterized as a circular disk function or an isotropic Gaussian. A circular disk

PSF represents defocus blur of smaller aperture lens,e.g., camera defocus, as

kcircle(x) =


1

πr2
if ||x|| ≤ r

0 elsewhere
, (2.3)

wherer denotes the radius of the circle. On the other hand, an isotropic Gaussian

PSF represents defocus blur of larger aperture lens,e.g., projector defocus, as

kGaussian(x;σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (2.4)

whereσ denotes standard deviation of the Gaussian. When more complex motion

occurs as shown in the right figure of Fig.2.2, we give up the style of representing

such motion with parametric form. Such motion is called non-parametric PSF.

Another classification of blur type is based on its uniformity. Classical ap-

proaches assume blur uniform on an image while some of recent works try to es-

timate non-uniform blur on an image. Motion blur parallel to its image plane and

defocus blur of same depth scene are described by a uniform PSF. Non-uniform

case is camera rotation, differently moving objects and defocus blur of different

depth scene.
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2.2.2 Available data

Available data of scene can also be a constraint of deconvolution. Additional

image(s) of same target scene helps disambiguation. When we take two photos

of a scene and they are differently blurred, how should we get the latent image?

Rav-Acha and Peleg mention that using two differently blurred images are better

than a single blurred image [Rav-Acha and Peleg, 2005]. When the camera expo-

sure time varies, different types of degraded images are available. Yuan et al. use

one blurred image with longer exposure time and one noisy image with shorter

exposure time [Yuan et al., 2007]. The concept is to utilize color of the blurred

image and sharpness of the noisy image. Combining information extracted from

both blurred and noisy images, they recover the latent image rather than a recov-

ered image from either image. An image set, each image of which is captured

with different focal plane, of same target scene is useful to know defocus infor-

mation. Since defocus blur is proportional to the distance between the object and

camera’s depth-of-field, depth information can be computed from such image set.

By comparing such images, we can classify in-focus and defocus regions of im-

ages. Once the in-focus region of each image is extracted, all-in-focus image can

be generated by merging the regions [Antunes et al., 2005].

If additional devices are available, what kind of devices can help deconvo-

lution? PSF estimation of camera motion blur is equivalent to camera motion

estimation. Thus, motion sensor is useful for camera motion blur estimation.

Nikon provides lens containing motion sensors in its body [Nikon, 2000] while

Joshi et al. put motion sensors inside camera body [Joshi et al., 2010]. Contrast

to motion blur, depth/range sensors are useful for defocus blur estimation. The

amount of defocus is proportional to the distance between object and the depth-

of-field of the device. Therefore, NEC Display Solutions, Ltd. puts depth sensor

inside projector body [NEC Display Solutions, Ltd.].

2.3 Deconvolution

Roughly speaking, deconvolution has two types, non-blind and blind decon-

volution. Classical approaches assume that we somehow know the PSF, thus the
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task is to estimatef giveng andk as

f̂ = Non-blind deconvolution(g, k). (2.5)

This type of deconvolution is called non-blind deconvolution. It is important to

note that even non-blind deconvolution is ill-posed problem. On the other hand,

blind deconvolution estimatesf andk giveng as(
f̂ , k̂
)
= Blind deconvolution(g). (2.6)

Note that correct information ofk is necessary even though the goal is to estimate

f . In the following, non-blind deconvolution works are first reviewed and then

blind ones are reviewed.

2.4 Non-blind deconvolution

Non-blind deconvolution estimates a latent imagef given a blurred image

g with a known PSFk and possibly known noisen. Even thoughk is known,

non-blind deconvolution is still ill-posed problem. Based on methods’ strategies,

previous works are categorized into two types of approaches, analytical solutions

and numerical solutions.

2.4.1 Analytical solutions

Analytical solutions try to perform the inverse operation of convolution. Ba-

sically, they are based on the convolution theorem that the Fourier transform of a

convolution is the pointwise multiplication of the Fourier transforms as

F(f ⊗ k) = F(f)F(k). (2.7)

The simplest deconvolution method is inverse filtering in the frequency do-

main. Neglecting the noise term in Eq. (2.1), the latent image can be recovered by
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inverse filtering in the frequency domain as

f̂ = F−1

(
Fg(u)

Fk(u)

)
, (2.8)

whereF denotes the Fourier transform of the subscript andu = (u, v)T denotes a

spectrum frequency. If the imageg is perfectly noise free and the spectrum of the

kernelFk has no zero values at any frequencies, the inverse filtering should derive

the perfect latent image.

Unfortunately, everyday photography usually violates the above assumption.

They may contain some noise andFk has negligible values at some frequencies.

One straight forward solution is introducing denoising algorithm. Chesneau et al.

combine image denoising algorithm with the inverse filtering [Chesneau et al.,

2009]. They first apply denoising algorithm to blurred image and then apply the

inverse filtering to the denoised image. Therefore, the restored image should have

less noise artifacts than the inverse filtered image.

Wiener filtering considers the deconvolved noise of frequencies that have poor

signal-to-noise ratio [Wiener, 1949]. The Wiener filter is formulated in the fre-

quency domain as

FWiener(u) =
F ∗
k (u)

|Fk(u)|2 + Fn(u)/Ff (u)
(2.9)

whereF ∗ is the complex conjugate ofF , andFf andFn denote the power spectra

of the ideal imagef and the noisen, respectively. In the case of no noise, the

Wiener filter becomes simple inverse filtering. Wiener filtering has been used for

a lot of applications, however it’s still have limitations. Wiener filtering assumes

known signal-to-noise ratio for every frequency. Even though we assume uniform

signal-to-noise ratio, it is typically unknown.

Another solution is to make the problem well-posed. Raskar et al. develop a

coded-exposure camera that flutter the camera’s shutter open and close during the

exposure time with a binary pseudo-random sequence [Raskar et al., 2006]. Due

to its randomness, coded-exposure camera prevents zero and negligible values and

flattens its spectrum. Thus, the inverse filtering (Eq. (2.8)) works on the blurred

images.
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2.4.2 Numerical solutions

Contrast to the analytical solutions, numerical solutions estimate most likelyf

by numerical computation. Giveng, k, and some prior knowledge onf , recovered

image is obtained as

f̂ = argmin
f

|Q(g − f ⊗ k) + λR(f)|, (2.10)

whereQ denotes the data fidelity term that measures the distance between the ob-

servationg and the estimatef , R denotes the regularization term that is derived

from our prior knowledge onf , andλ is a parameter that balances the trade-off

between the fidelity term and the regularization term. In the literature, there exist

two types of methods, non-regularized minimization and regularized minimiza-

tion.

2.4.3 Non-regularized minimization

Non-regularized minimization methods consider only the fidelity term of Eq. (2.10)

as

f̂ = argmin
f

|Q(g − f ⊗ k)|. (2.11)

The most well-known and well-used solution is Richardson-Lucy (RL) algorithm

[Lucy, 1974; Richardson, 1972] that assumes Poisson distribution on image noise

n. Based on the Bayes’ theorem, RL algorithm iteratively finds the latent image

f as

ft+1(x) = ft(x)

(
k(x) ∗ g(x)

gt(x)

)
, (2.12)

where∗ denotes the correlation operator andgt(x) = ft(x) ⊗ k(x). Considering

thatgt is the prediction of a blurred image according to the current estimateft, the

fraction
g

gt
can be regarded as the residual error between the real blurred image

and the predicted blurred image.

As previously mentioned, RL algorithm assumes Poisson noise, means that the

algorithm is suitable for very low light conditions such as astronomical images and

microscopy images. However, noise in everyday photograph is usually modeled
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by Gaussian noise. As Tai et al. mention in their paper [Tai et al., 2011], RL

algorithm considering Gaussian noise is formulated as

ft+1(x) = ft(x) + (g(x)− gt(x)) ∗ k(x). (2.13)

The derivation of RL algorithm for both Poisson noise and Gaussian noise are

provided in Appx.A.

The RL algorithm assumes that residualg − f ⊗ k follows a parametric dis-

tribution such as Poisson distribution. However, such assumption is sensitive to

outliers, or deviations, from the assumed model. Angelino et al. relax the para-

metric assumption on noise statistical model [Angelino et al., 2008]. Instead of

parametric model, they use Parzen window estimation for describing the distribu-

tion of the residual. Their algorithm minimizes differential entropy of the residual

reducing the dispersion of the residual.

2.4.4 Regularized minimization

Even though RL algorithm has been well-known and well-used, it has very

important drawback that iteration amplifies the noise. This sensitivity to the noise

can be reduced by introducing regularization term. Regularized minimization

methods consider both the data fidelity term and the regularization term same

as Eq. (2.10).

Total Variation (TV) norm assumes smooth intensity change in the latent im-

age. TV regularization term is formulated as

RTV(f) =
∑
x

∑
x′

√
|f(x)− f(x′)|2, (2.14)

wherex′ denotes nearest neighbors ofx. Minimization of TV regularization term

prefersf has locally uniform color. Due to the form of regularization, it is im-

possible to derive analytical expression. Thus, one may use Bayesian inference

[Ayasso and Mohammad-Djafari, 2009; Babacan et al., 2007, 2010], e.g., varia-

tional Bayes and Markov Chain Monte Carlo (MCMC), while another may use

Iterative Re-weighted Least Squares (IRLS) [Rodriguez and Wohlberg, 2009].
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Recent works rely on the statistical property of natural images. Very famous

and widely used property is that the distribution of the gradients of natural images

is zero-peaked and heavy-tailed. In other words, the gradients of natural images

can be represented by sparse vectors in appropriate domains. Thus, the sparsity

regularization term is formulated as

Rsparse(f) =
∑
x

||∂∗f(x)||α , (2.15)

where∂∗ returns derivatives off , e.g., 1st and 2nd order derivatives, and||·||α

denotes Lα norm. Minimization of sparsity regularization term depends onα as

Levin et al. mention [Levin et al., 2007]. Whenα = 2, the objective function

Eq. (2.10) become a convex function so that we can derive a closed form solution

for minimization. Thisα = 2 case is called Gaussian prior due to its form. The

advantage of Gaussian prior is that we can analytically solve the problem. How-

ever, as some papers mention, the distribution of the gradient of natural images

is more sharp than the sharpness ofα = 2. Thus, hyper-Laplacian prior,α < 1,

is used [Hou et al., 2010; Krishnan and Fergus, 2009; Levin et al., 2007]. Even

though hyper-Laplacian prior represents the statistical property more than Gaus-

sian prior, the object function is no longer convex, thus cannot be optimized in

closed form. For minimization, IRLS is usually used [Levin et al., 2007]. Kr-

ishnan and Fergus decompose the minimization problem into two sub problems

to fasten the computation [Krishnan and Fergus, 2009]. Using either lookup ta-

bles or analytical formulae, their approach provides comparable quality to IRLS

in less than 3 seconds for a one mega pixel image. Hou et al. state the distribu-

tion of the gradient varies according to the order of derivative [Hou et al., 2010].

Using anisotropic derivatives as derivative function∂∗, their algorithm can reduce

the ringing artifaces caused by image noise. Figure2.3 compares Richardson-

Lucy algorithm (Eq. (2.12)), least-squares deconvolution with a Gaussian prior

(Eq. (2.15), α = 1), and one with a hyper-Laplacian prior (Eq. (2.15), α < 1).

Richardson-Lucy algorithm is damaged by ringing artifacts. Gaussian prior has

less ringing artifacts but is smoothed. Hyper-Laplacian prior recovers sharper

edges than others and has less noise and ringing artifacts. For further description

on natural image statistics, please refer to Appx.B.
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Figure 2.3:Comparison of non-blind deconvolution algorithms. (a) Captured im-
age. (b) Richardson-Lucy algorithm is damaged by ringing artifacts. (c) Gaussian
prior is smoothed but less damaged by ringing artifacts. (d) Hyper-Laplacian prior
recovers sharper edges and has less noise and ringing artifacts. Courtesy of [Levin
et al., 2007].

Addition to the sparsity prior, Joshi et al. use two-color regularization term

[Joshi et al., 2009]. The regularization term focus on the statistics that images

can locally be described as a mixture of as few as two colors. The two-color

model represents a pixel intensity as a linear combination of two colors. Thus, the

two-color regularization term is formulated as

Rtwo(f) =
∑
x

|f(x)− (αP + (1− α)S)|2, (2.16)

whereP andS are primary and secondary colors andα is the linear mixing pa-

rameter. Since local color statistics reduces over-smoothing around step edges and
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high-frequency texture, two-color regularization terms favors sharp edges while

the sparsity prior does smooth edges.

Wang et al. combine existing works [Shan et al., 2008; Weiss and Freeman,

2007] for both fidelity term and regularization term [Wang et al., 2009]. Con-

trast to the fidelity term of other methods, Shan et al. use several orders of image

derivatives as fidelity term [Shan et al., 2008]. As Simon proves, higher order par-

tial derivatives of image noise follow Gaussian distributions with different stan-

dard deviations if image noise itself follows [Simon, 2002]. As regularization

term, Wang et al. consider two image statistics, one represents global property

of images and the other does local property [Wang et al., 2009]. For representing

global property of natural images, they adopt Gaussian Scale Mixture Field of Ex-

perts (GSM FOE) model proposed by Weiss and Freeman [Weiss and Freeman,

2007]. GSM FOE model characters the image using a set of high dimensional

linear filters to grasp the long range pixel correlations. Thus, the regularization

term smooths out the image noise. As local property of natural images, they con-

strain smoothness of local areas. The regularization term enforces the blurred

image gradient to be similar to the latent image gradient in the smooth area. For

minimization of these terms, they use IRLS algorithm.

2.5 Blind deconvolution

Blind deconvolution estimates a latent imagef and an unknown PSFk given

a blurred imageg. The methods are categorized into two types based on the types

of target PSFs, one for parametric PSFs and the other for non-parametric PSFs.

Readers may refer [Kundur and Hatzinakos, 1996] and [Levin et al., 2009] for

further discussion.

2.5.1 Parametric PSF estimation

Classical approaches put a constraint on PSFs that target PSF has parametric

form as mentioned in Sec.2.1. The point of the constraint is that the assumption

severely reduces the potential PSFs. For example, linear motion PSF estimation

is equivalent to blur direction and length(θ, L) estimation and Gaussian defocus
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PSF estimation is equivalent toσ estimation. Thus, PSF estimation problem is

redefined as PSF parameters estimation problem.

2.5.2 Spectral/cepstral patterns identification

It is well-known that parametric PSFs have clearer features in spectrum/cepstrum

domain rather than ones in image domain. One of the simplest approaches for

estimating PSF parameters is to find such features. However, the features in spec-

tral/cepstral domain are sensitive to presence of noise. Differences between the

related works are how they identify the features against the noise.

The spectra of parametric PSFs have periodic patterns. The spectrum of LM is

a 2D sinc function that has periodic lines of spectral zero. These lines are orthog-

onal to the motion directionθ and the period is inversely proportional to motion

lengthL. The spectrum of defocus blur is the Bessel function of the first degree

that has periodic circles of spectral zero. The radii of the circles are inversely

proportional to defocus radiusr. Thus, Spectral periodic patterns of zeros are the

features of parametric PSFs and are corresponding to the blur parameters.

Such spectral zeros are corresponding to negative spikes in the cepstrum do-

main. The cepstrum of an image is the spectrum of log of the power spectrum of

the image as

C (·) = F−1 (log |F (·) |) , (2.17)

whereC denotes the cepstrum transform. The cepstrum of an LM has periodic

negative spikes along the motion directionθ with periodL. The cepstrum of

defocus blur has periodic circles of negative spikes. The radii of the circles are

proportional to doubled defocus radiusr. Same as spectral zero patterns, cepstral

periodic patterns of negative spikes are the features of parametric PSFs and are

corresponding to the blur parameters.

Figure2.4 shows PSFs in each domain. Top line shows LM PSF and bottom

line shows defocus blur PSF. From left to right, PSF in image, spectrum, and

cepstrum domain are shown. An LM PSF has periodic black lines in spectrum

domain, corresponding to spectral zeros, and periodic negative spikes in cepstrum

domain. Defocus PSF has periodic black circles in spectrum domain and periodic

negative circles in cepstrum domain. These spectral zeros and cepstral negative
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Image Spectrum Cepstrum

Linear motion

Out-of-focus

Figure 2.4:PSFs in each domain. Top line shows LM PSF and bottom line shows
defocus blur PSF. From left to right, PSF in image, spectrum, and cepstrum do-
main are shown.

spikes are clear features of parametric PSFs.

Neglecting the noise term of imaging equation (Eq. (2.1)), the spectrum of

a blurred image is rewritten as Eq. (2.7). The equation indicates that ifFk has

zero value at frequencyu, Fg should also have zero value at the same frequency

u. Therefore, identifying periodic zeros ofFg is equivalent to PSF parameters

estimation.

Regarding image deconvolution problem, the important cepstral property is

that convolution of two images is corresponding to the sum of their cepstra as

Cg = C(g)

= F−1 (log |F(g)|)

= F−1 (log |F (f ⊗ k) |)

= Cf + Ck, (2.18)

whereC denotes the cepstrum of the subscript. Note thatCk is relatively big-

ger thanCf at lower quefrencies. Since the distribution of spectrum of PSF is

relatively smaller than that of a latent image,Ck converges at lower quefrencies

while Cf is distributed from lower quefrencies to higher quefrencies. Thus, PSF
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Figure 2.5:Comparison of cepstrum components of a motion blurred image. Blue,
green, and red curves representCg, Cf , andCk component along the motion di-
rection.

componentCk is dominant inCg at lower quefrencies. As an example of this be-

havior, Fig.2.5 compares the cepstrum components of a motion blurred image.

Blue, green, and red curves plot cepstrum of the blurred imageCg, latent image

componentCf , and PSF componentCk extracted along the motion direction re-

spectively. Comparison of the plots show thatCk is very closer toCg while Cf

has smaller values. Hence, we can say thatCk is dominant in the cepstrum of

a blurred image at lower quefrencies. Moreover, periodic negative spikes ofCg

is clear enough to identify. Therefore, identifying the negative spikes ofCg is

approximately equivalent to parametric PSFs estimation problem.

