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Abstract

Recently, projector based display technologies have attracted much attention.
In contrast to computer monitors, projectors have a big merit that projectors can
fit their projection to arbitrary shape display. In addition to the development of
computer power, miniaturization and price reduction of cameras and projectors
encourages researches on such technologies. Such systems implicitly assume that
we can display observation as high quality as we expect. However, this assump-
tion is sometimes violated by motion/defocus blur occurred during imaging pro-
cess.

This thesis focuses on image restoration problem aiming to remove blur effect.
| propose single shoot based blur estimation method using constraints on target
blur and scene.

To remove motion blur effect occurred during image acquisition process, it is
required to know how the image is blurred. Proposed method analytically esti-
mates this blur information by using target blur as constraints. The method takes
a single blurred image captured by a normal camera and the blur on the captured
image is assumed to be uniform on the entire image. Under such conditions, the
cepstrum of the blurred image has partial information of target blur. Using the
characteristics, | propose a PSF estimation method estimating a PSF from the
cepstrum of a blurred image. Since the method uses constraints on target blur, the
method is applicable to various types of images.

In-focus projection removes the projector defocus occurred during image dis-
play process. To realize it, we have to know the amount of defocus blur on the
display. Furthermore, the amount of defocus varies across the display. Addition
to an image captured by a camera, an image projected by a projector is also used
as input. Proposed method estimates spatially varying defocus blur information



using the projector-camera image pair. Since the method does not require fiducial
pattern projection, the method is available on on-line systems.

To validate the proposed methods, both synthesized images and real world
images are used. Experimental results show that the proposed methods enable
blur correction under the assumed conditions.
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Chapter 1
Introduction

When we convey a thing to others, how do we do? In face to face commu-
nication, we rely on both oral and non-verbal communication. Oral communica-
tion, spoken verbal communication in other words, typically relies on words. In
contrast, non-verbal communication meaning wordless communication relies on
gesture and facial expression agtd

When we want to do it across time and space, what should we do? The old-
fashioned way follows the above type of communications. For example, folk
stories and songs passed by word of mouth are categorized into this type. How-
ever, the reprise of such style varies the terms and the expression of the contents,
thus we may lose the part of the contents as a result. Using telephone and video
chat such as Skyp®, indirect communication can be achieved across space but
not time. For communication across time, the better way is written communi-
cation. Ancient people used pictograph, resemblance of objects for the purpose.
They painted images onto walls or incised into stones using mineral pigments.
Figurell. I shows a cave painting of a horse drawn by Cro-Magnon peoples. Even
though we have no idea what they wanted to tell by such pictograph, the graph can
tell the information of the era. Printing technology further encouraged this type
of communications, especially for text. A big leap in the technology occurred by
printing-press technology intended in the 15th century. The printing-press devices
enabled rapid and precise copy of text document. This is the reason why the inven-
tion and spread of the technology are regarded as the revolutionizing events in the



Figure 1.1:Written communication at ancient time: Cave painting of a horse at
Lascaux drawn by Cro-Magnon peoples.

second millennium. With the printing technology, the contents can be preserved
semi-permanently.

An idiom Seeing is believingheans that physical or concrete evidence is con-
vincing. This indicates that conveying a thing prefers showing the thing rather
than telling the thing. Thus, it is natural that we have developed devices taking a
photograph, an image of projecting lights of a scene. Before the first photographs,
the principal of pinhole camera was mentioned by Mo Di, Chinese philosopher,
and Aristotle, Greek mathematician, in the fifth and fourth centuries@(nera
obscuraconsisting of a box or a room with a hole in one side is the concrete device
of pinhole camera. Light from an external scene of the camera passes through the
hole and then reaches a surface inside. The image of the scene can be projected
onto the surface, and can then be manually traced to produce a photograph of the
scene. Joseph Nephore Nepce, a French inventor, invented revolutionizing cam-
era like printing-press technology for tex&érnshein1977. His key idea is to
omit manual drawing from imaging process by relying on photochemical action so
that we can automatically obtain a photograph. Beforepié, photographs were
not permanent, unable to permanently secure the images from fading. Gorman
mentioned that his camera was designed based on heliog@&pméarn 2007.
Figurell.Z shows the earliest surviving photograph taken b§pdde. The big lim-



Figure 1.2:The earliest surviving photograph of a scene from nature taken with
a camera obscur&fiew from the Window at Le GragJoseph Niéphore Néepce,
1826]

itation of Niepce’s camera is its exposure time. It takes about eight hours for the
camera to yield the photochemical action. Thus, his follower focused on achieving
shorter exposure time. Through the 19th century, many advances in photographic
glass plates and printing were made in. George Eastman replaced photographic
plates to photographic film. This replacement was distributed through the late 19
century and results the technology of today’s film camera. Nowadays, digital cam-
era is one of the most popular devices for photo shooting. The difference between
digital camera and film camera is their memory media. As memory medium, film
camera uses photographic film while digital camera does memory devices such as
memory card by converting the received light to digital data format via an elec-
tronic image sensor.