Simplest approaches simultaneously estimate(θ, L) by just identifying the

spectral zero values or cepstral negative spikes [Rom, 1975]. Such approaches

are mathematically clear but are often frustrated due to noise effect and the over-

lying structure of unknown latent image component. They require blurred images

to have high Signal-to-Noise ratio enough to recognize the patterns. Thus, the

methods work only when the noise effect is enough small to recognize such pat-

terns. Table2.1 roughly classifies the related works according to how they treat

such difficulties.
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Table 2.1:Classification of the spectral/cepstral patterns identification works ac-
cording to their key ideas.

Estimation Key idea Papers

(θ, L)

Raw cepstrum [Rom, 1975]

Take derivative
[Gennery, 1973; Ji and Liu,
2008]

Spatial invariance of PSF
[Cannon, 1976; Kang et al.,
2006]

Natural image statistics [Sun et al., 2009]

θ → L

Global behavior of OTF [Mayntz et al., 1999]

Spatial invariance of PSF
[Chang et al., 1991; Fabian and
Malah, 1991]

Global behavior of OTF
[Moghaddam and Jamzad, 2007;
Oliveira et al., 2007; Wu et al.,
2007]

One solution takes derivative of a degraded image to suppress the lower fre-

quencies and to accentuate the high frequencies [Gennery, 1973]. Generally, the

amplitudes of the lower frequencies are much greater than ones of the higher fre-

quencies. Thus, taking derivative before the Fourier transform tends to flatten

the spectrum so that the patterns in spectrum/cepstrum domain can be identified

easier. Ji and Liu theoretically explain this property [Ji and Liu, 2008]. When a

functionk(x) is differentiable, the Fourier transform of its derivative is given by

2πiuFk(u). In the case of linear motion,k(x) is a rect function and its Fourier

transformFk(u) is a sinc function. The Fourier transform of the derivative of

linear motion becomes

F
(
d

dx
k(x)

)
= 2πiuF (k(x))

= 2πiu
sinu

u
= 2πi sinu. (2.19)

Thus, taking derivative makes sinc function to sin function so that the spectral

features are identical clearer than the Fourier transform of the original function.
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Another type of approaches utilizes the spatial-invariance of PSFs [Cannon,

1976; Chang et al., 1991; Fabian and Malah, 1991; Kang et al., 2006]. As previ-

ously mentioned, most papers assume shift-invariant blur on a whole image while

latent image and noise is globally shift-variant. By partitioning the blurred im-

age into sub-images and then averaging the spectra of the sub-images, we can

reduce the contribution from latent image component and noise while keeps the

contribution from PSF component. Thus, spectral/cepstral patterns appear clearer.

Suppose we somehow extract the spectrum of PSF from the spectrum of a

blurred image, PSF estimation becomes easier problem. Sun et al. achieved the

above strategy by adding another constraint on latent images [Sun et al., 2009].

Their assumption is that the spectrum of latent images can be represented by

monotonically decreasing isotropic polynomial function. Their method first es-

timates the global shape of the spectrum of unknown latent image from one of

the blurred image. Then, the method extracts the spectrum of PSF by subtract-

ing the estimated spectrum from one of the blurred image. As a result, we can

obtain the modified spectrum of PSF. Once obtained, we can estimateθ andL

simultaneously by autocorrelation.

Sequential estimation can also be robust to noise effect. Instead of direct iden-

tification, sequential estimation first estimates blur directionθ from the global

shape of the spectrum of PSF and then estimates blur lengthL by identifying

the patterns along the estimated motion direction [Chang et al., 1991; Fabian and

Malah, 1991; Mayntz et al., 1999; Moghaddam and Jamzad, 2007; Oliveira et al.,

2007; Wu et al., 2007]. For θ estimation, general approach utilizes the shape of

Optical Transfer Function (OTF), the spectrum of a PSF. The idea of this method

is to assess the anisotropy caused by linear motion blur in spectrum domain. The

power spectrum of unblurred latent image is approximately isotropic, will discuss

this features later. Since the spectrum of a blurred image is product of that of la-

tent image and PSF, the spectrum of the blurred image becomes anisotropic. Mo-

tion directionθ estimation can be done by using this characteristic. OTF affects

the coarse behavior of the spectrum of a blurred image along motion direction.

Therefore, integral along a line on the spectrum can be useful forθ estimation.

Oliveira et al. estimate a direction that has highest variance of Radon transfor-

mation asθ [Oliveira et al., 2007] while Moghaddam and Jamzad estimate paral-

32



lel lines of spectral zeros by Radon transform [Moghaddam and Jamzad, 2007].

Since the OTF is a 2D sinc function,θ estimation is equivalent to estimating the

long and short axis of the sinc function. Thus, Mayntz et al. estimateθ from

the inertia matrix, the eigenvectors of which are parallel and orthogonal to mo-

tion direction [Mayntz et al., 1999]. For L estimation, Fabian and Malah apply

comb-like liftering [Fabian and Malah, 1991], filtering in cepstrum domain, so

that negative spikes derived from noise component can be removed fromL esti-

mation. Bispectrum is known as insensitive to additive, symmetrically distributed

noise [Chang et al., 1991; Moghaddam and Jamzad, 2007]. When the SNR is

relatively high, both spectrum and bispectrum have observable patterns. On the

other hand, when the SNR decreases, spectrum loses the patterns while bispec-

trum still keeps the patterns. Thus,L estimation can be done more reliably using

the bispectrum for lower SNR images.

2.5.3 Parameter search

Another type of approaches estimates a PSF as a parameter search problem.

They search blur parameters over the parameter space by evaluating a match met-

ric computed for each parameter value as

Θ̂ = argmin
Θ

|Q(g − f ⊗ k(Θ))|, (2.20)

whereΘ denotes a set of parameters,e.g.,Θ = (θ, L) for LM, and the data fidelity

termQ is match metric evaluation function. When a parameter provides the best

match according to the metric, the parameter is chosen as the optimum parameter

Θ̂. The point of this type of approaches is what kind of metric the algorithm uses.

Table2.2roughly classifies the related works according to their match metric.

Yitzhaky and Kopeika use the spatial property of PSF [Yitzhaky and Kopeika,

1997]. When we take a derivative along with the motion direction, sum of absolute

difference of the gradient image become minimum. Based on this property, they

first estimate the motion directionθ. Once the direction is estimated, motion

length is estimated along the direction. They compute autocorrelation along with

the estimated direction based on a property that only if the space shift is same as
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Table 2.2:Classification of the parameter search works according to their match
metric.

Match metric Papers

Spatial behavior of PSF [Yitzhaky and Kopeika, 1997]
Spectral behavior of restored image [Tan et al., 1991]
Kurtosis of histogram of restored image[Li et al., 2005]
Sharpness of restored image [Rooms et al., 2004]

Restoration residual
[Levin et al., 2007; Savakis and
Trussell, 1993]

Under scale

Correct scale Over scale

Original
Under scaleCorrect scaleOver scale
Original

Plots on the cross-section of an edge
Figure 2.6:Physical versus numerical focus effect on the cross-section of an edge.

blur length, autocorrelation is minimum.

Restored image provides the information of amplitude of restoration. In the-

ory, edges in a blurred image are fully recovered by a restoration algorithm with

the optimum parameter. When the parameter is smaller than the optimum, the

edges are less recovered while the bigger parameter results ringing artifacts. Fig-

ure2.6compares restored edge with varying amount of restoration. With correct

scale, the edge gets closer to the original one while restored edge of under/over

scales are less/more restored. As this figure shows, the behavior of edges in re-

stored image can be a match metric. Tan et al. analyzed how the wrong PSF effect

the restored edges [Tan et al., 1991]. Specifically, their method focuses on the
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behavior of the Green’s function defined as

F−1

(
FkF̂

∗
k

F̂kF̂ ∗
k + γ

)
, (2.21)

whereFk andF̂k denote the true PSF and the estimate andγ denotes PSNR. The

Green’s function describes how a point in the latent image would appear in the

restored image. For linear motion and accelerated motion, they analyzed how

appropriate/inappropriate PSFs affect the recovered edges. Based on their ob-

servations, they classify the blur type, linear motion or accelerated motion, and

estimate the blur parameter. Li et al. measure the sharpness by kurtosis of the

histogram of a restored image [Li et al., 2005]. Their observation is that the larger

the kurtosis is, the smoother the histogram is. Based on the observation, they

compute the kurtosis of the restored images and then choose the restored image

with the smallest kurtosis and the corresponding parameter is regarded as the opti-

mum parameter. They had experiments on several types of blur,e.g., atmospheric

turbulence blur, defocus blur, etc. Rooms et al. use a wavelet basis as an edge

detection filter [Rooms et al., 2004]. Natural images have a property that wavelet

coefficients of the images are very sparse [Olshausen and Field, 1997]. To char-

acterize the sparsity of wavelet coefficients, their metric for defocus blur is based

on the kurtosis of the histogram of two sub-bands of wavelet coefficients. The

optimum parameter is obtained by finding a parameter maximizing the sharpness

of the kurtosis.

Restoration residual can be another match metric. Suppose we have a set of

PSF candidateskn(Θn), wheren = 1, . . . , N . The restoration residual ofn th

PSF candidate is computed as

rn(x) = g(x)− f(x)⊗ kn(x), (2.22)

wherern denotes the restoration residual corresponding to a PSF candidatekn.

The optimum parameter can be estimated by finding a parameter minimizing the
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residual with the followingQ function:

Q(rn) =
∑
x

|rn(x)|2. (2.23)

However, the latent imagef is unknown, we alternatively use the restored image

for the metric as

rn(x) = g(x)− f̂n(x)⊗ kn(x), (2.24)

wheref̂n denotes the restored image obtained by the candidatekn. The point of

this type of approaches is how to estimate a latent imagefn for a PSF candidate

kn and how to compute the residual metric. Savakis and Trussell measure the

residual in spectrum domain [Savakis and Trussell, 1993] as

Frn(u) = Fg(u)− Ff̂n
(u)Fkn(u). (2.25)

As deconvolution algorithm, they evaluate three algorithms, the inverse filter, the

linear maximum a posteriori probability (MAP) filter, and the Wiener filter. They

conclude that the Wiener filter provides the most suitable analytical expression of

the residual power spectrum. Furthermore, they evaluate three match metric, the

Mean Square Error, the Chi Square test, the Kolmogorov-Smirnov test, and ar-

gued that the MSE test and Chi Square test performed the most consistently over

the blur types and parameters. Levin et al. also measure the restoration residual

in image domain [Levin et al., 2007]. In contrast to other works, they use their

own deconvolution method, described in Sec.2.4, and a camera with coded aper-

ture. Their own deconvolution method provides sharper image with less ringing

artifacts when the optimum parameter is used. Figure2.7 illustrates the benefit of

using a coded aperture. Those images are deblurred with the correct blur scale,

larger scale, and smaller scale. With a coded aperture, deblurred images with both

smaller and larger scale have ringing artifacts while with a conventional aperture

results ringing artifacts only with larger scale. Thus, a coded aperture is better for

evaluating the restoration residual.

ARMA parameter estimation methods parameterize both latent images and

PSFs. The approaches model a latent image as a 2D Auto Regressive (AR) process

and a PSF as a 2D Moving Average (MA) process. Based on the models, a blurred
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Figure 2.7:Deconvolution with varying blur scale. Top: Restored image captured
by a coded aperture camera. Bottom: Restored image captured by a conventional
aperture camera. Courtesy of [Levin et al., 2007].

image is represented as an Auto Regressive Moving Average (ARMA) process.

The approaches estimate a PSF by identifying the ARMA parameters. A latent

image is modeled as

f(x) = a(x)⊗ f(x) + nv(x), (2.26)

wherenv denotes modeling error. The problem of blind deconvolution is equiv-

alent to estimatinga andk. The Maximum-Likelihood (ML) methods attempt to

derive restoration filters [Tekalp et al., 1986]. The Generalized Cross-Validation

(GCV) methods, also known as leave-one-out, are based on second order statistics

[Reeves and Mersereau, 1992].

2.5.4 Non-parametric PSF estimation

Even though the assumption on parameterization of PSF provides analytical

solutions, real world images usually violates this assumption. Thus, it is natural to

focus on non-parametric PSF estimation. Similar to numerical solutions of non-

blind deconvolution, blind deconvolution for non-parametric PSF is formulated

as (
f̂ , k̂
)
= argmin

f,k
|Q(g − f ⊗ k) + λfRf (f) + λkRk(k)|, (2.27)
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whereR andλ denote the regularization term and the regularization parameter of

the subscript.

There are two types of approaches for solving Eq. (2.27), sequential methods

and iterative methods. Sequential methods [Chen et al., 2008; Dai and Wu, 2009;

Harmeling et al., 2010; Rav-Acha and Peleg, 2005; Xu and Jia, 2010] separate the

problem into two parts as
k̂ = argmin

k
|Q(g − f ⊗ k) + λkRk(k)|

f̂ = argmin
f

|Q(g − f ⊗ k̂) + λfRf (f)|
. (2.28)

The methods first estimatek from g, and then estimatef from g andk̂. Due to the

separation, they can directly apply existing non-blind deconvolution approaches

for the latter problem. On the other hand, the other type of methods iteratively

solve bothk andf as
k̂t = argmin

k
|Q(g − ft−1 ⊗ k) + λkRk(k)|

f̂t = argmin
f

|Q(g − f ⊗ k̂t) + λfRf (f)|
. (2.29)

As the equations indicate, the methods iteratek estimation andf recovery. For

initial valuesk̂0 andf̂0, delta function and the blurred imageg are usually chosen.

2.5.5 Unknownf for PSF estimation

For both types of methods, Eq. (2.28) and Eq. (2.29), PSF estimation requires

the information of unknownf for the fidelity term evaluation. Sincef is unknown,

we should somehow prepare an alternative.

One solution is that we use another image or images as the alternative. Con-

trast to the appearance of natural images, their representation,e.g., Fourier trans-

form and wavelet transform, have similar distribution, so called natural image

statistics [Torralba and Oliva, 2003] (see Appx.B for more detail). Following this

property, we can use another image or images as the alternative of unknown latent

imagef for the fidelity term evaluation. Caron et al. assume a power-law distri-

bution on the spectra of images [Caron et al., 2002]. The assumptions are that
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the spectra of natural images have peak at a very narrow range of low frequen-

cies and a flat tail at high frequencies and that Optical Transfer Function (OTF),

which is the spectrum of a PSF, is slowly varying function. From the above as-

sumptions, OTF can be represented by power-law scaled spectra of blurred image

with a power-law scale factor. Thus, PSF estimation is equivalent to identifying

the scale factor. Neglecting the noise effect and giving the spectrum of a refer-

ence image that shares similar frequency characteristics with the unknown latent

image, their algorithm directly recovers OTF, and then apply inverse filtering in

the frequency domain. Wan and Nowak assume the distributions of wavelet coef-

ficients of natural images [Wan and Nowak, 1999]. The assumptions are that the

distribution of wavelet coefficients of natural images has peaky and heavy-tailed

symmetric shape and wavelet coefficients are statistically independent. Specif-

ically, they model the distribution by mutually independent two Gaussian mix-

tures, one of lower variance represents sharp peak of the distribution while the

other one of higher variance represents heavy-tail of the distribution. Fergus et al.

and Shan et al. assume the distributions of image gradient [Fergus et al., 2006;

Shan et al., 2008]. The assumptions is that the distribution of pixel intensities

of image gradient of natural images has high-peak at zero and heavy-tailed sym-

metric shape. Fergus et al. represent the distribution of first order derivatives by

Mixture of Gaussian distributions [Fergus et al., 2006]. Shan et al. mention that

the distributions of several orders of derivatives still behaves following the 0-peak

and heavy-tailed distribution [Shan et al., 2008]. For representation of the distri-

bution, they introduce concatenating two piecewise continuous functions, one for

0-peak and the other for heavy-tailded representation. The representations differ

by the papers, all the methods use the parameters of another image or images as

the alternative off in Q function.

The other solution estimates the alternative from the blurred imageg or previ-

ous estimateft−1. Considering the numerical optimization,f in Q contributes to

compute the direction to search the answerk̂ and alsof̂ . Ideal situation is that we

havef (though this is not held for image deblurring) means that object function

derives the steepest descent direction for each iteration. Even though we don’t

know truef , if we have approximationfapprx, we can expect such approxima-

tion to provide the descent direction. Thus, straight forward solution is to use the
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previous estimate offt−1 directly [Almeida and Almeida, 2008, 2009; Cai et al.,

2009a,b,c; Chen et al., 2008; Dai and Wu, 2009; Gupta et al., 2010; Harmeling

et al., 2009, 2010; Hirsch et al., 2010; Hu et al., 2010; Huang et al., 2009]. How-

ever, there is a risk that the previous estimateft−1 contains some deconvolution

error such as ringing. Thus, some filtered image is used instead offt−1 [Cho and

Lee, 2009; Xu and Jia, 2010]. Well-used filters are shock filter [Osher and Rudin,

1990] to restore strong edges and bilateral filter [Tomasi and Manduchi, 1998] to

suppress noise. Joshi et al. assume sharp edges on latent imagef [Joshi et al.,

2008]. Based on the assumption, they predict step edges on the latent image from

gradients ofg and use it asf of Q.

Some methods assume another image of same scene with shorter exposure

time [Babacan et al., 2009; Šorel andŠroubek, 2009; Yuan et al., 2007]. Due to

the exposure time, shorter exposure image should be blur free but noisy. Even

though the noisy image is not perfect image, it can be a good reference forQ

function evaluation.

2.5.6 Regularization term on PSFRk

Similar to the regularization term on latent imageRf , one on PSFRk varies

the form depending on what kind of propertyRk reflects. Without any loss of

generality, we can put assumptions that PSF is non-negative and the energy of

PSF is conserved as

k(x) ≥ 0, (2.30)∑
x

k(x) = 1. (2.31)

Note that these constraints can reduce the potential PSFs not much.

One assumes smoothness on PSFs. Since a PSF represents motion, smooth

PSF is plausible. Thus, TV regularization norm onk is used [Cho and Lee, 2009;

Gupta et al., 2010; Harmeling et al., 2010] as smoothness constraint. The formu-

lation of the regularization term is same as Eq. (2.14).

Addition to smoothness constraint, sparsity of PSFs is considered. The size

of PSF is relatively smaller than one of images and PSF’s values are almost zero.
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Thus, Tikhonov regularization term on pixel intensities ofk or on gradients ofk

are used [Cai et al., 2009a; Chen et al., 2008; Cho and Lee, 2009; Gupta et al.,

2010; Harmeling et al., 2010; Hong and Park, 2010; Huang et al., 2009; Joshi

et al., 2008; Shan et al., 2008; Xu and Jia, 2010; Yuan et al., 2007]. Smoothness of

PSF is equivalent to sparsity of the distribution of PSF representation parameters

of coefficients. Therefore, mixture of exponential is used to represent the distri-

bution of PSF intensities [Babacan et al., 2009; Fergus et al., 2006] and curvelet

transform is used to represent PSF [Cai et al., 2009b,c].

2.5.7 Other constraints

For a scene consists of two-layers,e.g., foreground and background, we can

derive an additional constraint on the scene. The constraint is thatα matte of

the latent image should be binary and motion smears the boundary between the

objects. Thus, the regularization term onα matte is designed to favor binaryα

matte [Almeida and Almeida, 2008; Jia, 2007; Shan et al., 2007]. Dai and Wu

also put constraint onα matte [Dai and Wu, 2009]. Their regularization term on

the scene consists of two matrices. One minimizes the softcuts metric that helps

obtaining smooth soft edges with transitions and the other one favors binaryα

matte.

Similar toαmatte constraint, Huang et al. use bi-level region constraint [Huang

et al., 2009]. Their method performs PSF estimation only on bi-level regions that

seem to be binary in the latent image. Joshi et al. assume that observed edges in

blurred image is originally ideal step edge [Joshi et al., 2008]. The method first

finds the location and orientation of edges in the blurred image, and then predicts

ideal sharp edges. PSF estimation is done by comparing edges of blurred image

and the predicted ideal sharp edges.

2.5.8 Spatially varying PSF

The above discussion focuses on uniform blur on an image but the assumption

of uniformity cannot cover the entire motion blur. Thus, some recent works try to

solve spatially varying PSFs.
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Piecewise homogeneous PSF

When PSF is locally homogeneous,e.g., moving object captured by a fixed

camera, we can assume that the scene consists of several regions each of which is

blurred by homogeneous PSF. Simply speaking, applying uniform PSF estimation

on each region is enough for such scene.

One uses multiple images of same scene so that geometric relation between

the images helps PSF estimation. Cho et al. use several images of roughly the

same scene [Cho et al., 2007]. Based on geometrical constraint, they iterate PSF

refinement, image segmentation into regions of homogeneous motions, and the

corresponding PSFs estimation.

When a scene consists of two-layers,e.g., foreground and background, one

may use a constraint on boundaries between the layers as mentioned in Sec.2.5.7.

Since motion smears boundaries between the objects,α matte of the scene is also

blurred. Based on the assumption thatα matte of the same scene but no motion is

binary, we can estimate PSFs on each regions by comparingαmatte of the blurred

image and binarized one [Almeida and Almeida, 2008; Dai and Wu, 2009; Jia,

2007; Shan et al., 2007]. Note that this type of methods requires user input to

segment the scene.

Instead of manual segmentation, we can use PSF estimated on every pixel to

segment the scene. Levin use restoration error to estimate PSF of moving fore-

ground [Levin, 2006]. Her method is based on the image statistics that linear mo-

tion blur changes the statistical property of an image. Based on the analysis on the

statistical property, her method first estimates PSFs on several pixels. Restoration

operation with estimated PSF recovers the image in the blurred areas but serious

artifacts occurred in the background. Therefore, her method segments the im-

age into blurred and unblurred layers by considering image smoothness and blur

smoothness. Chakrabarti et al. point out the spectral behavior of local windowed

image helps to identify blur length of linear motion [Chakrabarti et al., 2010].

Their method identifies PSF at every pixel based on the probabilistic model con-

sidering above characteristics. The obtained PSF map contains estimation error

because the estimation considers only the probabilistic model. Thus, they refine

the PSF map by considering object boundaries, blur smoothness, and color infor-
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mation.

Piecewise non-homogeneous PSF

When PSF is smoothly varies along an image,e.g., camera rotation, we have

to estimate PSF on every pixel. In such case, we assume homogeneous PSF on

neighboring pixels or regions.

One assumes 2D motion motions on local regions.Šorel anďSroubek estimate

spatially varying PSFs by interpolating estimated PSFs on image grid of sub im-

ages [̌Sorel anďSroubek, 2009]. Using a pair of images of same scene, one blurred

image and one underexposed noisy image, they estimate PSFs on grid. Since some

of the PSFs contain estimation error, they replace such PSFs by the average of ad-

jacent PSFs. Harmeling and his colleague introduce filter flow framework [Seitz

and Baker, 2009] to represent smoothly varying PSFs [Harmeling et al., 2010;

Hirsch et al., 2010]. Based on the filter flow model, we can efficiently describe

spatially varying PSFs rather than PSFs on image grid.

Another focuses on camera motion what is well approximated by a few pa-

rameters and recover parameters of the motion rather than spatially varying PSFs.

Gupta et al. represent 6D camera motion (3D translation and 3D rotation) by 3 de-

grees of motion (in-plane translation and rotation) [Gupta et al., 2010]. Whyte et al.

focus on camera rotation about its optical center and describe a motion blur by se-

quential Homography instead of a convolution of the latent image and PSF [Whyte

et al., 2010].

2.6 Blur estimation/correction suited to next gener-

ation imaging technologies

Here, let me consider what kind of blur estimation/correction approaches are

suited to upcoming imaging technologies.

In the history of PSF estimation, we initially focused onuniform & paramet-

ric PSF. Then,non-uniform & parametricPSF was focused with an assumption

that parametric PSF well-represents the blur in local region. In 1990s, some re-

searchers started solvinguniform & non-parametricPSF but they assumed sym-

43



metric form or simpler shape. Fergus et al.’s work [Fergus et al., 2006] provided

big impact that we can estimate more complicated non-parametric PSF. Then, we

get started estimatinguniform & non-parametricPSF. Very recently, some works

reported their works onnon-uniform & non-parametricPSF estimation. Con-

sidering versatility to target scene, non-parametric PSF is better than parametric

one and non-uniform PSF is better than uniform one. Some of recent works use

additional data or devices,e.g., multiple images with different camera parame-

ters [Rav-Acha and Peleg, 2005] or data obtained by motion sensors [Joshi et al.,

2010]. These works aim to relax the difficulty of the deconvolution problem.

What solution is suited to upcoming imaging technologies? To develop a sys-

tem with cheaper cost, using additional devices is not suited. But how about ad-

ditional images? In on-line system, sequential data,e.g., previous image of video

stream, is available in practice. Thus, using sequential data is better to relax the

difficulty. However, approaches using sequential data implicitly assume that we

get correct answer in the previous image. In other words, estimation/correction er-

ror propagates. In such sense, a single image based method is suited even though

the difficulty still remains.

Another concern is its theoretical reliability. Even thoughnon-parametric

PSF estimation has more generality and has get attention, we cannot say whether

this approach works or not because most of such works are numerical solutions.

If we need guarantee that the approach works, analytical solutions,e.g., spec-

tral/cepstral analysis are suited.

Considering issues mentioned above, let me give a future perspective of 2the

blur correction/estimation methods suited to upcoming imaging technologies. The

method should be single image based approach without any additional data nor

devices so that the approach can contribute to more people and be developed with

cheaper cost. Furthermore, one with theoretical reliability is preferred. Thus,

extension of analytical solution is suited to the imaging technologies in next era.
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Chapter 3

Cepstral Analysis based Non-Linear

Motion PSF Estimation

This chapter proposes a non-linear motion PSF estimation method from a sin-

gle blurred image for motion deblurring. Based on the traditional signal pro-

cessing theory, the proposed method estimates a PSF with two steps as shown in

Fig. 3.1. First step (red frame in Fig.3.1) is PSF candidates estimation. In this

step, the method first estimates PSF candidates from the cepstrum of the blurred

image based on the cepstral analysis. Second step (blue frame in Fig.3.1) is PSF

candidates evaluation. In the step, the method chooses the most likely PSF by

evaluating the candidates based on the imaging equation.

3.1 Related works

There exist several works investigating camera motion. To know the real cam-

era motion, they prepare known pattern consists of point light sources and shoot

it. The light source appear in the image should represent the camera motion path.

Xiao et al. investigate the 2D trajectory corresponding to camera motion in yaw

and pitch axes [Xiao et al., 2006]. Figure3.2shows how the camera motion pat-

tern changes according to exposure time change. With shorter exposure time, mo-

tion path looks point and line. The more exposure time is, the more complicated

the PSF is. Even complicated PSF, the shape seems to be decomposable with line
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Linear motionsBlurred image

Blurred image    +    Blur candidates Final estimate

Blur candidatesCepstrumPSF candidates estimation

PSF candidates evaluation
Figure 3.1: Overview of the proposed method. The proposed method takes a
single blurred image as an input and estimates a PSF with two steps. The method
first estimates PSF candidates from the cepstrum of the blurred image. Then, the
most likely PSF is chosen by evaluating the candidates.

segments. Park et al. represent 3D trajectory by optical flow model [Park et al.,

2004]. They mention that linear motion PSF can represent the basic camera mo-

tion with enough shorter exposure time. Nishi and Onda analyze the behavior of

3D camera motion [Nishi and Onda, 2010] for quantitative evaluation of camera

manufacturers’ image stabilizers. Figure3.3 illustrates 3D camera motion with

shorter and longer exposure time. 3D camera motion with longer exposure time

appears on the image as shown in the left image. Taking light source by video

camera with shorter exposure time, the sequence represents the motion segments

of 3D camera motion. As shown in the right figure, each segment is represented

by linear motion.

As mentioned in Sec.2.5, the classic approaches target parametric motion

while the recent approaches focus on non-parametric motion. Considering the ca-

pability for the various types of PSFs, non-parametric PSF estimation seems to be

the best solution. The success of the approach is derived by the constraints on the

latent image. Contrast to the approach, classic approaches target only parametric
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Figure 3.2: How the camera motion changes with exposure time changes. From
left to right and top to bottom, exposure time increases from 0.01 to 0.8 second.
Courtesy of [Xiao et al., 2006].

PSF,e.g., linear motion. The reason why the classic approaches focus on paramet-

ric PSF is because of our constraint on PSF not because of the methods’ limitation.

We assume parametric PSF in order to constraints on the spectral/cepstral behav-

ior of the PSFs. Thus, it is natural that the approach handles only parametric PSF.

Even though the target PSF is limited, the performance of the approaches is an-

alytically guaranteed. On the other hand, the performance of the non-parametric

PSF estimation is not guaranteed because the approach relies on the numerical

minimization algorithms for computation. Therefore, some methods may require

user’s assist or have heavy computation cost.

3.2 Motivation

For upcoming imaging technologies, e.g., capturing moving contents by han-

dled camera to show with volumetric display, what kind of deblurring technique

is required? In other words, the questions is how complicated shape blur in video

sequence is. Considering the works investigating camera motion [Nishi and Onda,

2010; Park et al., 2004; Xiao et al., 2006] mentioned above, linear motion repre-
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Detected 3D motionwith shorter exposure timeDetected 3D motionwith shorter exposure timeActual camera motionwith longer exposure timeActual camera motionwith longer exposure time Test patternTest pattern
Figure 3.3: 3D camera motion with shorter and longer exposure time. (Left)
Actual camera motion shot with longer exposure time. (Middle) Test pattern con-
sists of point light sources for acquiring 3D camera motion. (Right) Detected 3D
camera motion shot with shorter exposure time. Courtesy of [Nishi and Onda,
2010].

sentation is enough for PSF of shorter exposure time and for PSF of segments of

3D camera motion with longer exposure time. As Xiao et al. mentioned [Xiao

et al., 2006] (Fig. 3.2), blur with exposure time of video sequence,e.g., 24 fps, is

not simple linear motion but not too complicated, far from non-parametric motion

PSF shown in Fig.2.2. Even though such blur is not linear motion, we can assume

locally linear motion as Nishi and Onda do [Nishi and Onda, 2010] (Fig. 3.3).

Considering such background, I focus on non-linear but locally linear motion

for upcoming imaging technologies. When the motion is locally linear, it seems

to be possible to apply classical parametric PSF estimation methods so that we

can analytically solve the problem. Therefore, I set the goal of this work to find

the possibilities of classical PSF estimation not to propose very complicated PSF

estimation methods.

3.3 Overview of the proposed Method

I propose non-linear motion PSF estimation method based on traditional sig-

nal processing theory. Instead of putting constraints on latent image, the proposed

method utilizes constraints on the cepstral behavior of target PSFs. As mentioned

in Sec.3.2, I focus on locally linear motion,e.g., piecewise linear motion. How-
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ever, I empirically find that the cepstrum helps PSF estimation when the motion

is approximately linear motion but has small bounce. Thus, the proposed method

focuses on two types of non-linear motion, Piecewise Linear Motion (PLM) and

Noisy Linear Motion (NLM), both introduced in Sec.3.4. Next, the detail of the

proposed method is described in Sec.3.5and Sec.3.6.

As an input, the proposed method takes a blurred image observed by a normal

camera. For developing the analytical solutions, the proposed method assumes

the cepstral behavior of target motions. However, the cepstral behavior can not

directly solve PSF estimation problem, the proposed method separates the prob-

lem into two sub problems. First part estimates a set of PSF candidates from the

cepsrtum of a blurred image. Next, the estimated candidates are evaluated and

one of the candidates is chosen as the final estimate.

3.4 Target non-linear motions

Here, I describe the target non-linear motions, namely Piecewise Linear Mo-

tion (PLM) and Noisy Linear Motion (NLM). Figure3.4shows examples of target

motions. One intuitive extension of linear motion representation is Piecewise Lin-

ear Motion that consists of several linear motions. The other one is Noisy Linear

Motion (NLM). NLM is approximately linear motion but includes some small

bounce.

3.4.1 Piecewise Linear Motion (PLM) PSF

One intuitive approximation of non-linear motion is to use a piecewise smooth-

ness constraint like Ben-Ezra and Nayar do [Ben-Ezra and Nayar, 2004] and Nishi

and Onda do [Nishi and Onda, 2010]. A Piecewise Linear Motion (PLM) is a non-

linear motion but partially linear. The PSF of such motion can be represented by
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Piecewise Linear Motion (PLM) PSFs
Noisy Linear Motion (NLM) PSFs

Figure 3.4:Target motion of the proposed method. (Top) Piecewise Linear Motion
(PLM) PSFs. (Bottom) Noisy Linear Motion (NLM) PSFs.

sum of linear motion PSFs as

kP (x) =
N∑

n=1

ωnk
L
n (x−∆xn), (3.1)

ωn =
Ln

N∑
m=1

Lm

,

wherekP andkL denote PLM PSF and linear motion PSF, called component PSF,

respectively,ωn is scaling parameter forcing the constant speed motion, and∆xn

denotes connectivity of linear motions as

∆xn =

(
∆xn

∆yn

)
,

∆xn =


0 n = 1
n−1∑
m=1

Lm cos θm n ̸= 1
,

∆yn =


0 n = 1
n−1∑
m=1

Lm sin θm n ̸= 1
.
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With this parametric form, a PLM PSF is decomposed into two types of informa-

tion. First one is blur information of each component PSF,e.g., motion direction

θn and motion lengthLn. The other one is the order of the component PSFs. Thus,

PLM PSF estimation is decomposed into two sub problems, component PSFs es-

timation and PSFs order estimation.

The cepstrum of a PLM PSF is obtained by applying the cepstrum transform

to Eq. (3.1) as

C
(
kP (x)

)
= F−1

(
log

∣∣∣∣∣F
(

N∑
n=1

ωnk
L
n (x−∆xn)

)∣∣∣∣∣
)
. (3.2)

Here, I limit the discussion to spectral/cepstral features. When all the blur di-

rections differ, namelyθn ̸= θm is held for alln ̸= m, spectral zero values do

not overlap. This means that eachF(kLn ) does not interfere, they are independent

in other words. In such case, the Fourier transform of sum of component PSFs

is equivalent to the sum of the Fourier transform of the component PSFs. Thus,

Eq. (3.2) is approximated as

C
(
kP (x)

)
= F−1

(
log

∣∣∣∣∣F
(

N∑
n=1

ωnk
L
n (x−∆xn)

)∣∣∣∣∣
)

≈
N∑

n=1

F−1
(
log
∣∣F (ωnk

L
n (x−∆xn)

)∣∣)
=

N∑
n=1

F−1
(
log
∣∣F (ωnk

L
n (x)

)∣∣)
=

N∑
n=1

C
(
ωnk

L(x)
)
. (3.3)

From line two to three, the Fourier transform property that shift in image space

does not vary the power spectrum is used. Equation (3.3) indicates that the cepstra

of a PLM PSF equals sum of the cepstrum of the component PSFs under the

assumption. Therefore, we can expect that the cepstrum of a PLM PSF provides

us blur information of all component PSFs.

Figure3.5shows the cepstrum of a PLM PSF. Figure3.5(a) and (b) show the
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(a) PSF (b) Cepstrum
Figure 3.5: A PLM PSF and its cepstrum. Yellow point is the peak of the cep-
strum, and red and blue points denote the negative spikes resulting from each
component PSF.

PSF and the cepstrum, respectively. In the figure, yellow point is the peak of the

cepstrum, and red and blue points denote the negative spikes resulting from each

component PSF. For each motion directionθn, the spikes is located atLn far from

the peak.

3.4.2 Noisy Linear Motion (NLM) PSF

A Noisy Linear Motion (NLM) is a non-linear motion that is approximately

linear motion but has small bounce. Since such small bounce is not easy to pa-

rameterize, we call this kind of motion path ‘curve’. Suppose a curve C connects

two pointsx1 andx2. The curve consists ofN points c= (c1, . . . , cN) and c1
and cN corresponds tox1 andx2, respectively. I put one-way constraint on noisy

linear motion cn = (xcn , ycn)
T as

xcn ≥ xcn−1 , and

ycn ≥ ycn−1 .