Digital camera takes two steps to provide the observation of the photograph
as shown in Figll.3 while Niépce’s camera directly generated a photo of the
scene via one process. First process is image acquisition process. The process
receives lights from the scene and then converts the received light as the latent
image. For this process, film camera uses photographic film or plate while digital
camera uses imaging sensexy, a Charge-Coupled Device (CCD) image sensor
or Complementary Metal-Oxide-Semiconductor (CMOS) sensor. Next is image
display process. This step transforms the latent image into a visible image. For



@ >ﬁ Acquisition process
Target scene Ql.l @

@ Digital image
/7 -
ll Display process

Display device

Image on a display

Figure 1.3: Imaging processes of digital camera: Image acquisition process con-
verts the energy of lights coming from the target scene to measurable value. Image
display process shows the digital image using a display device.

images saved on the film, we follow photographic processing, which is the chemi-
cal ways to produce a negative or positive image. On the other hand, digital image
has various ways of displaying the photo. One may use printers to make the photo
permanent while another may use display devices to see the photo temporarily.
Typical display device is computer monitors including Cathode Ray Tubes (CRT)
display and Liquid Crystal Display (LCD). Thanks to the recent development of
display technologies, bigger and brighter display is available with cheaper cost.
In contrast to such monitors, projectors only have light emitting devices. To form
an image, projectors require display surface, onto which they emit the light.

1.1 State-of-the-art imaging technologies

Where can the imaging technologies do so far? Here, | briefly overview the
state-of-the-art acquisition and display technologies independently.

State-of-the-art acquisition technology

As | mentioned in the previous section, camera has evolutionary been devel-
oped. Ancient cameras like &lice’s camera realized automatic photo shooting
resulting permanent photo even though single shot takes longer than our senses.



Due to the direct imaging style, this type of cameras lacks reproducibility. Since

film cameras split the imaging process into two sub processes, this type of cam-
eras enabled reproduction of taken photo. With the development of high-speed
Internet and high-power computer, digital cameras provided ease of reproducibil-
ity and editability.

Contrast to the change of form, its basic model has still been same as the
camera obscura, which was originally mentioned more than two thousands year
ago. What makes the revolution of image acquisition? | think computational
photography has great potential for this question. The concept of computational
photography is to redefine/reconstruct the acquisition process by considering the
post-processing scheme as a part of acquisition process so that we can optimize the
optics and processing scheme for the purpose. One famous example is a plenoptic
camera for light field acquisitiorNg et all, 2005. Light field describes light in
every direction of the scene. Once we obtain the light field of a scene, it allows
us to: view the scene from another point of view; refocus the image; and change
perspective of the image. In conventional camera, a pixel receives the light pass-
ing through the lens but not consider the direction. To obtain light field with a
conventional camera, we take photos from multiple positiergs, by single mov-
ing cameralllevoy and Hanrahgi99€ or multiple fixed camerad/ilburn et al,

2004. Ng et al. enabled a single fixed camera to capture a light field by integrat-
ing microlens array in the optical desigid et al, 2005. For further information
including theory and applications, readers can refer to the articles on this topic
[Cohen and SzeliskP006 [Debevef2006 [Levoy, (2006 [Nayai, 2004.

State-of-the-art display technology

Different from acquisition technologies, display technologies are heading in
different directions.

One direction considers display 3D information similar to the light field acqui-
sition. One way is to show several images on a 2D display to the viewer so as to
perceive the images as 3D. Very typical one is stereoscopic display. The display
separately shows two offset images to the left and right eye of the viewer.The off-
setis combined in the brain and then be perceived as they have 3D depth. Another



type use a lenticular lens that emits different images to different anglaserts
2003. With the lens, a 2D display can show the different images to both eyes. The
limitation of this type of displays is that the position of the viewer is restricted.

Another way uses volumetric displays rather than 2D displays. To form 3D
image on volumetric object, we generally use projector(s). By changing the pro-
jecting image, we can change the appearance of the volumetric object so that the
lit object looks like textured object. Paul Debevec and his colleague proposed an
interactive 3D displaylJones et &12007. The display consists of a high-speed
video projector, a spinning mirror covered by a holographic diffuser, and FPGA
circuitry to decode specially rendered DVI video signals. Since the spinning mir-
ror reflects the projected 3D object to all angles, multiple viewers around the dis-
play can simultaneously see the 3D object. They further enhanced the display to
work it on-line such as 3D video teleconferenderies et g/2009. The system
captures the user’s 3D face data by real-time 3D scanning technique. Then, the
captured data is transmitted to the remote location and showed the 3D face data
using the 3D display.