Here, we analyze the behavior of the cepstrum of a NLM PSF. Empirically, I

found that the cepstrum of a NLM PSF has strong values along the blur direction

and that the cepstrum has distributed negative valleys along the motion direction.

Figure3.6 compares the cepstrum of a NLM PSFCk and that of the blurred im-
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Figure 3.6:The cepstrum of a NLM PSF. From left to right, PSF, the cepstrum, and
plotted values are shown. In the right figure, the cepstral peak of ceptrum, negative
valleys, and strong values are plotted as white, red, and blue pixels, respectively.

ageCg. Red pixels in the right figures show thatCk has negative valleys along

the motion direction but they are not periodic. Same as a linear motion PSF,Cg

has additional negative valleys around the cepstral peak. Blue pixels in the right

figures show thatCk has strong values along the motion direction. Different from

linear motion PSFs, the strong values are distributed not located on an exact line.

From this observation, I derive assumptions that

• the strong values of the cepstrum of a NLM forms approximate shape of its

PSF, and

• such shape connects the cepstral peak and one of negative valleys.

3.5 PSF candidates estimation

This section describes PSF candidates estimation method using the cepstral

behavior mentioned in Sec.3.4. Since PLM and NLM have different cepstral be-

havior, I develop different PSF candidates estimation methods for each. For PLM,

the method is based on the behavior that the cepstrum of a PLM PSF provides us

blur information of all the component PSFs. For NLM, the method is based on the

assumption that the strong values of the cepstrum of a NLM forms approximate

shape of its PSF.
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Component PSFsBlurred image PSF candidatesCepstrum
Figure 3.7:Overview of PLM PSF candidates estimation.

3.5.1 PLM PSF candidates estimation

Section3.4.1derives the cepstral behavior of PLM that the cepstra of a PLM

PSF equals sum of the cepstrum of the component PSFs when all the blur di-

rections differ, namelyθn ̸= θm is held for alln ̸= m. The proposed method

estimates PSF candidates of a PLM PSFkP from a single blurred imageg based

on the cepstral behavior. Figure3.7 shows the overview of the method. First, a

set of component PSFs is estimated based on the cepstral feature identification

approaches from the cepstrum of the blurred image. Then, potential PLM PSF

candidates are generated from the set by combining the components.

Cepstrum transform

The proposed method estimates component PSFs based on the cepstral behav-

ior of linear motions. However, raw cepstrum obtained by Eq. (2.17) is noisy. For

robust PSF estimation, the proposed make the cepstral feature by using traditional

approaches.

One cepstral feature harming the proposed method is the effects of noise and

the overlying structure ofCf . Even thoughCk dominates the cepstrum around the

cepstral peak, there exist the contribution ofCf and noise effect. To reduce the

effect of such feature, we usually use spatially-invariance of PSF [Cannon, 1976;

Chang et al., 1991; Kang et al., 2006; Maki and Sugimoto, 2007; Moghaddam and

Jamzad, 2007]. Under the assumption, PSF is uniform on a blurred image while

latent image component varies by region. Suppose we partition an input blurred

imageg intoN sub images asgn(n = 1, . . . , N). Taking an average of cepstra of
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partitioned images, we have

Cg =
1

N

N∑
n=1

Cgn

=
1

N

N∑
n=1

(Cfn + Ckn) ,

As previously mentioned, we assume uniform blur on the blurred image while

f varies by region. In such case,Cfn differs according to region whileCkn is

constant. Thus, the contribution ofCfn decreases by taking average as

Cg =
1

N

N∑
n=1

(Cfn + Ckn)

=
1

N

N∑
n=1

Ckn

= Ckn . (3.4)

Figure3.8 shows the effect of averaging cepstra. Comparing raw cepstrum and

averaged cepstrum, averaged one has clearer lines than raw one.

Another feature is vertical and horizontal line due to discontinuities at the

image boundaries. The cepstrum transform assumes periodic images but normal

images have discontinuities at the image boundaries. Such discontinuities appear

as vertical/horizontal lines going through the cepstral peak. Since the proposed

method relies on the strong values on the cepstrum, those lines should be re-

moved. Typical solution for this is windowing that tapers the image values at the

boundaries. Since we have to take care of discontinuities at both image space and

frequency space, we should apply windowing twice as

C⋆
g = F−1 (W (log |F (W (g))|)) , (3.5)

whereC⋆ denotes cepstrum obtained with windowing andW () denotes a win-

dowing function. Specifically, Tukey window [Tukey, 1967] is used to reduce the

discontinuities on image boundaries. Figure3.9 shows the effect of windowing.
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PSF Cepstrum

Blurred image Raw Cepstrum Averagedcepstrum
Figure 3.8: The effect of averaging cepstra. (Top) PLM PSF and its cepstrum.
(Bottom) Blurred image, raw cepstrum, and averaged cepstrum.

The raw cepstrum has both vertical and horizontal lines derived from the discon-

tinuities on image boundaries while windowed cepstrum does not have.

These two processes are concurrently applicable. As a result, the cepstrum

transform of the proposed method averages the cepstra obtained with windowing

of sub-imagesgn as

Ĉg =
1

N

N∑
n=1

C⋆
gn . (3.6)

For ease of explanation, letCg denoteĈg in the followings.

Component PSFs estimation

Next, the proposed method estimates a set of component PSFs by cepstral

feature identification mentioned in Sec.2.5.2.

First, the motion direction parametersθm are estimated from the cepstrum of a

blurred image. As mentioned above, the cepstrum of a PLM PSF should keep the

cepstral features of all the component PSFs whenθn ̸= θm is held for alln ̸= m.

For θm estimation, the proposed method applies the Radon transform to extract

the strong lines appearing along the motion directions. The Radon transform
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PSF Cepstrum

Blurred image Raw Cepstrum Windowedcepstrum
Figure 3.9: The effect of windowing. (Top) PLM PSF and its cepstrum. (Bottom)
Blurred image, raw cepstrum, and windowed cepstrum.

R(Cg(p), ρ, ψ) integrates the cepstrumCg(p) along a lineρ = p cosψ + q sinψ

as

R(Cg(p)), ρ, ψ) =

∫∫
Cg(p)δ(ρ− p cosψ − q sinψ)dpdq, (3.7)

whereδ denotes the Dirac delta function andp = (p, q)T denotes a quefrency.

Since the strong lines pass through the cepstral peak, we have to apply the Radon

transform forρ = 0. To avoid the negative spikes works as negative bias, we

use absolute value as input. Thus, motion directions estimation finds directions

ψ maximizingR(|Cg(p)|, 0, ψ) as motion directionŝθ. Figure3.10 shows the

performance of Radon transform whenθ1 = 30 andθ2 = 120. In the plot, blue

and red curves plot Radon transforms of raw cepstrum and processed one. As the

plot shows, the raw cepstrum has peak both correct directionsψ = 30, 120 and

wrong directionsψ = 0, 90. On the other hand, the processed cepstrum has peak

only correct directionsψ = 30, 120.

Next, the blur length parametersLm are estimated along the estimated blur

directionsθ̂. The negative spikes, each of which is derived from one of the com-

ponent PSFs, should appear along the strong lines and the distance between a
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PSF Raw cepstrum
Blurred image Processedcepstrum 1800 9030 120 1800 9030 120

ProcessedRawProcessedRaw

Figure 3.10: Motion direction estimation based on Radon transform when
θ1 = 30 andθ2 = 120. (Left) PSF and blurred image degraded by the PSF. (Mid-
dle) Raw cepstrum (top) obtained by Eq. (2.17) and processed cepstrum (bottom)
obtained by Eq. (3.6). (Right) Plot of Radon transform. Blue and red curves
represent Radon transform of raw cepstrum and processed cepstrum, respectively.

spike and the peak is equivalent to blur lengthL. Thus, the method finds the lo-

cationp of negative spike along each blur directionθ̂m and setL̂m the distance

between the spike and the peak.

PSF candidates generation

Now, we have a set of component PSFs with motion parameters(θ̂m, L̂m).

The potential PLM PSFs should be one of a permutation of the estimated compo-

nent PSFs. Thus, we generate all the permutation of the component PSFs. The

generated PLM PSFŝkcan
n (n = 1, . . . , N) are called PSF candidates.

3.5.2 NLM PSF candidates estimation

Section3.4.2derives assumptions that the strong values of the cepstrum of a

NLM PSF forms approximate shape of its PSF, and shape connects the cepstral

peak and one of negative valleys. If these assumptions are correct, NLM PSF can

be estimated by finding a correct valley and then tracing the strong values between
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Figure 3.11: Overview of NLM PSF candidates estimation. Blue point represents
the cepstral peak and red points represent negative valleys. The proposed method
estimate PSF candidates each of which connects the peak and one of valleys.

the peak and the valley. Based on this assumption, the proposed method estimates

PSF candidates of a NLM PSFkN from a single blurred imageg. Figure3.11

shows the overview of the method. Instead of finding the correct valley, the pro-

posed method estimates several PSFs each of which is corresponding to one of

negative valleys as candidates. Since the cepstrum is symmetric around the peak,

both the estimated candidates (top of the right figure) and their symmetric ones

(bottom of the right figure) are regarded as PSF candidates.

LM PSF estimation from another aspect

Before describing the detail of NLM PSF candidates estimation, let me con-

sider cepstral patterns identification method for LM PSF estimation [Chang et al.,

1991; Fabian and Malah, 1991; Ji and Liu, 2008; Mayntz et al., 1999; Moghad-

dam and Jamzad, 2007; Oliveira et al., 2007; Wu et al., 2007] from another aspect.

Figure3.12compares the cepstrum of a LM PSF and that of the blurred image.

On the right figure, PSF shape (blue lines) is overlaid on the cepstrum. As you

can see, bothCk andCg have strong values along the motion direction and the

appeared shape lies between the cepstral peak and the negative valley.

Let us consider LM PSF estimation using this cepstral features. Suppose we

detect several negative valleys from the cepstrum of a blurred imageCg and check

lines each of which connects the cepstral peak and one of the negative valleys. A

detected valley on a line that has strong values should be equivalent to one of the

periodic valleys. Thus, the LM PSF can be estimated by finding such line. This
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Image Cepstrum Cepstrum
w/ plots

PSF

Blurred image

Figure 3.12: Cepstral strong values along the motion direction. A LM PSF of
(θ, L) = (45, 30) (top) and blurred image degraded by the PSF (bottom). From
left to right, image, cepstrum, and plotted values are shown. In the right figure,
yellow point represents the cepstral peak, red points represent the negative valleys,
and blue lines are overlaid PSF shape, respectively.

PSF estimation can be formulated by path integral equation as

L̂ = argmax
L

∫
L
Cg(p)ds, (3.8)

k̂L(x) =

{
1 if x ∈ L̂

0 otherwise
,

where L denote a set of lines, each of which connects the cepstral peak and one of

negative valleys andds denotes an elementary arc length of lines. The estimated

line L̂ has same shape as the PSF and also the position of the corresponding val-

ley tells us the parameters of the PSF. This LM PSF estimation method can be

regarded as a special case of LM PSF estimation based on Radon transform de-

scribed in Sec.3.5.1. Radon transform based method integrates the cepstrum over

all directions and choose a direction having most strong value while this path in-

tegral based method integrates the cepstrum only for a few directions.

Then, same investigation is performed to NLM PSF. Figure3.13compares the
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Figure 3.13: Cepstral strong values along the motion direction. A NLM PSF
(top) and blurred image degraded by the PSF (bottom). From left to right, image,
cepstrum, and plotted values are shown. In the right figure, yellow point represents
the cepstral peak, red points represent the negative valleys, and blue curves are
overlaid PSF shape, respectively.

cepstrum of a NLM PSF and that of the blurred image. On the right figure, PSF

shape (blue curves) is overlaid on the cepstrum. On the cepstrum, strong values

appear like Mobius strip. Comparing the cepstrum with the blue curves, strong

values of the cepstrum of NLM seems to approximate PSF shape. Contrast to the

cepstrum of LM PSF, the cepstrum of NLM PSF has distributed negative valleys.

NLM PSF candidates estimation based on path integral

From the discussion above, I derive an assumption that the cepstrum of a NLM

PSF has approximate shape of the motion that lies between the cepstral peak and

correct negative valley. If this assumption is correct, we can estimate NLM PSF by

finding a curve, not a line, that maximizes the path integral between the cepstral

peak and correct negative valley. However, there is no solution that finds cor-

rect negative valley from distributed negative valleys. Alternatively, the proposed

method estimates a curve for each distributed negative valley as PSF candidate.

Considering the cepstral symmetric property, symmetric PSFs of estimated curves
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Figure 3.14: NLM PSF candidates estimation. Given a blurred image, the method
first computes the cepstrum and detects several negative peaks. Then, the pro-
posed method estimates a curve connecting the cepstral peak (yellow point) and
one of negative valleys (red point) for each valley as PSF candidate.

are also added as PSF candidates. Figure3.15briefly explains the PSF candidates

estimation method.

Here, I re-formulate the path integral based PSF estimation Eq. (3.8) for NLM

PSF. Since the NLM PSF estimation method is based on path integral,Cf com-

ponent and cepstral vertical/horizontal lines of image discontinuities may violate

the integral. Same as PLM PSF estimation, the method takes averaging cepstra of

sub images and apply Tukey window [Tukey, 1967]. Then, the method detectsM

negative valleys from the computed cepstrum. The number of negative valleysM

is empirically decided 10.

The path integral equation Eq. (3.8) is re-formulated for NLM PSFs as

Ĉm = argmax
Cm

∫
Cm

Cg(p)ds, (3.9)

k̂int
m (x) =

{
1 if x ∈ Ĉm

0 otherwise
,

where Cm denotes a curve connecting the cepstral peak andm the negative valley.

Now, the problem to be solved is finding a curve maximizing path integral

given the cepstral peakppeakand a negative valleypvalley
m . Regarding this problem

as a kind of shortest path searching problem, the proposed method solves this

path searching problem by dynamic programming. Specifically, the Dijkstra’s

algorithm is performed [Dijkstra, 1959]. Figure 3.15 shows the strategy of the

method. Given the cepstrum of a blurred imageCg, we assign the value ofCg
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Cep. of NLM Zoom-up
Figure 3.15: Path integral on the cepstrum of a NLM. In the figure, yellow point
represents the cepstral peak, red points represent the negative valleys, and blue
curves are overlaid PSF shape, respectively.

as a graph where each positionp = (p, q)T corresponds to a node, and an edge

is defined to connect three neighboring nodespnei
j ∈ {(p, q + 1), (p + 1, q), (p +

1, q + 1)}. We define a weight over the nodes as

w
(
pnei
j

)
=

⟨pvec
j ,pvec

m ⟩
∥pvec

m ∥ · ∥pvec
j ∥

, (3.10)

wherepvec
m =

−−−−−−→
ppeakpvalley

m is vector connecting the cepstral peak and the negative

valley andpvec
j =

−−−−−→
ppeakpnei

j is vector connecting the cepstral peak and a neigh-

boring nodepnei
j . The cost function represents the cosine of the angle formed by

pvalley
m , ppeak, andpnei. Since the cost function enforces a path to connect the peak

and the valley with shorter length, the estimated path tends to be a straight line

rather than a zigzag line. After taking integral frompvalley
m to ppeak, we find a path

maximizing the path integral between the cepstral peak and the negative valley.

This path estimation is performed for all detected negative valleys, thus we obtain

M curves each of which corresponds to each negative valley.

Since a cepstrum is symmetric about the cepstral peak, the symmetric shape

of an estimated path may be another candidate of the correct PSF. Thus, we regard

bothM estimated curveŝkint and their symmetric curveŝksym as PSF candidates.

Totally, we obtainN = 2M PSF candidateŝkcan = {k̂can
n | n = 1, . . . , N} from

M negative valleys.
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3.6 PSF candidates evaluation

This section describes PSF candidates evaluation method based on the imag-

ing equation. Regarding the estimated PSF candidates as PSFs with different pa-

rameters, the proposed method evaluates the candidates similar to the parameter

searching methods, mentioned in Sec.2.5.3, as

k̂ = argmin
k̂can
n

|Q(g − f ⊗ k̂can
n )|. (3.11)

This evaluation should theoretically choose the best PSF among the candidates

but in practice it does not work because Eq. (3.11) uses unknown latent image

f . Alternatively, the proposed method uses a recovered imagef̂n, which is the

deconvolution result with a PSF candidatekcan
n , with a regularization term on PSF

Rk as

k̂ = argmin
k̂can
n

|Q(g − f̂n ⊗ k̂can
n ) + λkRk(k̂

can
n )|. (3.12)

One may doubt that Eq. (3.12) can choose the correct PSF candidates because

the fidelity termQ(g − f̂n ⊗ k̂can
n ) seems to be zero for any PSF candidatek̂can

n .

However, it works. Since any deconvolution algorithm is pseudo inverse of con-

volution operation, recovered image has deconvolution error. Thus, the fidelity

termQ(g − f̂n ⊗ k̂can
n ) is not zero. Figure3.16shows how the fidelity terms work

on linear motion blur case. In this case, horizontal linear motion blur ofL = 15

is applied to ‘Lena’ image. To the blurred image, Wiener filtering with different

PSFs with different motion length parametersL are applied. Figure3.16(a)shows

restored imageŝfn and ideal fidelity termg − f ⊗ k̂can
n and Fig.3.16(b)shows

re-blurred imageŝfn ⊗ k̂can
n and practical fidelity termg − f̂n ⊗ k̂can

n . From left

to right, PSF used for deconvolution differs its motion lengthL from 1, 7, 15,

and 20. In ideal case, correct caseL = 15 results zero error while other wrong

cases contain some errors. On the other hand, practical case results zero error with

L = 1 case but some errors with other cases. Even with correct PSFL = 15 case,

residual of re-blurred image is not zero. Figure3.17plots the error value change

w.r.t. motion length parameters. Blue plot validates that the ideal fidelity term can

choose the correct PSF. On the other hand, pink plot shows interesting observa-
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(a) Ideal case. (Top) Restored imagesf̂n. (Bottom) Ideal fidelity term
g − f ⊗ k̂can

n .