As mentioned by Bimber and Raskar in their baBkohber and RaskaP004,
projectors allow daily objects, not only a spinning mirror, to be 3D display. We can
control the appearance of the display object by somehow adjusting the projection
on the display shape Famous example iShader Lampsriginally proposed by
Raskar et al/Raskar et a)l2007]. Figure[l.4shows Shader Lamps series. Orig-
inal Shader Lamps uses multiple projectors to render a virtual texture onto the
physical object of the same shafi®askar et aJl200]]. As shown in Fig[1.4 (a),
the appearance of the non-textured wooden model becomes painted Taj Mahal.
Dynamic Shader Lamps is an extension of the original Shader Lamps to movable
objects Bandyopadhyay et @al200]]. The Dynamic Shader Lamps allows the
display object movable and provides a 3D painting interface as interaction with
the display as shown in Fif.4 (b). Shader Lamps Avatars focuses on person-
person communicatiorfiL[ncoln et al, 201]]. Both the dynamic motion and the
appearance of a real person is captured and projected onto a human-shaped dis-
play surface as shown in Fif.4 (c). For more information about 3D display
with projectors including Shader Lamps, readers can refer to a book on the topic
[Bimber and Raskap004.



(a) Shader Lamps (b) Dynamic Shader Lamps

(c) Shader Lamps Avatars

Figure 1.4: Shader Lamps series: (a) Shader Lamps: (Left) Original appearance
of wooden Taj Mahal model. (Right) The same model enhanced by adjusted pro-
jection. Courtesy oflRaskar et a].200]]. (b) Dynamic Shader Lamps: A user

is painting on movable object. Courtesy @gndyopadhyay et al200]]. (c)
Shader Lamps Avatars: Implementation and diagram of the system. (Left) A user
captured by a camera at the capture site. (Middle) An avatar projected by a pro-
jector at the display site. (Right) The un-illuminated avator. Used courtesy of
Department of Computer Science, UNC Chapel Hill frdomgoln et al, [2017)].

Another direction of display technologies uses natural material as display
object as shown in Figl.LB The infernoptix Digital Pyrotechnic Matrix uses
computer-controlled bursts of fire as a displ&}AD Desigr]. Barunm et al. use
water drops as displaBarnum et al.2009. The display is created by a projec-
tor that illuminates water drops falling from a drop generator. Detecting the 3D
position of the drop based on the computer vision technique, the display projects
an image to the drops. Display shape varies according to the set up of the drop
generator. Heiner et al. use air bubbles rising up tubes of wHiEnér et al.

1999. Accurate control of air release enables scrolling up display of image. This
type of displays is well-reviewed by MoerBlpere 200§.
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(a) Fire display (b) Water drops display (c) Air bubble display

Figure 1.5: (a) Fire display showing a character ‘N’. Courtesy §AO Desigr.

(b) Curved water drop display showing the 3D model of a globe. Courtesy of
[Barnum et al.2009. (c) Air bubble display showing text ‘UIST’. Courtesy of
[Heiner et al.[1999.

1.2 For the next generation imaging technology

At this point, let us take a moment to imagine the configuration of imaging
technology in the future. There exist several issues to be considered.

| think cheaper and more readily available device is preferred by consumers
and such devices also provide the opportunity to researchers more. Famous ex-
ample is iPhoneApple Inc] and Kinect [Xbox.conj. Before iPhone (or other
current smartphone), Augmented Reality (AR) researches were mainly done with
desktop/laptop PC and camera(s) connected to the PC. This set up limits where
the application runs. Since smartphone consists of CPU, camera, and display, it
is regarded as a mobile AR set up. As a result, the concept and potential benefit
of AR have rapidly become public knowledge. Same as iPhone, Kinect opens
the door to Human Computer Interaction (HCI) researchers. One way of HCI re-
searches uses human actiergy, gesture and pose, as the interface. This way is
very straightforward and intuitive strategy but requires human action recognition
technique. With its SDK provided by Microsoft, human pose can be recognized in
real time so that we can focus on interaction design more. These situations insist
that cheaper mass product device is preferred for the configuration of next imaging
process. Readers can check how much the devices mentioned here get attention
in the world by searching keywords ‘iPhone AR’ and ‘Kinect’ on Internet.

Considering the cost and portability, camera and projector is a reasonable con-
figuration candidate. State-of-the-art display technologies indicate that we are
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going to use projector in dynamic scene. Currently, projected content is simple
image and computer graphics objects. In a sense, such content is static, somehow
generated beforehand. Let me show some related works of static contents projec-
tion. Shader Lamp&Haskar et aJl200]] mentioned above is an example of static
contents projection in static scene. The system projects pre-rendered textured 3D
model to fixed wooden model, the position of which is known. Yotsukura et al.
proposed HyperMaskYbtsukura et a]'2002] that is an example of static contents
projection in dynamic scene. HyperMask projects an animated face onto a phys-
ical mask worn by a moving actor. Using infrared LED embedded on the mask,
the system adjusts the projection onto the moving display, the actor's mask. Au-
det et al. proposed a method for static content projection in dynamic s&adef]

et al, 201Q. Their method is based on gradient method based object tracking
algorithm Baker and Matthew®004. Tracking the textured planar screen and,
their method can adjust the projection to the moving screen in real time. Short
conclusion of the literature is that

e projected contents are static such as pre-taken photo/movie and pre-rendered
3D model, and

e display object is moving plane or fixed volumetric objects.

What kind of configuration we should develop in the future? My tentative an-
swer is dynamic contents projection in dynamic sceng, Shader Lamps Avatars
[Lincoln et al, 201]]. Figure[l.8illustrates the concept. We capture a scene of
interest, moving people. Virtual information, hair, is overlaid on the captured
contents and then projected on the volumetric and deformable objects, probably
mannequin like object, in real time. The point of this dynamic contents projection
in dynamic scene is that all materials in the scene can be dynamic. Once the guy
moves, overlaid hair should be synchronized to the motion to fit on his head. Fur-
thermore, display object also should be synchronized to his motion. This is my
answer to the question.

To realize this dynamic projection in dynamic scene, we have to tackle several
difficulties and one of them is image degradatioRigure[l.4 shows a projector
based 3D human face display | have develofi@ggmada and Sait@00€¢ and
its fatal problem. In the system, a user holds a white mannequin and changes
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Figure 1.6:Configuration of imaging process in the future: Concept of dynamic
projection in dynamic scene. Target object, moving people, is captured by a cam-
era. Virtual information, hair, is overlaid on the captured contents and then a
projector projects the contents on the volumetric and deformable surface.

its position and orientation. A camera tracks the mannequin and then a projector
fits projected 3D face model by using tracking information. Since projector has
narrow depth-of-field, the appearance on the display object may be blurred by
projector defocus as shown in Fi@.4 (c). Such degradation is occurred during
imaging processes. Addition to projector defocus, degradation occurred during
the image acquisition processg, motion blur, may occur if the projected texture
is captured/rendered in real time. Even with expensive devices and experienced
users, satisfying visualization is difficult and challenging task. Fifu8eshows
examples of image degradation. When camera/target object moves during the
exposure time, obtained photograph is blurred by the motion. On an unoptimized
display, displayed image forms on the display may contain defocus effect due
to projector’s narrow depth-of-field. Comparing with FIp3 the top figure is
horizontally blurred and the bottom figure is defocus blurred by the projection.

To prevent such degradation, manufactures integrate solutions directly into
devices. Anti-motion blur technologies use hardware support for the purpose.
Image StabilizefCanon 1994, Vibration ReductionNikon, 200, and Anti-
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(b) In-focus projection

(@) Running system (c) Defocus projection

Figure 1.7:Projector based 3D human face displ@ypmada and Sait@00€
and its fatal problem. (a) Figures of running system. (b) In-focus projection. (c)
Defocus projection.

ShakgKonicaMinoltg200j detect camera motion by motion sensors in the cam-
era,e.g, gyro sensor, and shift len€anon 1995 Nikon, 200(] or CCD array
[KonicaMinolta [2003. Shifting lens or CCD arrays, geometric relation between
the scene and the CCD array is stabilized, thus blur effect of camera motion can be
cancelled on the observed image. Projector manufactures also provide image ad-

justment functions such d&eystone correctiofiNEC Display Solutions Europe
@ andWall color correction[NEC Display Solutions Europ®]. Keystone func-

tion fits projection onto slanted surface that is not perpendicular to the projector.
There are two types of keystone functions, optical or digital. Optical keystone
adjusts the image by physically modifying the light-path through the lens sys-
tem while digital one does the image by shrinking the image before projection.
Wall color correction function enables projection onto colored surface such as
blackboard. When a user specifies the color of wall, the projector modifies the
projecting color based on the pre-defined color lookup table.

We, computer vision researchers, have also provided solutions. Image restora-
tion means recovering the degradation-free image given degraded image(s). For
example, denoising targets noisy image damaged during acquisition process and
deblurring restores blurred image degraded by motion during its exposure time.
Stretching the notion of image restoration, projector image adjustment onto un-
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Figure 1.8: Image degradation during the imaging processes. Motion blur during
the acquisition process and defocus blur during the display process.

optimized surface can be regarded as one of restoration works. When we use a
projector under unoptimized situatiang, off-axis projection and projection onto
volumetric surface, normal projection results degraded display on the surface. To
adjust the projection, we have to adjust the projection somehow. This adjustment
can be considered as restoration operation.

For upcoming imaging technologies era, how can the computer vision tech-
nique contribute to enjoy dynamic projection in dynamic scene? From my per-
spective, image restoration technique is necessary. But how to do that? Two so-
lutions are considered. First solution is for a simpler system just display the raw
dynamic contents, no virtual contents. In such applications, what we should take
care is final observation, intermediate observateg, the captured photo, is not
important. Thus, a single restoration operation performed on the display process
side is enough. On the other hand, the other solution for a system adding virtual
contents requires several restoration operations. Since the system add the virtual
information to the captured dynamic contents, the captured contents should be
stabilized. Therefore, we have to take care of intermediate observation not only
final one. From a resolvability point of view, the latter type is easier than the for-
mer one. Restoration of single process should solve several types of degradations
merged on the final observation within a step while one of several processes does
it step by step. Even though we have to separate the data flow somehow, sequential
solution is generally easier than batch solution.