(b) Practical case. (Top) Re-blurred imagef̂n ⊗ k̂can
n . (Bottom) Practical

fidelity termg − f̂n ⊗ k̂can
n .

Figure 3.16:Example of PSF candidates evaluation with a case of horizontal lin-
ear motion blur ofL = 15.

tions. Error value globally increases with the increase ofL, especially the increase

is accelerated overL > 15. However, there exists local minimum aroundL = 15.

Considering these two observations, correct PSF seems to be estimated by find-

ing such local minimum. Thus, the regularization term of Eq. (3.12) should be

designed to find such local minimum against to the global behavior of the fidelity

term.
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Figure 3.17: Plot of the fidelity term according toL. (Blue) Fidelity term values
of ideal case. (Pink) Fidelity term values of practical case.

3.6.1 Data fidelity term

As mentioned in Sec.2.5.3, the data fidelity term evaluates the mean square

error as

Q(g − f̂n ⊗ k̂can
n ) =

∑
x

√
|g − f̂n ⊗ k̂can

n |2. (3.13)

Following Savakis and Trussell [Savakis and Trussell, 1993], Wiener filtering [Wiener,

1949] is used to compute recovered imagef̂n.

3.6.2 Regularization term

As mentioned above, regularization term should be designed to find such local

minimum against to the global behavior of the fidelity term. Thus, the regular-

ization term considers the difference of neighboring motion direction parameters

as

Rk

(
k̂can
n

)
=

Width2
(
k̂can
n

)
+ Height2

(
k̂can
n

)
∣∣∣∣∣∣k̂can

n

∣∣∣∣∣∣0 (3.14)

where Width and Height functions return PSF’s width and height, respectively,

and L0 norm of a candidate
∣∣∣∣∣∣k̂can

n

∣∣∣∣∣∣0 counts the number of non-zero components.

Denominator works only for NLM to favor a straight line rather than a zigzag line.
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3.7 Experimental results

This section validates the proposed method by using both synthesized im-

ages and real world images. Synthesized images are used to evaluate the per-

formance of both each process and entire process of the proposed method. Then,

the proposed method is applied to real world images. Furthermore, comparisons

with other blind deconvolution methods are shown. All experiments are done

Intel R⃝ CoreTM i7 Quad CPU 3.20GHz and 6GB RAM.

3.7.1 Synthetic experiments

In these synthetic experiments, a set of 200 images from Berkeley Segmenta-

tion Dataset [Ber] is used as latent images and randomly generated PSFs is used

to synthesize blurred images. This section first assesses sub processes of the pro-

posed method, which are PSF candidate estimation process and PSF candidates

evaluation process. Next, the entire method is evaluated with synthesized images.

Since the synthesized images are noise-free, Wiener filtering [Wiener, 1949] is

used as a deconvolution algorithm.

Synthetic experiments for PLM PSF

Here, the quantitative evaluation of NLM PSF estimation is shown. To gener-

ate random NLM PSFs, the experiments are done with the following conditions:

number of component PSFsN = {2, 3, 4}; potential range of motion length of

component PSFL = {10 ∼ 30, 30 ∼ 50, 50 ∼ 70} [pixel]; and minimum angle

of two different motion direction∆θ = {10, 20, 30} [deg.]. For example, the case

(N,L,∆θ) = (3, 10 ∼ 30, 20) generates a PLM PSF consists of three component

PSFs, motion length of each of them ranges10 ∼ 30 pixels, and each motion

direction parameterθ is distributed at least 20 degrees.

PLM PSF candidates estimation

First experiment is validation of Radon transform based motion directions esti-

mation under the conditions mentioned above. Here, success case is defined to

satisfy that the number of maximum of Radon transform is equivalent toN , that

estimation error ofθ is less than 5 degrees. Table3.1shows the number of success
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Table 3.1:PLM PSF candidates estimation: The number of success cases.

∆θ 10 20 30
HHHHHHL

N
2 3 4 2 3 4 2 3 4

10∼ 30 110 50 12 114 58 20 180 145 82
30∼ 50 159 92 75 161 117 87 199 194 189
50∼ 70 173 123 84 164 115 82 200 200 193

Table 3.2:PLM PSF candidates estimation: RMSE of estimated motion directions
[deg.]

∆θ 10 20 30
HHHHHHL

N
2 3 4 2 3 4 2 3 4

10∼ 30 0.5 0.5 0.4 0.4 0.5 0.6 0.3 0.4 0.4
30∼ 50 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0
50∼ 70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cases of 200 trials under different conditions. Almost failure cases are undetected

cases. The table shows that both smaller∆θ and biggerN have more failure

cases. This indicates that these conditions make Radon transform disable to lo-

calize two neighboring maxima. On the other hand, biggerL have more success

cases. This indicates that biggerL clarifies the corresponding maximum of Radon

transform. Next, Table3.2computes the Root Mean Square Error (RMSE) of es-

timated motion directions only for success cases. In all cases, RMSE is less than

1 degree. Especially, biggerL cases provide better results than smaller cases.

Table3.3 computes the RMSE of estimated motion length parameters only for

success cases. Contrast to motion directions estimation, results differs according

to the conditions. Especially, the condition(N,L) = (4, 10 ∼ 30) marks rela-

tively worse results. So far, I have not found arrived at a clear conclusion for this

results. However, I guess that each negative spike interferes each other, thus the

results are relatively bad.
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Table 3.3:PLM PSF candidates estimation: RMSE of estimated motion length
parameters [pixel]

∆θ 10 20 30
HHHHHHL

N
2 3 4 2 3 4 2 3 4

10∼ 30 1.6 5.5 9.1 2.3 5.6 8.5 3.0 8.0 12.0
30∼ 50 1.7 2.4 3.2 1.5 2.2 2.7 1.9 3.3 4.8
50∼ 70 1.9 2.3 3.2 1.9 2.1 2.5 1.4 2.0 2.8

Table 3.4:PLM PSF candidates evaluation: The number of success cases.

∆θ 10 20 30
HHHHHHL

N
2 3 4 2 3 4 2 3 4

10∼ 30 189 170 149 189 166 146 191 170 156
30∼ 50 173 115 83 163 128 95 176 127 79
50∼ 70 134 70 38 139 94 41 143 87 75

PLM PSF candidates evaluation

Next, candidates evaluation process is validated. In this experiment, correct com-

ponent PSFs are used to validate the evaluation function chooses the correct PLM

PSF. Thus, Table3.4just counts the number of success cases of 200 trials for each

condition. The result indicates that largerN cases and largerL cases seem to fail.

Since larger size PSF causes more ringing artifacts even though the PSF is correct.

Therefore, above conditions have more failure cases.

PLM PSF estimation

Finally, entire method is validated. Considering the above experiments,∆θ is set

to 30 degree. Here, the success case is defined to satisfy that blur direction error

is less than five degree. Table3.5 shows the number of success cases, RMSE of

motion directions, and RMSE of motion length parameters. The number of suc-

cess cases differs according to the conditions more than previous experiments. In

the previous experiments, larger PSF size is better for candidates estimation while

smaller PSF size is better for candidates evaluation. In this experiment, the case of
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Table 3.5:PLM PSF estimation: The number of success cases, RMSE of motion
directions [deg.], and RMSE of motion length parameters [pixel].

#success RMSE of θ̂ [deg.] RMSE ofL̂ [pixel]
HHHHHHL

N
2 3 4 2 3 4 2 3 4

10∼ 30 150 63 12 0.3 0.6 1.5 1.1 1.5 1.1
30∼ 50 157 92 71 0.0 0.0 0.0 0.9 1.8 2.1
50∼ 70 136 76 49 0.0 0.0 0.0 1.5 1.8 2.7

L = 30 ∼ 50 results most success cases. Calculated RMSE of success cases are

that motion directionŝθ is less than 1.5 degree and motion length parametersL̂ is

less than 3 pixels. For an image of320 × 240 resolution, the proposed method

takes 0.1 sec for PSF candidates estimation and0.15N ! sec for PSF candidates

evaluation,e.g., 0.1 + 0.15 × 3! = 1.0 sec for a PLM consisting of three linear

motions.

Synthetic experiments for NLM PSF

Since NLM PSF does not parametric form, quantitative evaluation is not easy.

To evaluate the accuracy of estimated PSFs, we compare a restored image using

estimated PSF with one using the ground truth PSF not with the latent image

because deconvolution algorithms cannot perfectly recover the latent image even

with the ground truth PSF.

PSF shape estimation process

I first evaluate the PSF shape estimation process. The assumption is that the cep-

strum of a NLM PSF has unclear PSF shape that lies between the positive peak

and one of negative valleys. To validate the assumption, I input a correct negative

valley, corresponding to a ground truth PSF, to Eq. (3.9) so that the process can

ideally estimate the correct PSF. Since it is not easy to evaluate an estimated PSF

by its shape, we compare the restored image obtained by the estimated PSFf̂ with

that by ground trutĥfbest. Figure3.18shows the histogram of NCC of the restored

imagesf̂ and f̂best w.r.t. PSF size. It is natural that the process recovers higher

NCC images for smaller size of PSFs. Empirically, NCCs below 0.9 are visually
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Figure 3.18:Experimental result: NCC histogram of the restored imagesf̂ and
f̂bestw.r.t. PSF size.

unacceptable. With this threshold, more than 70 percent of the trials are success-

ful for all the sizes of PSFs. Figure3.19shows some of the restored images. From

left to right, the size of ground truth PSF is increasing. Red framed figures inf̂

show the estimated PSFs while that inf̂best show the ground true PSFs. In both

PENGUIN and FISH cases, PSF is well-estimated, thus the restored images by es-

timated PSF recover the detail of the latent images,e.g. penguin’s fur skin and fish

skin. The Goat case shows that the restored image is slightly damaged by even

the ground truth PSF because of the bigger PSF size. In such case, the estimated

PSF is not perfectly same as the ground truth. As a result, the ringing artifacts in

f̂ is more obvious than that in̂fbest.

PSF candidates evaluation

Next, I evaluate the performance of the PSF candidates evaluation process. I syn-

thesize 200 blurred images and prepare 10 PSF candidates, containing the ground

truth and others are wrong. For validation, estimate PSF is evaluated using the ob-

jective function Eq. (3.12). Table3.6shows the number of success of 200 blurred

images w.r.t. varyingλ and varying PSF size. The casesλ = 0 denote that the

objective function evaluates the PSF candidates with only error term. The results

show that the objective function could successfully choose the ground truth PSF

more than 80 percent of the trials without the regularization term. All the fail-

ure cases ofλ = 0 chose the smaller size PSF than the ground truth. This result
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PENGUIN FISH GOAT
Zoomed upZoomed up

Latent image
Blurred image
Restored imageby estimated PSF
Restored imageby ground truth PSF

Figure 3.19:Examples of the PSF shape estimation experiment. From top to bot-
tom, latent images, blurred images, restored images by estimated PSFs, restored
images by ground truth PSFs, and zoomed up of the restored images are shown.
Red framed figures in restored images are PSFs used for deconvolution (for better
visualization, we enlarge the PSFs 3 times the normal size). From left to right,
PSF size is increasing.

indicates that the error term can discriminate the ground truth PSF, however, the

ringing artifacts caused by PSF size degrades the performance of the error term.

With λ = 5 ∼ 15 × 10−5, the objective function provides better results than that

of λ = 0. However, the casesλ > 15 × 10−5 provide worse results according to

λ. This result indicates that the regularization term assists the error term for the

evaluation but relatively biggerλ makes the regularization term dominant in the

evaluation function. In this experiment, the result has less correlation with PSF

size. Thus, we expect that the objective function works invariant to PSF size with

optimumλ value. In the latter experiments,λ is set to5 ∼ 20× 10−5.
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Table 3.6:Experimental results of PSF candidates evaluation w.r.t. varying PSF
size andλ of Eq. (3.12).

λ (×10−5) 0 5 10 15 20 25 30 35 40 45

10×10∼20×20 176 192 191 186 179 172 160 152 142 131
20×20∼30×30 181 188 186 179 173 166 157 148 142 125
30×30∼40×40 174 179 178 176 169 165 152 147 137 127

1520
2530
35

15 20 25 30 35
Figure 3.20:Experimental results: The plots of PSNR ratio. Red line denotes
PSNR ratio PSNR(f ,f̂ )/PSNR(f ,g) equals 1. The ratio greater than 1 indicates
that the restored imagêf is closer to the original imagef than the blurred image
g.

Performance of entire method

Here, I validate the performance of the entire method by using 200 blurred images.

PSF size is set to 10×10∼20×20 pixels. For each image, we compute the Peak

Signal-to-Noise Ratio (PSNR) of the blurred image and the one of the restored

image and compare them. The case that PSNR(f ,f̂ ) is greater than PSNR(f ,g)

represents that the restored imagef̂ is closer to the latent imagef than the blurred

imageg. Figure3.20plots PSNR ratio PSNR(f ,f̂ )/PSNR(f ,g) of the results and

a red line in the figure represents the ratio equals 1. In the experiment, 159 of 200

cases result PSNR ratio greater than 1. Figure3.21 shows some of the success

cases. Each caption of the blurred images and one of the restored images by es-

timated PSF represent PSNR(f ,g) and PSNR(f ,f̂ ), respectively. The MOUNTAIN
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case is an example of higher PSNR(f ,g) cases, which denotes less blurred case.

Zoomed up figures show that wood area is well-recovered. Middle column shows

the result of the WOMAN case. The restored image by estimated PSF is slightly

damaged by more ringing artifacts than that by ground truth PSF, however, the

detail of the image,i.e., hair and eye, are recovered. Lower PSNR(f ,g) case, the

SHIP case, is severely blurred than other two examples. The estimated PSF is not

perfectly same as the ground truth, however, the text on the shipVIKING LINE

gets much better than the blurred image.For an image of320 × 240 resolution,

NLM PSF estimation method takes0.001 sec for PSF candidates estimation and

0.15N sec for PSF candidates evaluation,e.g., 0.001 + 0.15× 10 ≈ 1.5 sec for a

NLM.

3.7.2 Real-world experiments

In the real world experiment, I compare the proposed method with a max-

imum likelihood algorithm [MathWorks] (Matlab’s deconvblind function) and a

Bayesian approach [Fergus et al., 2006] based on variational Bayes estimation

[Miskin and MacKay, 2000] to validate the proposed method. To deal with the

noise effect on blurred images, I use a regularized minimization deconvolution

method [Levin et al., 2007].

Real-world experiments for PLM PSF

For PLM PSF estimation, following scenes are used: TREE (natural image,

smaller blur), FLOWER (natural image, larger blur), DOLL (artificial object, larger

blur), TEXT (text image, larger blur). Figure3.22 shows blurred images, esti-

mated PSFs, and recovered image using Wiener filter [Wiener, 1949]. The num-

ber of component PSFs are 2 for TREE, FLOWER, and DOLL scenes and 4 for

TEXT scene. In the restored images of TREE and FLOWER scenes, leaves of tree

and flowers are well-recovered without ringing artifacts, thus we can say that es-

timated PSF is correct. On the other hand, DOLL and TEXT scenes have little

ringing artifacts. This indicates that the estimated PSF is not perfect, however,

text in both scenes recovered enough to read. Therefore, the proposed method can

estimate PLM PSF from various types of scenes.
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Next, the proposed method is compared with the conventional methods, [Fer-

gus et al., 2006] anddeconvblind. Figure3.23shows the results. Fergus’ method

recover TREE and FLOWER scenes with less artifacts but fail on DOLL and TEXT

scenes.deconvblind estimates obscure PSFs and recovered images are visually

unacceptable.

Real-world experiments for NLM PSF

Figure3.24shows the results of four scenes, DOLL (natural image), ORANGE

(artificial object), SIGN BOARD (natural image), and TEXT scene. The red frame

in a restored image shows the estimated PSF. The caption of the restored image

denotes size of the estimated PSF. The scenes DOLL and ORANGE are selected

as examples of natural images. For such scenes, both our method and Fergus’

method recover clearer images,i.e. doll’s eye and the text in ORANGE scene,

while deconvblind provides the restored images damaged by heavy ringing arti-

facts. The other scenes are selected as examples of less-textured scenes: text pat-

tern in natural scene SIGN BOARD and text-pattern only scene TEXT. For SIGN

BOARD scene, both proposed method and Fergus’ method can recover satisfying

quality images. The reason why Fergus’ method can recover the satisfying image

is that the background area of text part in the blurred image obeys the statistics

of natural images in the case of text-pattern in natural scene. Contrast to above

scenes, TEXT scene has only text component in the image. For the scene, our

method recovers readable text even with ringing artifacts, whiledeconvblind and

Fergus’ method cannot recover clearly readable images. These results indicate

that our method can estimate PSFs for various scenes.

3.8 Conclusion

The motivation of this work is to search for the answer to the question that

is it possible that the classic approach estimates non-linear motion PSF. For this

question, I tackle non-linear motion PSF estimation issues with cepstral approach.

To achieve the purpose, I analyzed the cepstral behavior of two types of constant

speed non-linear motion PSF,e.g., PLM PSF and NLM PSF. Based on the anal-
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ysis, the proposed method estimates non-linear PSF from a single blurred image.

Experimental results show that the proposed method can estimate non-linear PSF

under the condition that our assumptions are held.

3.8.1 Future direction

There are several future directions.One is the consistency of the proposed

method. Now, the proposed method does not classify PLM and NLM because the

method uses different types of cepstral features of PSFs. Thus, all experiments

were performed separately. This style lacks of practicability. To develop a unique

solution handling both type of motion, one solution is to merge both types of PSF

such as a Piecewise Noisy Linear Motion PSF that is partially NLM. The cepstrum

should have the sum of the cepstra of all NLMs but has several negative valleys

which may correspond to one of the cepstrum of component NLM. To estimate

each component NLM, our NLM PSF estimation is performed for all negative val-

leys. Since some of estimated NLMs may correspond to wrong negative valleys,

we have to omit them but it is difficult to specify which valley is wrong. Thus, we

first generate PSF candidates by all the permutation considering such ambiguity.