This thesis assumes that blur occurred during imaging processes is separable
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(separating process is not discussed here) so that we can separately address image
restoration technique upcoming imaging technologies era. Specifically, | focus on
blur estimation of the following topics:

e Motion deblurring : removing motion blur effect occurred during acquisi-
tion process, and

¢ In-focus projection: removing projector defocus blur effect occurred dur-
ing display process.

Figure[l.9 illustrates these two issues. Even though both topics seem to be in
different research categories, they share the same purpose that removes the blur
effect from observation. Motion deblurring removes the motion blur effect after
the image is blurred while in-focus projection enhances the image component to
cancel the defocus blur effect before the image is blurred. This means that both
they are blur correction researches but the type of correction differs. Motion de-
blurring is a post blur correction while in-focus projection is a pre blur correction.

1.3 Summary of original contributions

This section outlines major contributions of this thesis. The proposed method
should consider the conditions of upcoming imaging technologiesdynamic
projection in dynamic scene. To reduce the hardware constraint, simple set up
is preferred. Thus, | put constraints on target blur and estimate blur information
from a single photo shooting based on traditional signal processing ways. Here,
the contributions are described for each of topics.

Cepstral Analysis based Non-Linear Motion PSF Estimation

Motion deblurring is one of the long existing problems in computer vision re-
search field. For motion deblurring, there are two research issues to be solved.
One is to estimate Point Spread Function (PSF) that represents degradation pro-
cess,e.g, motion path in the case. The other is to recover the unknown latent
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Motion deblurring

In-focus projection

Figure 1.9: Two blur correction addressed in this thesis. (Top) Deblurring for
motion blur occurred during acquisition process. (Bottom) In-focus projection for
projector defocus blur occurred during display process.

image, namely removing the blur effect from the blur image. In this thesis, | focus
on the former issue, namely PSF estimation of motion deblurring.

There exist several types of PSF estimation approaches, detail of the literature
is mentioned in CH2L Typically, the cepstral approach is used only for parametric
PSFsg.g, linear motion. For more complicated P8k, non-parametric motion,
state-of-the-art works follow natural image statistics and estimate such PSF based
on regularized minimization algorithms. The main contribution of this work is that
| extend the cepstral analysis based PSF estimation to handle non-linear motion
PSF. To introduce the cepstral approach for non-linear motion PSF estimation, |
will analyze the cepstral behavior of non-linear motion. Then, | propose a non-
linear motion PSF estimation method based on the analyzed cepstral behavior.
The proposed method is validated with both synthesized images and real world
images. The experimental results show that cepstral analysis based method can
work for non-linear motion PSF estimation.
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In-Focus Projection from a Single Projector-Camera Image Pair

Projector is well-used display devices with strong limitations. Since it was
released to the world, we have wondered flexible usage of the device. Suppose
that we can fully control the projection, the device can contribute to wide range
of research fields and also our daily life as mentioned in[&dc Projector image
adjustment is to adjust a projector image onto unoptimized suréagepff-axis
projection and projection onto volumetric surface. There exist three types of ad-
justment works; geometric adjustment, color adjustment, and focal adjustment.
In this thesis, | focus on focal adjustment, so called in-focus projection. Similar
to motion deblurring, there are also two research issues to be solved. One is to
estimate PSF.g, amount of projector defocus, here. The other is how to remove
the defocus effect occurring after projection. In this thesis, | tackle both issues but
mainly focus on PSF estimation.

Not only in-focus projection, almost the existing projector image adjustment
works use fiducial patterne,g, chess board like pattern, to estimate the informa-
tion of image degradation. This is straightforward strategy for projector-camera
systems that we project such fiducial patterns for estimation. In fact, there exist
few works that passively estimate the information of degradation. However, all the
existing in-focus projection works use fiducial patterns for estimation. To mount
focal adjustment framework on upcoming imaging technologies, we require pas-
sive blur estimation method. The main contribution of this work is that | introduce
PSF estimation strategy into this field so that the proposed method can passively
estimate the information of projector defocus without fiducial patterns projection.
The experimental results show that the proposed method achieves in-focus pro-
jection without using fiducial patterns.

1.4 Organization of the thesis

This thesis is divided into five chapters. This chapter stated global background
of this thesis and described the main contribution of the latter parts of the thesis.
In Ch.[2, the related works of blur correction are reviewed to clarify the position
of this thesis. Chaptd8 describes motion deblurring work and hpresents
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in-focus projection work respectively. Finally, B concludes this thesis with a
summary of the contributions and several directions of future works.
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Chapter 2
Related Works on Blur Correction

This chapter reviews the previous and related works. First of all[S#and
Secl2.2 clarify the technical problems of blur correction. Next, the previous and
related works are reviewed. For ease of learning, image restoration algorithms are
first reviewed in Se@.4and then Se@.8reviews blur estimation algorithms.