For example,N component NLMs generatesN ! + (N − 1)!NPN−1 + · · · PNLM

PSF candidates. Then, PSF candidates evaluation is applied to the candidates to

choose the best estimate. To realize this PNLM PSF estimation, theoretical foun-

dation of the cepstral behavior of NLM PSF is required. In this thesis, NLM PSF

estimation method is designed based on assumption derived from my observa-

tion but lacks theoretical foundation. Therefore, further analysis on the cepstral

behavior of NLM PSF is required.

Another issue is PSF candidate evaluation process. Regularization term of the

PSF evaluation (Eq. (3.14)) considers only PSF size. This means that our regu-

larization term considers the likelihood of unknown PSF. Similar to regularized

minimization of non-blind deconvolution, mentioned in Sec.2.4.4, can provide

some information. If we can somehow find better regularization term, PSF can-

didate evaluation (Eq. (3.12)) can be a powerful tool for any blind deconvolution

works because they can evaluate PSF with different parameters of their methods.

Another future direction is to extend cepstral approach as to estimate spatially
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varying PSFs from a single blurred image. First step is discrete PSFs estimation.

Since we don’t have prior knowledge on the scene, we cannot utilize sub regions

that are suitable for PSF estimation. Thus, the discrete PSFs should be computed

on image grid. Since there is no guarantee that a sub region is well-textured, we

have to consider the possibility of mis-estimation. For this problem, I came up

with some idea. First idea is to introduce constraint on latent image. Similar to

the statistical properties of image gradient, same category scene at same depth

scale follows the same distributions of power spectra at sub regions. Regarding

the averaged power spectra map as reference, PSF estimation can easily be done.
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Restored imageby estimated PSF
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Latent image
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Zoomed up MOUNTAIN
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33.44
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SHIP
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SHIP
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16.27

WOMAN
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24.15
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Figure 3.21:Experimental results: Restored images of the entire method. From
left to right, MOUNTAIN, WOMAN, SHIP cases are shown with NCC values be-
tween the restored images. From top to bottom, original images, blurred im-
ages, restored images by estimated PSF, restored images by ground truth PSF,
and zoomed up of the restored images are shown. Red framed figures in restored
images are PSFs used for deconvolution (for better visualization, we enlarge the
PSFs 3 times the normal size).
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Blurred image Restored imageEstimated PSF

FLOWER1670x1420 77x44

28x23
TREE968x970

DOLL765x1115 73x61
TEXT1045x665 73x44

Figure 3.22:PLM PSF estimation for real world images. From top to bottom,
TREE, FLOWER, DOLL, andTEXT scenes are shown. From left to right, blurred
images, estimated PSFs, restored images. Captions of middle column images
denotes estimated PSF size.
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TREE

28x2331x3128x23

FLOWER

77x4479x7977x44

DOLL

73x6175x7573x61

TEXT

73x4475x7573x44

deconvblindFergus et al.Blurred image Our method

Figure 3.23:Comparison with traditional methods. From left to right, blurred
images, our method, Fergus et al., anddeconvblind, respectively. Red framed
image in a restored image shows the estimated PSF.
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deconvblind
Fergus et al.

Blurred image
Our method

Zoom up DOLL480x320 ORANGE480x320 TEXT1600x900
73x75
75x75
73x75

21x12 7x15
25x25 17x17
21x12 7x15

SIGN BOARD480x480
21x5
23x23
21x5

Figure 3.24: Experimental results: Restored images of the real world experiment.
From left to right, DOLL, ORANGE, SIGN BOARD, and TEXT scenes are shown
with the image resolution. From top to bottom, blurred images, restored images
by our method, restored images by Fergus’ method [Fergus et al., 2006], restored
images bydeconvblind [MathWorks], and Zoom up of restored images are shown.
Red framed figures in restored images are PSFs used for deconvolution (for bet-
ter visualization, we enlarge the PSFs 3 times the normal size) and each caption
of restored images denotes the size of the estimated PSF. Other framed figures
correspond to zoomed up regions of restored images.
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Chapter 4

In-Focus Projection from a Single

Projector-Camera Image Pair

In this chapter, I propose a method that displays an in-focus image onto off-

axis surface based on a single projector-camera image pair matching algorithm as

shown in Fig.4.1. Making a pair of projector and camera, the proposed method

first estimates defocus parameters on the off-axis surface. Then, generate a sharp-

ened image that contains enhanced edge according to the estimated defocus pa-

rameters. Finally, the sharpened image is projected to the surface to cancel the

defocus effect. The proposed method assumes that display surface is planar and

Lambertian.

4.1 Projectors in computer vision and graphics

Thanks to the recent development of projectors, their capabilities,e.g., bright-

ness, resolution, contrast and throw-distance, have made projectors one of the

popular display devices. The greatest merit of a projector is that a projector can

project onto many screens of various sizes and scaled-up projection can show dis-

played image to many observers. Thus, projectors are known to be useful for both

Computer Vision and Graphics researches.
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Screen

CameraProjector
Displayed image on the screenNormal projection In-focus projectionSet up

Figure 4.1: Overview of the proposed method. The propose method cancels the
defocus effect appears on surface off-axis to a projector. By projecting a sharp-
ened image, defocus effect is cancelled.

Real world measurement

With a projector, we can emit a light forming arbitrary shape. Such property

is useful for real world measurement.

3D volume measurement

One famous application is active stereo that measures 3D volume of objects by

the triangulation algorithm. Active stereo replaces a camera of stereo camera pair

with a projector. Projecting known pattern,e.g., points and marks, correspondence

between the projector and the camera is easily done with the knowledge on the

projected pattern.

One intuitive extension is to reduce the number of projected patterns. Kawasaki et al.

use calibrated pro-cam set up for single-shot 3D reconstruction [Kawasaki et al.,

2008]. For decode the projected pattern, they use grid pattern having coplanarity

constraints. They further extend single-shot reconstruction system to work under

uncalibrated pro-cam pair [Kawasaki et al., 2010]. To achieve single-shot system,

their method does self-calibration using a projected De Bruijn grid pattern. Fer-

nandez et al. do 3D dense reconstruction from a single-shot projection [Fernandez

et al., 2010]. For uniquely decode the projected pattern, they design multiplexed

color pattern. Thus, their pattern decode algorithm provides fast and reliable phase
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map.

One of the big limitations of the above methods is sensitivity to objects’ tex-

ture. Schmalz and Angelopoulou propose single-shot 3D reconstruction for tex-

tured objects [Schmalz and Angelopoulou, 2010]. To decode the pattern on tex-

tured surfaces, they introduce region adjacency graph. Watershed transform rep-

resents the input image with fewer color, thus the method becomes less sensitive

to the noise caused by objects’ texture.

Yamazaki and Xu measures 3D shape of glossy surface based on Dichromatic

reflection model [Yamazaki and Xu, 2010]. The system consists of stereo camera,

a projector located at closer position to the cameras, and a display located at op-

posite position to the cameras. Due to the positions, the cameras observe diffuse

component of projector light and sum of specular and diffuse component display

light. Thus, active binocular stereo measures diffuse component from projector

light and shape-from-distortion measures specular component from display light.

When the reflection on the surface is dominated by diffuse component, projec-

tor’s projection is clearer while display’s projection is blurred. On the contrary,

when the surface reflection is mainly specular, display’s projection gets clearer

and projector’s projection is blurred.

Cuypers et al. propose real-time 3D shape acquisition based on silhouette ex-

traction, visual hull in other words [Cuypers et al., 2009]. Instead of multiple

cameras, they use multiple colored point light sources. The setup consists of mul-

tiple colored point light sources, a diffuser and a digital camera. For each light

source, a silhouette is extracted from the captured shadows of the scene. These

silhouettes are used for visual hull reconstruction as well as image based collision

detection.

Furukawa et al. measure entire 3D shape of an object using uncalibrated pro-

cam [Furukawa et al., 2009]. They estimate initial 3D shape using active stereo

and compute initial estimate of extrinsic parameters. Next, feature points based

rough registration is performed as the initial values of the motion parameters.

Since the wrong correspondence may cause registration error, the motion param-

eters are refined by ICP algorithm. Finally, bundle adjustment is performed to

optimize all the parameters.
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Figure 4.2: A conceptual sketch of the office of the future. Courtesy of [Raskar
et al., 1998b].

Appearance control

Initially, projector is designed to use with a planar that is white and Lam-

bertian. However, adjusting the projection enables to control the appearance of

real-world object. Such appearance control technique is useful for virtual reality,

mixed reality, and augmented reality works.

Immersive display

Raskar and his colleague proposed office of the future [Raskar et al., 1998a,b]

as shown in Fig.4.2. Replacing the normal office lights with projectors, we can

control all over the light in the office. In the back of the system, synchronized

cameras capture the visible surface of the office so that we can control the appear-

ance of images on the surfaces.

One of the biggest limitations of front projection systems is that occluder be-

tween the projector and the surface casts shadow on the surface and that projector

illuminates undesirable projection onto occluder. Using multiple projectors, we

can fill the shadow region [Audet and Cooperstock, 2007; Jaynes et al., 2004;

Sugaya et al., 2010]. First step detects shadow region by comparing predicted
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Figure 4.3: Example of appearance control results. (a) Original appearance. (b)
Color saturation enhancement. (c) Color removal. (d) Color phase control. (e)
Unique brightness. (f) Edge enhance and blur. Courtesy of [Amano and Kato,
2010].

view and actual observation. Once shadow region is detected, another supplemen-

tal projector projects occluded region. Sugaya et al. proposed shadow contrasting

method for multiple projector display [Sugaya et al., 2010]. Their method rec-

ognizes which projector generates the shadow on the display from a single-shot.

The method is available for removing the cast shadow by occluder and undesirable

projection onto occluder.

Texture control

Contrast to the above immersive display, texture control of smaller size objects

is also interesting. Amano and Kato implemented appearance control methods for

the visually impaired [Jefferson and Harvey, 2007; Peli et al., 1994; Wolffsohn

et al., 2007] on Projector-Camera systems [Amano and Kato, 2010]. Figure4.3

shows the examples of appearance control results of color saturation enhance-

ment, color removal, color phase control, brightness equalization, and edge en-

hancement and blur. Menk and Koch proposed appearance control under the in-

fluence of ambient light [Menk and Koch, 2010]. They use spectral data recording
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projector, ambient light, and object separately. The data is used to decide projec-

tion pattern by physically-based simulation. The proposed radiometric model has

the constraint that the pixels of the projector are treated independently of each

other. Park and Kim use a mobile projector to support large display [Park and

Kim, 2010]. Colored projection boundary enables the system to track the mobile

projector. By extracting user’s shadow generated by projection, the user can inter-

actively access the content. As mentioned in Ch.1, Raskar et al. presented the idea

of shader lamps where projectors are used to project additional graphical content

onto a neutral and diffuse real object [Raskar et al., 2001]. Bandyopadhyay et al.

then extended [Raskar et al., 2001] to project onto movable objects, which addi-

tionally could be interactively colored with a tracked paint brush [Bandyopadhyay

et al., 2001].

4.2 Related works

This section briefly overview the related works. The discussion is mainly

related to projector image adjustment works but not limited to in-focus projection.

As mentioned above, computer vision and graphics research fields have ex-

panded projector’s potential probability during this decade. Projector’s key prop-

erty enables these works is that we can control projecting light so that environmen-

tal information can be extracted by making a pair of projector(s) and camera(s).

For the upcoming imaging technologies, what kind of pro-cam applications are

favored? Considering the number of intended people, projector image adjustment

technique is the one favored. The release of books well-summarizing the related

technologies indicates that my guess is not bad direction. Bimber and Raskar men-

tion the projector based augmented reality technologies in [Bimber and Raskar,

2005] while Majumder and Brown mention the development of multi-projector

display in [Majumder and Brown, 2007].

Generally speaking, we, projector-camera researchers, regard the view of cam-

era is equivalent to user’s view. The relationship between a projector imagep and

a camera imagec is described as

c(x) = D(p(x),Θ), (4.1)
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Projector image Camera image
Projection
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Screen

CameraProjectorDistortion parameterof the scene
Figure 4.4: The relationship between a projector image and camera image.

whereD represents any image distortion on the projector image andΘ is a set of

distortion parameters. Figure4.4 shows the relationship. The form of distortion

functionD varies with considered image distortion and parameterΘ depends on

the scene. The goal of projector image adjustment is to fit the projected image

onto any surface so that we can show what we want to show, namely distortion

free image. For this purpose, two technical problems should be solved. One is how

to synthesize such adjusted image and the other is how to estimate the distortion

parameterΘ for image synthesis. In this section, I give the brief overview of the

literature for each problem.

4.2.1 Adjusted image synthesis

First problem to be solved is adjusted image synthesis. Suppose we expect the

camera to observec. With known distortion parameter setΘ, adjusted image to

be projected is synthesized as

p(x) = D−1(c(x),Θ). (4.2)

Note that the equation implicitly assumes that the functionD is invertible. Roughly

speaking, there are two approaches for the synthesis, two pass rendering and pixel-

by-pixel mapping.
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Two pass rendering

Two pass rendering was first introduced by Raskar et al. [Raskar et al., 1998a].

The approach assumes known scene geometry and fully calibrated projector-camera

pair. In the first pass, we render the goal imageig from the perspective of the cam-

era. Next,ig is mapped onto the display surface. This mapped image is generated

by projective texturing that projects the goal image onto the surface. Then, the

second pass renders the mapped image from the perspective of the projector. This

approach is used for projection onto non-textured object [Bandyopadhyay et al.,

2001; Johnson and Fuchs, 2007; Raskar et al., 2003, 2001].

Pixel-by-pixel mapping

The assumption of two pass rendering is too strong to use in everyday appli-

cations because the geometry of the scene is generally unknown. For the case of

unknown geometry, pixel-by-pixel mapping is suitable approach. The approach

somehow finds the correspondence betweenc andp so that we can precisely con-

trol the projection without the scene information.

Light transport The light transport describes all global illumination effects

between a light source (projector) and an imaging device (camera) [Sen et al.,

2005]. Simply speaking, the light transport matrix is a lookup table describing all

the pixel correspondence of the projector-camera pair. Thus, the transport matrix

is obtained once, we can synthesize any image from the projector’s perspective

under camera illumination [Ding et al., 2009; Wetzstein and Bimber, 2007; Ya-

mamoto et al., 2010]. The merit of this approach is that the light transport contains

all the distortion in a matrix form. Thus, both geometric and color distortion can

be cancelled by applying the inverse light transport matrix. Once the light trans-

port of between the projector and the camera is obtained using structured patterns

projection, we can synthesize image from the viewpoint of the projector, the scene

illuminated by a synthetic light source,etc.

Approximate model With light transport, we can synthesize any image of

the scene. However, acquisition takes so long to know all the pixel correspon-

dence of the projector-camera image pair. One may prefer approximate models

rather than pixel level mapping under a situation that display surface is locally
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uniform. Such approximated model finds local region level mapping [Majumder

and Brown, 2007]. Contrast to the light transport, this approach should separately

consider the distortion. For geometric distortion, piecewise planar assumption is

well-used. Interested readers may refer to [Brown et al., 2005] for further infor-

mation.

For color adjustment, well-used distortion function is3×3 color mixing matrix

Dcolor that maps projector image to camera image as cR

cG

cB

 = Dcolor

 pR

pG

pB

 , (4.3)

whereR,G,B denote red, green, and blue component of an image,e.g., pR de-

notes red color component of projector image. Using this expression, pixel level

color mapping is realized with geometrically aligned projector-camera pair [Ash-

down et al., 2006; Bimber et al., 2005; Fujii et al., 2005; Grossberg et al., 2004;

Grundḧofer et al., 2007; Nayar et al., 2003; Wang et al., 2005].

Focal adjustment

The above approaches implicitly assume projector can always display in-focus

image, however this assumption is not hold in practice. Due to its narrow depth-

of-field, projector can make in-focus projection with strict environment. In order

to increase the depth of field of conventional projectors, There are mainly two

solutions, single or multiple projector based methods.

Multiple projectors for in-focus projection One intuitive solution is to use

multiple overlapping projectors with different in-focus positions [Bimber and Em-

merling, 2006]. Each projector projects an image onto a part of target surface that

is located in the each projector’s depth-of-field as shown in Fig.4.5. This partial

projection by multiple projectors minimizes a degradation caused by projector

defocus on the screen surface. Thus, overlapped image forms in-focus image.

Single projector for in-focus projection When only a single projector is

available, we should tackle the problem with inverse of distortion function Eq. (4.2).

The inverse function against to defocus blur is edge sharpening. Thus, previous
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Figure 4.5: In-focus projection with multiple overlapping projectors that have
different in-focus planes. Courtesy of [Bimber and Emmerling, 2006].

methods first sharpen an image and then project the sharpened image so that the

sharpening effect cancels the defocus effect [Brown et al., 2006; Grosse and Bim-

ber, 2008; Park et al., 2008; Zhang and Nayar, 2006]. Figure4.6shows an exam-

ple of single projector based in-focus projection.

4.2.2 Distortion parameter estimation

The other problem to be solved is distortion parameter estimation. Any ap-

proach estimatesΘ by pattern matching algorithm that compares the projection

p and the observationc. Thus, the categorization considers what kind of patterns

are used.

Structured light

The most popular approach is to use structured light (fiducial pattern). As

listed by Salvi et al., coding strategy of such fiducial is classified according to

the target [Salvi et al., 2004]. For geometry estimation, point is to make a set

of corresponding points. Thus, point cloud, binary/gray code, chess board pat-

terns, special markers,e.g., ARTag [Fiala, 2004], are used. For color/radiometric

parameters estimation, point is to make a correspondence of projector color and

91



Figure 4.6: In-focus projection by sharpened image projection with single projec-
tor. Projector images (top) and their corresponding camera images (bottom). From
left to right, fiducial patterns, original image, and sharpened image are shown.
Courtesy of [Brown et al., 2006].

camera color. Therefore, gray color code and color code are used. For defocus

parameter estimation, projected pattern should be sensitive to defocus blur. Thus,

point/circle clouds are well-used. Table4.1classifies the related papers according

to their target distortion and type of structured pattern.