2.1 Problem statement

A blurred imagey is described by a convolution of a latent imagand a blur
kernelk plus image noise as

9(x) = f(x) ® k(x) + n(x), (2.1)

wherex = (x,y)T denotes a pixel position. Since blur kernel represents how
the blur process spreads an ideal single point, blur kdrigetalled Point Spread
Function (PSF).

The goal of image deblurring, deconvolution in other word, is to recover the
unknown latent imageg. The difficulty of image deblurring is its ill-posedness.
Figure2. 1shows an example of the ill-posedness. The blurred image is generated
by middle row of(f, k) pair, woman face degraded by zigzag motion. Top and
bottom are wrong pairs. Top row pair is no-blur case and bottom one mistakes
blur as horizontal motion. Even though our perception can easily judge which
pair is the correct, all these pairs computationally well-explain the blurred image.
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Blurred image

Latent image Blur

Figure 2.1: Example of lll-posedness of image deblurring. Middle row( ffk)
pair is ground truth. Top and bottom pairs are wrong but theoretically well-
explains the blurred image

As the figure shows, there is no unique answer. For such problems, we require
additional queue(s) to resolve the ambiguity.

2.2 Additional queues for disambiguation

What kind of information can be the helpful for deconvolution? The condi-
tions of target scene is considered as constraigtsblur type and available data.

2.2.1 Blurtype

Blur type of PSF can be a constraint of deconvolution. There exist various
types of PSF as shown in Fig.2 When target PSF can be described by a
parametric form, it drastically decreases the ambiguity of potential PSF. Popu-
lar parametric models are a linear motion (LM) and defocus blur. An LM blur is
parameterized by two parameters, motion direction and motion length, as

k- (x) = {

. L Y
<= LA
if ||x|| < 5 andx tan 6 | 2.2)

©h|,_

elsewhere
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(a) Linear motion blur (b) Circle blur c) Gaussian blur  (d) Non-parametric
of small aperture of W|de aperture

Figure 2.2: Various types of PSF. (a) linear motion PSF. (b) Circular disk PSF.
(c) 2D Gaussian PSF. (d) non-parametric motion PSF.

wheref and L. denote motion direction and length respectively. Defocus blur is
parameterized as a circular disk function or an isotropic Gaussian. A circular disk
PSF represents defocus blur of smaller aperture 2gscamera defocus, as

1
— if <
— i X <7

kcircle(x) — (2_3)

0 elsewhere

wherer denotes the radius of the circle. On the other hand, an isotropic Gaussian
PSF represents defocus blur of larger aperture kgs,projector defocus, as

2o 202

) 1 2 2
kGausserX; o) = exp (_ZL’ +y > ’ (2.4)

wherec denotes standard deviation of the Gaussian. When more complex motion
occurs as shown in the right figure of Fig2, we give up the style of representing
such motion with parametric form. Such motion is called non-parametric PSF.

Another classification of blur type is based on its uniformity. Classical ap-
proaches assume blur uniform on an image while some of recent works try to es-
timate non-uniform blur on an image. Motion blur parallel to its image plane and
defocus blur of same depth scene are described by a uniform PSF. Non-uniform
case is camera rotation, differently moving objects and defocus blur of different
depth scene.
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2.2.2 Available data

Available data of scene can also be a constraint of deconvolution. Additional
image(s) of same target scene helps disambiguation. When we take two photos
of a scene and they are differently blurred, how should we get the latent image?
Rav-Acha and Peleg mention that using two differently blurred images are better
than a single blurred imag&pav-Acha and Pel¢@005. When the camera expo-
sure time varies, different types of degraded images are available. Yuan et al. use
one blurred image with longer exposure time and one noisy image with shorter
exposure timeYuan et al,2007. The concept is to utilize color of the blurred
image and sharpness of the noisy image. Combining information extracted from
both blurred and noisy images, they recover the latent image rather than a recov-
ered image from either image. An image set, each image of which is captured
with different focal plane, of same target scene is useful to know defocus infor-
mation. Since defocus blur is proportional to the distance between the object and
camera’s depth-of-field, depth information can be computed from such image set.
By comparing such images, we can classify in-focus and defocus regions of im-
ages. Once the in-focus region of each image is extracted, all-in-focus image can
be generated by merging the regioAsitunes et al.2004.

If additional devices are available, what kind of devices can help deconvo-
lution? PSF estimation of camera motion blur is equivalent to camera motion
estimation. Thus, motion sensor is useful for camera motion blur estimation.
Nikon provides lens containing motion sensors in its badikén, 200q while
Joshi et al. put motion sensors inside camera bddghi et al.201(]. Contrast
to motion blur, depth/range sensors are useful for defocus blur estimation. The
amount of defocus is proportional to the distance between object and the depth-
of-field of the device. Therefore, NEC Display Solutions, Ltd. puts depth sensor
inside projector bodyNEC Display Solutions, Ltd.

2.3 Deconvolution

Roughly speaking, deconvolution has two types, non-blind and blind decon-
volution. Classical approaches assume that we somehow know the PSF, thus the
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task is to estimat¢ giveng andk as
f = Non-blind deconvolutioty, k). (2.5)

This type of deconvolution is called non-blind deconvolution. It is important to
note that even non-blind deconvolution is ill-posed problem. On the other hand,
blind deconvolution estimateSandk giveng as

(f, k:) — Blind deconvolutiofg). (2.6)

Note that correct information df is necessary even though the goal is to estimate
f. In the following, non-blind deconvolution works are first reviewed and then
blind ones are reviewed.

2.4 Non-blind deconvolution

Non-blind deconvolution estimates a latent imafygiven a blurred image
g with a known PSK: and possibly known noise. Even thoughk is known,
non-blind deconvolution is still ill-posed problem. Based on methods’ strategies,
previous works are categorized into two types of approaches, analytical solutions
and numerical solutions.

2.4.1 Analytical solutions

Analytical solutions try to perform the inverse operation of convolution. Ba-
sically, they are based on the convolution theorem that the Fourier transform of a
convolution is the pointwise multiplication of the Fourier transforms as

F(f®k)=F(f)F(k). (2.7)

The simplest deconvolution method is inverse filtering in the frequency do-
main. Neglecting the noise term in EQ.J), the latent image can be recovered by
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inverse filtering in the frequency domain as

wherel’ denotes the Fourier transform of the subscriptand (u,v)* denotes a
spectrum frequency. If the images perfectly noise free and the spectrum of the
kernel 7, has no zero values at any frequencies, the inverse filtering should derive
the perfect latent image.

Unfortunately, everyday photography usually violates the above assumption.
They may contain some noise ahfyl has negligible values at some frequencies.
One straight forward solution is introducing denoising algorithm. Chesneau et al.
combine image denoising algorithm with the inverse filteri@in¢sneau et al.
2009. They first apply denoising algorithm to blurred image and then apply the
inverse filtering to the denoised image. Therefore, the restored image should have
less noise artifacts than the inverse filtered image.

Wiener filtering considers the deconvolved noise of frequencies that have poor
signal-to-noise ratioWienerf; [1949. The Wiener filter is formulated in the fre-
guency domain as

Fy(u)

Foinelt®) = P+ ) /() @9)

whereF™ is the complex conjugate @f, andF'; and £, denote the power spectra

of the ideal imagef and the noise:, respectively. In the case of no noise, the
Wiener filter becomes simple inverse filtering. Wiener filtering has been used for
a lot of applications, however it's still have limitations. Wiener filtering assumes
known signal-to-noise ratio for every frequency. Even though we assume uniform
signal-to-noise ratio, it is typically unknown.

Another solution is to make the problem well-posed. Raskar et al. develop a
coded-exposure camera that flutter the camera’s shutter open and close during the
exposure time with a binary pseudo-random sequelResKar et aJ/200¢. Due
to its randomness, coded-exposure camera prevents zero and negligible values and
flattens its spectrum. Thus, the inverse filtering (E48)) works on the blurred
images.
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2.4.2 Numerical solutions

Contrast to the analytical solutions, numerical solutions estimate most Jikely
by numerical computation. Given k, and some prior knowledge gf recovered
image is obtained as

~

f= arg}{nin Qg — f @ k) + AR(f)], (2.10)

where(@ denotes the data fidelity term that measures the distance between the ob-
servationg and the estimat¢, R denotes the regularization term that is derived
from our prior knowledge orf, and )\ is a parameter that balances the trade-off
between the fidelity term and the regularization term. In the literature, there exist
two types of methods, non-regularized minimization and regularized minimiza-
tion.

2.4.3 Non-regularized minimization

Non-regularized minimization methods consider only the fidelity term off Ed)
as

f = argmin Qg — [ ® k). (2.11)
f
The most well-known and well-used solution is Richardson-Lucy (RL) algorithm
[Lucy, 1974 Richardson1972 that assumes Poisson distribution on image noise
n. Based on the Bayes’ theorem, RL algorithm iteratively finds the latent image
fas

fin() = fix) (k(x) . i’j)) , (2.12)

wheresx denotes the correlation operator apfk) = f:(x) ® k(x). Considering
thatg; is the prediction of a blurred image according to the current estifatiee

fraction 2 can be regarded as the residual error between the real blurred image

and the %tredicted blurred image.