Image matching based method

Thanks to the recent development of image description/matching researches,

alternative approach relies on image features matching. For static scene, fea-

ture points matching,e.g., SIFT feature points, are used [Takahashi et al., 2010,

2008; Yang and Welch, 2001]. For moving surface, Lukas-Kanade [Baker and

Matthews, 2004] like gradient descent method [Audet et al., 2010] or stereo based

tracking [Johnson and Fuchs, 2007] is suitable. Amano and his colleague directly

modify the appearance [Amano and Kato, 2008, 2010]. They set the statistical

property of goal image,e.g., color profile and edge intensities of the camera im-

age. Then, they can directly compute the parameter for image synthesis by com-

paring the statistical property of the goal image and the camera image. Another

type of solutions uses some external devices for ease of track [Borkowski et al.,
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Table 4.1:Classification of structured light.

Distortion Pattern Papers

Geometry

Point cloud [Okatani and Deguchi, 2005, 2009]
Binary codes [Tardif et al., 2003]
Chess board [Draŕeni et al., 2009; Sun et al., 2008a,b]

ARTag
[Audet and Okutomi, 2009; Fiala, 2005;
Griesser and Gool, 2006]

Color Color codes
[Fujii et al., 2005; Majumder et al., 2010,
2000, 2003; Nayar et al., 2003]

Focus

Cross dots [Brown et al., 2006]
Chess board [Park et al., 2008]

Circle dots
[Bimber and Emmerling, 2006; Grosse
and Bimber, 2008; Grosse et al., 2009,
2010; Zhang and Nayar, 2006]

2003; Lee et al., 2004, 2005; Leung et al., 2009]. Contrast to the above method, it

works faster and more robust.

Imperceptible structured light

As Raskar et al. mentioned [Raskar et al., 1998b], embedding imperceptible

structured light [Cotting et al., 2004; Grundḧofer et al., 2007; Park et al., 2007;

Zollmann and Bimber, 2007] is another solution. A temporal modulation of pro-

jector images, flickering projection in other words, allows us to embed structured

light that is imperceptible for human visual system in the projector images. Zoll-

mann et al. combine both normal structured light and imperceptible one [Zoll-

mann et al., 2007]. The method embeds the imperceptible structured light in

running phase and estimates the distortion parameters on-line. Once the on-line

estimation fails, the method projects normal structured light for re-initialization.

4.3 Motivation

For upcoming imaging technologies,e.g., dynamic projection in dynamic scene,

what is required? In answer to this question, I develop an in-focus projection
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method without implicit fiducial pattern projection. The reason of this answer

comes from some issues described in the following.

Most of existing projector image adjustment works,e.g., geometric adjustment

and color adjustment, are constrained by hardware limitations of projector. Nar-

row depth-of-field results defocus blur with volumetric depth or moving screen

object. When its resolution or dynamic range is not enough for the purpose, dis-

played image quality is significantly lost. For dynamic projection systems, one of

the most important things is defocus blur. Thus, in-focus projection technique is

a good topic for the future improvements of projector.

Thanks to the recent development of image feature descriptor, representation,

and matching and tracking works, projector image adjustment researches are go-

ing to remove structured light projection from their method. This trend is per-

suasive because structured light projection is a tool not a purpose. Even though

we can expect imperceptible structured light to provide as same quality result

as normal structured light does, embedding the pattern itself is undesirable addi-

tional process. Therefore, developing image matching based approaches can be a

suitable choice for a system under dynamic scene. Since most projector-camera

researchers carefully use projector to make the display in-focus, focal adjustment

was previously less required. Furthermore, in-focus projection technique is a fresh

research field. Therefore, there does not exist an in-focus projection method based

on image matching method.

Another concern is a way of in-focus projection. As mentioned above, there

are mainly two solutions, multiple projectors or single projector to achieve in-

focus projection. For developing a simple set up, I choose the latter approach.

4.4 Overview of the proposed Method

This section proposes in-focus projection method. The proposed method con-

sists of two steps, distortion parameter estimation and adjusted image synthe-

sis. Figure4.7 shows overview of the proposed method. As input, the pro-

posed method takes a projector imagep and a camera imagec. In the distor-

tion parameter estimation step, the proposed method first estimates discrete PSFs

at extracted regions from a pair of projector-camera image (blue dot framed).
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Spatially varying PSFs

Projector imageCamera image
1σ 2σ 4σ

3σ
1σ 2σ 4σ

3σ
1σ 2σ 4σ

3σ O11σ 21σ 12σ
nmσO11σ 21σ 12σ
nmσ

Discrete PSFsat extracted regions Sharpened image
Figure 4.7: Overview of the proposed method. As pre-processing, rich textured
regions (yellow dot framed) are extracted. From a pair of projector-camera image
(blue dot framed), the proposed method first estimates discrete PSFs at extracted
regions. Then, spatially varying PSFs covering the entire image is computed by
interpolation/outerpolation. Once the spatially varying PSFs are computed, the
original projector image is sharpened according to the computed PSFs.

Then, spatially varying PSFs covering the entire image is computed by interpo-

lation/outerpolation. Then, the estimated PSFs are used to sharpen a projector

image. Finally, the sharpened image is projected to the surface to remove the

defocus effect. The proposed method assumes that display surface is planar and

Lambertian.

4.5 Spatially varying PSFs estimation

The proposed method estimates spatially varying PSFs from a pair of pro-

jector imagep and camera imagec. When the light direction of the projector is

not perpendicular to the display surface, projector defocus on the surface is not

constant, spatially varying across the surface. In a strict sense, such PSFs should

be estimated on pixel by pixel, however, it’s applicable. Assuming the planar

surface, we can regard the spatially varying PSFs locally uniform and smoothly

varying. Thus, the proposed method estimates such PSFs from by interpolating

PSFs estimated at several positions.
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4.5.1 Discrete PSFs estimation

The projector defocus is described by a 2D Gaussian PSF due to its larger

apertures as

k(x; σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (4.4)

whereσ denotes standard deviation of the Gaussian. Thus, camera imagec is

described as

c(x) = p(x)⊗ k(x;σ). (4.5)

Note that the amount of defocusσ is not constant on the surface.

Given projector-camera image pair, the proposed method estimateσ of the

PSF as

σ̂ = argmin
σ

Q (c(x)− p(x)⊗ k(x; σ)) . (4.6)

Considering projector light attenuation and noise effect, evaluation functionQ

computes NCC values of the argument as

σ̂ = argmin
σ

Q (c(x)− p(x)⊗ k(x; σ))

= argmax
σ

NCC (c(x), p(x)⊗ k(x;σ))

= argmax
σ

∑
x

(c(x)− p(x)⊗ k(x; σ))∑
x

c(x)
∑
x

p(x)⊗ k(x;σ)
. (4.7)

Applying thisσ estimation on sub images, we can estimate discrete PSFs at dif-

ferent positions.

Since we have bothp andc, one may claim that straightforward strategy is

spectral division as

k̂ = F−1

(
F (c)

F (p)

)
, (4.8)

however, the estimate is not correct because Eq. (4.5) ignores other projector im-

age distortion. In addition to defocus blur, the camera imagec actually contains

other types of distortion,e.g., geometric and color distortion. The assumption of

geometrically registered projector-camera pair is theoretically cancel the geomet-
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ric distortion but color distortion still remains on the image. Well-used form of

the color distortion is formulated as

c(x) = Dcolor (p(x)⊗ k(x;σ)) . (4.9)

The color distortion functionDcolor is single scalar for gray scale image and3× 3

matrix for color image. Loss of generality, let us consider the simple gray scale

case. When color distortion function scales and biases input as

c(x) = Dcolor (p(x)⊗ k(x;σ)) (4.10)

= Cscale(x)p(x)⊗ k(x; σ) + Cbias(x), (4.11)

whereCscale andCbias denote scale and bias factors. In supposed situation of

the method, bothCscale andCbias is not constant across the image. In such case,

Eq. (4.8) is rewritten as

F−1

(
F (c)

F (p)

)
= F−1

(
F (Cscale(x)p(x)⊗ k(x; σ) + Cbias(x))

F (p)

)
= F−1

(
F (Cscale(x))⊗F (p(x))F (k(x;σ)) + F (Cbias(x))

F (p)

)
= F−1

(
F (Cscale(x))⊗F (k(x;σ)) +

F (Cbias(x))

F (p)

)
. (4.12)

Therefore, spectral division cannot be applicable.

4.5.2 Spatially varying PSFs estimation

Then, the method interpolates the discrete PSFs for spatially varying PSFs es-

timation. Intuitively, we compute the discrete PSFs on image grid or on image

corners. However, I empirically found that PSF estimation on such region some-

times fails. When a sub imagepsub has uniform color, Eq. (4.6) always returns

σ̂ = 0 meaning no defocus blur. This indicates that the PSF estimation (Eq. (4.6))

implicitly assumes that projector imagepsub is well-textured. If we use PSFs esti-

mated on less-textured regions, theσ estimation error propagates. Therefore, we

should carefully extract rich textured sub images for stableσ estimation rather
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(a) Original image (b) Image corners (c) Rich textured regions

Figure 4.8:Textures on image corners (green) and on rich textured regions (red).

than less textured ones. Figure4.8compares image corners and well-textured re-

gions. Contrast to the rich textured regions (red frames), image corners (green

frames) are less textured. On such less textured regions, proposed discrete PSF

estimation (Eq. (4.6)) fails.

For rich textured region extraction, the method should consider defocus effect.

Since the proposed method is designed for defocus blur estimation, rich textured

region should be sensitive to projector defocus. Thus, a rich textured region should

satisfy the following equation as

p̂sub = argmax
psub

∑
x∈xsub

|psub(x)− psub(x)⊗ k(x; σ)| , (4.13)

wherexsub denotes sub region ofpsub. Rasterizing the computation over entire

image, the proposed method extract four rich textured regions and use them for

the discrete PSFs estimation. Figure4.9depicts the extraction process.

Once four rich textured regions are extracted, the discrete PSFs are estimated

on the regions. Then, spatially varying PSFs are estimated by simple linear in-

terpolation and extrapolation. For the following process, the method spatially

varying PSFs are interpolated/extrapolated on the image grid not on all the pixels.
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(a) Original imagep (left) and synthetically blurred image
p⊗ k (right).

(b) Extracted rich textured
region.

Figure 4.9:Rich textured regions extraction.

4.6 Sharpened image synthesis

Next, the proposed method sharpens the projector image using the estimated

PSFs. To cancel the spatially varying defocus, sharpening should also be spatially

varying. Here, the method uses interpolation again for spatially varying sharpen-

ing.

Now, we have the projector imagep and the estimated PSFs on the image

grid σg. The pixel value of final sharpened imagep̂ at x is obtained by linear

interpolation as

p̂(x) = D−1(p(x);σ(x)) = αTLD
−1(p(x);σg(xTL))

+ αTRD
−1(p(x);σg(xTR))

+ αBLD
−1(p(x);σg(xBL))

+ αBRD
−1(p(x);σg(xBR)), (4.14)

whereD−1 is the sharpening function,α denotes weight parameter,σg denotes

PSF at neighboring image grid, and the subscripts indicate (T)op, (B)ottom, (L)eft,

and (R)ight respectively. Following this interpolation, spatially varying sharpen-

ing is done.

For sharpening functionD−1, the method uses the Wiener filtering [Wiener,

1949].
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Sharpened image
Figure 4.10: Sharpened image synthesis. As pre-processing, rich textured re-
gions (yellow dot framed) are extracted. From a pair of projector-camera image
(blue dot framed), the proposed method first estimates discrete PSFs at extracted
regions. Then, spatially varying PSFs covering the entier image is computed by
interpolation/outerpolation. Once the spatially varying PSFs are computed, the
original projector image is sharpened according to the computed PSFs.

4.7 Experimental results

This section validates the proposed method with real world images. The ex-

perimental setup is as follows.

• Projector image: 960×640 resolution

• Camera image: 1024×768 resolution

• Sub image: 160×160 resolution

• γ of Wiener filter: 0.001

4.7.1 Spatially varying PSFs estimation

In this experiment, PSF estimation method is validated with on-axis case and

off-axis case.
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(a) Input image (b) Estimatedσ (c) Fiducial pattern (d) Estimatedσ

Figure 4.11:Rich textured region extraction and estimated PSFs. (Left) Input im-
age and estimated PSFs on the extracted regions of input image. (Right) Fiducial
pattern and estimated PSFs on the same regions.

(a) Input image (b) Estimatedσ (c) Fiducial pattern (d) Estimatedσ

Figure 4.12:Image corners and estimated PSFs. (Left) Input image and estimated
PSFs on the corners. (Right) Fiducial pattern and estimated PSFs on the corners.

Rich textured region extraction

First experiment validates rich textured region extraction and PSF estimation

on the regions. Figure4.11(a)shows an input image and extracted regions on the

image while Figure4.11(c)does fiducial pattern that has fiducial markers on the

corresponding regions. Here, estimated PSF on the fiducial markers (Fig.4.11(d))

are regarded as ground truth. Comparing the estimatedσ, the proposed method

estimates similar values. Next, I use image corners for PSF estimation under same

condition. Figure4.12shows the results. At the top corners, estimatedσ using

input image are zero while fiducial pattern estimates reasonable values. These

results indicate that the proposed method extracts the rich textured regions and

that PSF estimation performs as similar as fiducial pattern method does.
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Table 4.2:PSF estimation on extracted regions. Both mean square error (MSE)
and standard deviation (Std. dev.) of estimation error is shown. Small and big
mean the relative amount of PSF. Partial and entire mean displayed image is par-
tially blurred and entire image is blurred respectively.

On-axis Off-axis (small) Off-axis (big)
small big partial entire partial entire

MSE 1.09 0.61 0.55 0.88 0.87 0.97
Std. dev. 1.23 0.37 0.70 0.98 1.03 0.56

Discrete PSFs estimation

Same experiments are done with different conditions and different images.

Table4.2 summarizes the results. I compare the estimated PSFs on extracted re-

gions with fiducial pattern approach. Both mean square error (MSE) and standard

deviation (Std. dev.) of estimation error is shown on the table.

Spatially varying PSFs estimation

Next, spatially varying PSFs estimation method is validated. Here, I com-

pare the proposed method with my previous method [Oyamada and Saito, 2007].

The previous method estimates spatially varying PSFs on image grids, thus it

should mis-estimate PSF on less textured regions. Figure4.13(a)tells that the

amount of defocus blur is slightly increasing from top left to bottom right in the

scene. Figure4.13(b)shows that PSFs estimated on the image grid fails on less

textured regions, top area of the image. On the other hand, proposed method es-

timates closer values and does not have outliers. Same as previous experiment,

both methods are compared with fiducial pattern approach and estimation error

is shown in table format. Table4.3 and Table4.4 show the results of previous

method and ones of the proposed method respectively. These results indicate that

the proposed method suppresses the mis-estimation and error propagation caused

by interpolation.
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(a) Fiducial pattern (b) [Oyamada and Saito,
2007]

(c) Proposed method

Figure 4.13:Spatially varying PSFs estimation. From left to right, fiducial pattern
approach (ground truth), previous method [Oyamada and Saito, 2007], and the
proposed method are shown.

Table 4.3:Spatially varying PSFs estimation by previous method [Oyamada and
Saito, 2007].

On-axis Off-axis (small) Off-axis (big)
small big partial entire partial entire

MSE 2.05 1.61 0.83 2.10 1.75 2.30
Std. dev. 1.26 2.35 1.08 3.46 1.35 4.23

4.7.2 Sharpened image projection

Next experiment is to validate that sharpening can reduce the defocus effect.

Figure4.14shows the result of an off-axis case. Figure4.14(a)and Fig.4.14(d)

show that edges in the sharpened image is emphasized. Comparing the displayed

images, the sharpened image preserves lion’s fur and beard while the original

image loses. PSN ratio between the original image and displayed result of original

Table 4.4:Spatially varying PSFs estimation by the proposed method.

On-axis Off-axis (small) Off-axis (big)
small big partial entire partial entire

MSE 1.58 0.96 0.93 1.35 1.85 1.27
Std. dev. 1.19 0.60 0.86 1.06 1.20 1.43
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(a) Original image (b) Displayed (a) on the sur-
face

(c) Zoom up of (b)

(d) Sharpened image (e) Displayed (d) on the sur-
face

(f) Zoom up of (e)

Figure 4.14:Sharpened image projection.

image and sharpened image are 21.3 and 21.7. Thus, the result indicates that

sharpened image projection can reduce the projector defocus effect.

4.8 Conclusion

The motivation of this work is to achieve in-focus projection without explicit

fiducial patterns projection. Since projector-camera image pair is available in

projector-camera systems, the proposed method estimates spatially varying PSFs

from the image pair. The method has two key points. First point is that the as-

sumption that the projector image is available reduces the difficulty of PSF esti-

mation. Using the assumption, discrete PSF on a sub image can be estimated by

comparing two images. Second point is to rely on the discrete PSFs on only rich

textured regions. Thus, we can prevent PSF estimation error propagation. Experi-

mental results show that the proposed method realizes in-focus projection without

explicit fiducial patterns projection.

One of the biggest contributions of this work to our research domain is to
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introduce simple signal processing strategy to estimate projector defocus without

fiducial patterns projection. In fact, the concept for geometric adjustment was first

realized by Yang and Welch [Yang and Welch, 2001] but no prior work exists for

focal adjustment. I first tried to realize in-focus projection without fiducial pat-

terns projection. After I proposed the original idea of this approach in [Oyamada

and Saito, 2007], Park et al. developed a prototype method of on-line in-focus

projection [Park et al., 2008]. This indicates that this work contributes to research

domain.

4.8.1 Future direction

To use the proposed method in dynamic scene, entire process should be com-

pleted in real time. Using a Pentium 4 processor of 3.2GHz and 1.0GB RAM,

entire process takes about 8 sec, 1 sec for PSF estimation and 7 sec for image

synthesis. For speed up, several approaches are conceivable. Simple but powerful

tools for fast image synthesis is to develop the function with GPU. Another idea

for dynamic scene is using sequential data even though I mentioned single shot

based approach is better than sequential data based method in Sec.2.6. Since the

proposed method uses single projector-camera image pair, the discrete PSF esti-

mation (Eq. (4.6)) searches all potentialσ values. With sequential data, we can

limit the parameter search range close in value to the previous estimate. Another

approach is to compute the discrete PSFs at multiscale. Run PSF estimation at dif-

ferent scale, we obtain several PSF maps each of which corresponds to one scale

as shown in Fig.4.15. If a sub image contain enough texture for PSF estimation,

the estimated PSF value,e.g.,σ value for defocus blur and probably shape for mo-

tion blur, should be similar to neighboring scale. When the estimated PSF value

violates the above assumption, we stop estimation at the regions of finer scale.

Another potential extension of this work is to run the in-focus projection in dy-

namic environment. Spatially varying PSFs estimation itself is not computation-

ally heavy, thus the method potentially runs in real time. Straightforward strategy

is to merge object tracking algorithm [Baker and Matthews, 2004] in the process.

At the initialization step, we extract the rich textured regions of projector image.

On running phase, target surface tracking and PSF estimation are simultaneously
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Figure 4.15: PSF map at different image scale. From left to right, sub image size
gets smaller. Red text means outlier.

processed. One concern is that discrete PSF estimation takes time proportional

to the amount of defocus. Since PSF estimation contains convolution operations,

the more defocus blur is the bigger kernel size is. As a result, the method runs

slowly for larger defocus scene. To solve this problem, PSF estimation can be

run in cepstrum domain. Different from estimation in image domain, we don’t

need to compute convolution operations in cepstrum domain. Thus, adaptive PSF

estimation according to defocus amount is possible solution.
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Chapter 5

Conclusions

The history from ancient photograph to state-of-the-art image acquisition/display

technology, I imagine the configuration of imaging technology in the future. That

is dynamic contents projection in dynamic scene as shown in Fig.1.6. For the

upcoming technologies, we may have to prepare several things. To realize the

future technologies, one issue to be solved is image degradation occurred during

imaging process. To relax the difficulty of the issue, I have separately focused

on image restoration works for both image acquisition and display process. Es-

pecially, key contribution is to introduce traditional signal processing theory to

concrete problems,e.g., non-linear motion PSF estimation for motion deblurring

and spatially varying PSF estimation for in-focus projection. As the experimental

results in Ch.3 and Ch.4, the proposed methods work in real cases.

Cepstral Analysis based Non-Linear Motion PSF Estimation

Chapter3 focuses on non-linear motion PSF estimation from a single blurred

image. To solve this ill-posed problem, I analyzed the cepstral behavior of non-

linear motion,e.g., PLM PSF and NLM PSF. To use the analyzed behavior for

non-linear PSF estimation, the proposed method estimates a PSF with two steps,

PSF candidates estimation and then PSF candidates evaluation. The cepstral be-

havior is used for the former process. Once the method estimates PSF candidates,

they are evaluated by considering the imaging equation and the likelihood on PSF.

The main contribution of this work is that the method extends the classic cepstral
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analysis approaches for non-linear motion PSF estimation. With both synthesized

images and real world images, the proposed method is validated. Experimental

results showed that the proposed method can estimate non-linear PSF.

In-Focus Projection from a Single Projector-Camera Image Pair

Chapter4 focuses on spatially varying PSFs estimation from a projector-camera

image pair. For PSF estimation, we can put strong assumption on projector-

camera systems that projector-camera image pair is available. With the assump-

tion, image matching based algorithm can be applicable even for spatially varying

PSFs. Another assumption is that projector image has rich textured region that

is suitable for matching based PSF estimation. Experimental results showed that

the proposed method realizes in-focus projection without explicit fiducial patterns

projection. The main contribution of this work is that I introduce PSF estima-

tion strategy into this field so that the proposed method can passively estimate

the information of projector defocus without fiducial patterns projection. The ex-

perimental results show that the proposed method achieves in-focus projection

without using fiducial patterns.

5.1 Future works

Let me introduce some potential future works in my mind.

Human perception based image restoration

The proposed method considers physical phenomena,e.g., camera motion and

projector defocus because target blur for the method is explained as physical phe-

nomenon. If the goal is to find an answer that is physically correct, this type of

approach is fine. However, the final purpose is to show satisfying photograph

to the users. This indicates that we have to consider human perception as well.

Not many but some projector color adjustment works consider human percep-

tion such as Ashdown et al.’ work [Ashdown et al., 2006] and Amano and Kato’s
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work [Amano and Kato, 2010]. Blur correction considering human perception is

one potential and interesting future works.

Blur information for realistic AR

Blur estimation method is useful for realistic AR. The key issue to develop a

realistic AR system, consistency between real world and virtual world should be

ensured. Thus, elemental technologies of AR have focused on finding geometric

and photometric information from an observed image. In 2009, Park et al. pro-

posed a method that estimates parametric motion blur information from an input

image and then render virtual object under the blur [Park et al., 2009]. Since AR

is getting a lot of attention as a dreamlike technology, blur estimation for realistic

AR is also interesting topic. The point of the topic is computation time. Since

most of AR system are required to be run in real time, some idea making the

computation faster is necessary.

Enhanced display for weak eyesight

One application contains the component of the proposed method is image en-

hancement for weak eyesight people. When weak eyesight people go to an eye-

glasses shop, he tries several types of eyeglasses. Unfortunately, eyeglasses set at

shop front do not have lens. This means that he check how much the eyeglasses

suits to him without lens. For such situation, the concept of in-focus projection

can be helpful. Figure5.1 shows the concept of the display. Top is normal eye-

sight people’s view while bottom is weak eyesight people’s view. By enhancing

texture in the image, weak eyesight people can provably perceive the texture that

is imperceptible without eyeglasses. To realize this application, we need to know

the amount of weak eyesight and to enhance the view according to the weakness.

Each of necessary part is corresponding to PSF estimation and to in-focus image

synthesis respectively.
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Original image Sharpened image
Weak eyesight

Normal eyesight

Figure 5.1:Concept of enhanced display.
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Appendix A

Richardson-Lucy algorithm

Richardson-Lucy (RL) algorithm [Lucy, 1974; Richardson, 1972] is a non-

blind deconvolution algorithm based on Bayes’ theorem. Here, we derive original

RL algorithm and an extended one.

A.1 Bayes’ theorem

Following the Bayes’ theorem, a posterior distribution is formulated as

P (f(x)|g(x)) = P (g(x)|f(x))P (f(x))
P (g(x))

, (A.1)

whereP (g(x)|f(x)), P (g(x)), andP (f(x)) are the likelihood, the evidence, and

the prior distribution.

A.2 Maximum Likelihood estimation

Bayesian estimation is to estimatef that maximizes the posterior distribution

P (f(x)|g(x)), thus called Maximum-A-Posteriori (MAP) estimation. MAP esti-
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mation is formulated as

f̂ = argmax
f

∏
x

P (f(x)|g(x))

= argmax
f

∏
x

P (g(x)|f(x))P (f(x))
P (g(x))

. (A.2)

Since we don’t have any prior knowledge on imagesg and f , we assume the

evidence term and the prior distribution as uniform distribution. Therefore, MAP

estimation is converted to Maximum-Likelihood estimation as

f̂ ∝ argmax
f

∏
x

P (g(x)|f(x)). (A.3)

Since the equation computes the products overx, the resulting value may po-

tentially be underflow. To reduce the risk, we usually minimize the negative log

likelihood instead of maximizing the likelihood. Sincelog is monotonically in-

crease, the conversion does not lose the contents. Thus, Eq. (A.3) is reformulated

as

f̂ = argmin
f

∑
x

L(x), (A.4)

whereL(x) = − log(P (g(x)|f(x))) is the negative log likelihood.

A.3 Poisson noise

When image noisen follows Poisson distribution, the likelihood is formulated

as

P (g(x)|f(x)) =
∏
x

f(x)⊗ k(x)g(x) exp (−f(x)⊗ k(x))

g(x)!
. (A.5)
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In this case, the negative log likelihood is written as

L(x) = − log (P (g(x)|f(x)))

=
∑
x

log
f(x)⊗ k(x)g(x) exp (−f(x)⊗ k(x))

g(x)!

=
∑
x

f(x)⊗ k(x)− g(x) log (f(x)⊗ k(x)) + log g(x)!. (A.6)

Consider a small perturbation∆x. The negative log likelihood is

L(x+∆x) =
∑
x

f(x+∆x)⊗k(x)−g(x) log (f(x+∆x)⊗ k(x))+ log g(x)!.

(A.7)

Removing constant term w.r.t.f , we obtain

L(x+∆x) =
∑
x

f(x+∆x)⊗ k(x)− g(x) log (f(x+∆x)⊗ k(x)) . (A.8)

Assumingf(x+∆x) = f(x) + f(∆x), the equation is rewritten as

L(x+∆x) =
∑
x

(f(x) + f(∆x))⊗ k(x)− g(x) log ((f(x) + f(∆x))⊗ k(x))

=
∑
x

f ⊗ k(x) + f ⊗ k(∆x)− g(x) log (f ⊗ k(x) + f ⊗ k(∆x)) .

(A.9)

Here, letf ⊗ k(·) representf(x)⊗ k(·). Then, the equation is expanded as

L(x+∆x) =
∑
x

f ⊗ k(x) + f ⊗ k(∆x)− g(x) log (f ⊗ k(x) + f ⊗ k(∆x))

=
∑
x

f ⊗ k(x) + f ⊗ k(∆x)− g(x) log

[
f ⊗ k(x)

(
1 +

f ⊗ k(∆x)

f ⊗ k(x)

)]
=

∑
x

f ⊗ k(x) + f ⊗ k(∆x)− g(x) log (f ⊗ k(x))− g(x) log

(
1 +

f ⊗ k(∆x)

f ⊗ k(x)

)
= L(x) +

∑
x

f ⊗ k(∆x)− g(x) log

(
1 +

f ⊗ k(∆x)

f ⊗ k(x)

)
.

(A.10)
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Following the Taylor expansion thatlog(1 + x) ≈ x− x2

2
, the equation is approx-

imated as

L(x+∆x) = L(x) +
∑
x

f ⊗ k(∆x)− g(x) log

(
1 +

f ⊗ k(∆x)

f ⊗ k(x)

)
= L(x) +

∑
x

f ⊗ k(∆x)− g(x)
f ⊗ k(∆x)

f ⊗ k(x)
+

1

2
g(x)

(
f ⊗ k(∆x)

f ⊗ k(x)

)2

.

(A.11)

Omitting the last term, because it’s too small,

L(x+∆x) = L(x) +
∑
x

f ⊗ k(∆x)− g(x)
f ⊗ k(∆x)

f ⊗ k(x)

= L(x) +
∑
x

f ⊗ k(∆x)

(
1− g(x)

f ⊗ k(x)

)
. (A.12)

From the definition of convolution integral
∫
ab ⊗ cdx =

∫
ba ⊗ kdx, wherekk

is the adjoint ofk,

L(x+∆x) = L(x) +
∑
x

f ⊗ k(∆x)

(
1− g(x)

f ⊗ k(x)

)
= L(x) +

∑
x

f

(
1− g(x)

f ⊗ k(x)

)
⊗ k(∆x). (A.13)

The partial derivative ofL(x) onx is derived as

∂L(x)

∂x
=

L(x+∆x)− L(x)

∆x

=
1

∆x

∑
x

f

(
1− g(x)

f ⊗ k(x)

)
⊗ k(x). (A.14)

Since the minimization of the negative log likelihood is obtained by findingx

satisfying
∂L(x)

∂x
= 0.
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Thus, we have (
1− g(x)

f ⊗ k(x)

)
⊗ k(x) = 0

1− g(x)

f ⊗ k(x)
⊗ k(x) = 0 (A.15)

Using the convergence conditionft+1(x)
ft(x)

= 1, we obtain the update rule as

ft+1(x)

ft(x)
=

g(x)

f ⊗ k(x)
⊗ k(x). (A.16)

Finally, we obtain the Richardson-Lucy deconvolution algorithm as

ft+1(x) = ft(x)

(
g(x)

ft ⊗ k(x)
⊗ k(x)

)
. (A.17)

A.4 Gaussian noise

When image noise follows Gaussian distribution, the likelihood is formulated

as

P (g(x)|f(x)) =
∏
x

N (f ⊗ k(x), σ2)

=
∏
x

exp

(
−|g(x)− f ⊗ k(x)|2

2σ2

)
. (A.18)

The negative log likelihoodL(x) is

L(x) = − log (P (g(x)|f(x)))

=
∑
x

(g(x)− f ⊗ k(x))2 . (A.19)

Consider a small perturbation∆x. The negative log likelihoodL((x)+∆(x))
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is

L(x+∆x) =
∑
x

g(x)2 − 2g(x)f ⊗ k(x+∆x) + f ⊗ k(x+∆x)2

= L(x) +
∑
x

−2g(x)f ⊗ x(∆x) + 2f ⊗ k(x)f ⊗ h(∆x) + f ⊗ k(∆x)2.

(A.20)

Omitting the last term, because it’s too small,

L(x+∆x) = L(x) +
∑
x

−2g(x)f ⊗ k(∆x) + 2f ⊗ k(x)f ⊗ k(∆x) + f ⊗ k(∆x)2

= L(x) +
∑
x

−2g(x)f ⊗ k(∆x) + 2f ⊗ k(x)f ⊗ k(∆x)

= L(x) + 2
∑
x

f ⊗ k(∆x) (f ⊗ k(x)− g(x)) . (A.21)

From the definition of convolution integral
∫
ab ⊗ cdx =

∫
ba ⊗ kdx, wherekk

is the adjoint ofk,

L(x+∆x) = L(x) + 2
∑
x

f ⊗ k(∆x) (f ⊗ k(x)− g(x))

= L(x) + 2
∑
x

f (f ⊗ k(x)− g(x))⊗ k(∆x). (A.22)

The partial derivative ofL(x) onx is derived as

∂L(x)

∂x
=

L(x+∆x)− L(x)

∆x

=
2

∆x

∑
x

f (f ⊗ k(x)− g(x))⊗ k(x). (A.23)

Since the minimization of the negative log likelihood is obtained by findingx

satisfying
∂L(x)

∂x
= 0.

Thus, we have

f (f ⊗ k(x)− g(x))⊗ kx = 0. (A.24)
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Using the convergence conditionft+1(x) − ft(x) ≈ 0, we obtain the update

rule as

ft+1(x)− ft(x) = (f ⊗ k(x)− g(x))⊗ k(x). (A.25)

Finally, we obtain the Richardson-Lucy deconvolution algorithm for Gaussian

noise as

ft+1(x) = ft(x) + (g(x)− ft ⊗ k(x))⊗ k(x). (A.26)
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Appendix B

Natural image statistics

Recently, many computer vision researches have paid attention to the natural

image statistics.

Natural image statistics represents the statistical properties of natural images.

One may doubt that natural images have common statistical properties because

there exist huge number of potential images,e.g., a100× 100 8-bit gray scale im-

age has more than1024000 potential images. This doubt assumes all pixel intensity

is generated following an i.i.d. (independent and identically distributed) uniform

distribution, however natural images have some redundancy. Since redundancy

helps reducing ambiguity of a problem, seeking the statistical property of nat-

ural images and its usage should take very important roles in computer vision

researches. One example famous example using natural image statistics is JPEG

image format. JPEG is an image format of lossy compression. JPEG compression

is based on a statistical property of natural images that the energy of power spec-

tra of natural images are concentrated mainly in lower frequencies. Thus, higher

frequencies have less contribution to entire images.

Torralba and Oliva analyzed the statistical properties of the spectra of natural

images for scene and object categorization tasks [Torralba and Oliva, 2003]. In

their paper, they model the power spectra of images using polar coordinates as

E[|I(f, θ)|2] ≃ As(θ)

fαs(θ)
, (B.1)

wheref andθ denote frequency and orientation of frequency component respec-
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(a) Images

(b) Image patches
Figure B.1:Images and their patches. (a, left) An image randomly generated from
an i.i.d. uniform distribution. (a, middle and right) Images of man-made object
and natural object from Berkeley segmentation data set [Ber]. (b) Patches cropped
from the images. Blue, green and red framed patches are the patches from random
image, man-made object image, and natural object image, respectively.

tively, andAs denotes an amplitude scaling factor for each orientation andαs is

the frequency exponent as a function of orientation. Note thatf in Eq. (B.1) de-

notes a frequency whilef in the other parts of this thesis denote unknown latent

images. The equation implicitly tells that mean power spectrum of natural images

is proportional to the inverse of frequency component. Though the paper focuses

on image categorization not on image deblurring, the point of this paper is that the

spectra of natural images and also man-made scenes can be modeled.

Recently, we pay attention to the statistical property of gradient of natural

images. FigureB.1 compares a random image and natural images. From the

patches cropped from the images, readers can easily classify which patches are

from natural images. Since the random image is synthesized following i.i.d. uni-

form distribution, neighboring pixels in the random image have no relationship.

Thus, patches of the random image look distributed. On the other hand, patches

of natural images seem to consist of a uniform or a few colors. Even though we

don’t know exactly where a patch is coming from, our perception systems distin-

guish the difference between random image and natural images. FigureB.2 plots
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(a) Histogram of images (b) Histogram of gradient images0 255 0 255-255
Figure B.2:Histograms of three images of Fig.B.1. Blue, green and red curves
represent histograms of random image, man-made object image, and natural ob-
ject image, respectively. (a) Histograms of images. (b) Histograms of gradient
images.

histograms of the images and ones of gradient images. Histograms of images

show that pixel intensities of random image are distributed while ones of natu-

ral images concentrate on. Histograms of gradient images show more interesting

observation. Contrast to one of random image, the histograms of gradient of nat-

ural images are 0-peaked and heavy-tailed distributions. This observation means

that natural images are locally uniform color or consist of a few colors. Thus,

0-peaked and heavy-tailed distributions is corresponding to the observation that

patches cropped from natural images seem to consist of a few colors.

The above statistical property can be a prior knowledge of natural images as

mentioned in Sec.2.4.4and Sec.2.5.5. For further information, readers can refer

to [Hyvärinen et al., 2009].
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