As previously mentioned, RL algorithm assumes Poisson noise, means that the
algorithm is suitable for very low light conditions such as astronomical images and
microscopy images. However, noise in everyday photograph is usually modeled
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by Gaussian noise. As Tai et al. mention in their padei et al, [201]], RL
algorithm considering Gaussian noise is formulated as

Jr(x) = fi(x) + (9(x) = ge(x)) * k(x). (2.13)

The derivation of RL algorithm for both Poisson noise and Gaussian noise are
provided in Appx[Al

The RL algorithm assumes that residyat f ® k follows a parametric dis-
tribution such as Poisson distribution. However, such assumption is sensitive to
outliers, or deviations, from the assumed model. Angelino et al. relax the para-
metric assumption on noise statistical mod®hdelino et al,[200§. Instead of
parametric model, they use Parzen window estimation for describing the distribu-
tion of the residual. Their algorithm minimizes differential entropy of the residual
reducing the dispersion of the residual.

2.4.4 Regularized minimization

Even though RL algorithm has been well-known and well-used, it has very
important drawback that iteration amplifies the noise. This sensitivity to the noise
can be reduced by introducing regularization term. Regularized minimization
methods consider both the data fidelity term and the regularization term same
as Eq.[2.10.

Total Variation (TV) norm assumes smooth intensity change in the latent im-
age. TV regularization term is formulated as

Rrv(f) =Y ) VIfx) = Fx)P (2.14)

wherex’ denotes nearest neighborssofMinimization of TV regularization term
prefersf has locally uniform color. Due to the form of regularization, it is im-
possible to derive analytical expression. Thus, one may use Bayesian inference
[Ayasso and Mohammad-Djafal009 Babacan et &l2007% [201(, e.g, varia-

tional Bayes and Markov Chain Monte Carlo (MCMC), while another may use
Iterative Re-weighted Least Squares (IRLUBYfiriguez and Wohlber@009.
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Recent works rely on the statistical property of natural images. Very famous
and widely used property is that the distribution of the gradients of natural images
is zero-peaked and heavy-tailed. In other words, the gradients of natural images
can be represented by sparse vectors in appropriate domains. Thus, the sparsity
regularization term is formulated as

Rsparsé f) = > _ 10" F(x)]|*, (2.15)

whered* returns derivatives of, e.g, 1st and 2nd order derivatives, afjd|”
denotes L, norm. Minimization of sparsity regularization term dependshoms

Levin et al. mentionllLevin et al, 2007. Whena = 2, the objective function

Eq. 2.10 become a convex function so that we can derive a closed form solution
for minimization. Thisae = 2 case is called Gaussian prior due to its form. The
advantage of Gaussian prior is that we can analytically solve the problem. How-
ever, as some papers mention, the distribution of the gradient of natural images
is more sharp than the sharpnessvof 2. Thus, hyper-Laplacian prioty < 1,

is used|Hou et al, 2010 Krishnan and Fergy2009 [Levin et al, 2007. Even
though hyper-Laplacian prior represents the statistical property more than Gaus-
sian prior, the object function is no longer convex, thus cannot be optimized in
closed form. For minimization, IRLS is usually usddeVin et al, 2007. Kr-
ishnan and Fergus decompose the minimization problem into two sub problems
to fasten the computatiofiKfishnan and Fergu2009. Using either lookup ta-

bles or analytical formulae, their approach provides comparable quality to IRLS
in less than 3 seconds for a one mega pixel image. Hou et al. state the distribu-
tion of the gradient varies according to the order of derivaiived et al, 201(Q.

Using anisotropic derivatives as derivative functidntheir algorithm can reduce

the ringing artifaces caused by image noise. Figifcompares Richardson-
Lucy algorithm (Eq.[2.12), least-squares deconvolution with a Gaussian prior
(Eq. .15, a = 1), and one with a hyper-Laplacian prior (ER.15, o < 1).
Richardson-Lucy algorithm is damaged by ringing artifacts. Gaussian prior has
less ringing artifacts but is smoothed. Hyper-Laplacian prior recovers sharper
edges than others and has less noise and ringing artifacts. For further description
on natural image statistics, please refer to Afigix.
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(b) Richardson-Lucy

Y[ 3

(c¢) Gaussian prior (d) Sparsity prior

Figure 2.3:Comparison of non-blind deconvolution algorithms. (a) Captured im-
age. (b) Richardson-Lucy algorithm is damaged by ringing artifacts. (c) Gaussian
prior is smoothed but less damaged by ringing artifacts. (d) Hyper-Laplacian prior
recovers sharper edges and has less noise and ringing artifacts. Courtesyrof [

et al, 2007

Addition to the sparsity prior, Joshi et al. use two-color regularization term
[Joshi et al.l2009. The regularization term focus on the statistics that images
can locally be described as a mixture of as few as two colors. The two-color
model represents a pixel intensity as a linear combination of two colors. Thus, the
two-color regularization term is formulated as

Ruo(f) =D 1f(x) = (@P + (1 = )S)P, (2.16)

whereP andS are primary and secondary colors amds the linear mixing pa-
rameter. Since local color statistics reduces over-smoothing around step edges and
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high-frequency texture, two-color regularization terms favors sharp edges while
the sparsity prior does smooth edges.

Wang et al. combine existing work§han et al.2008 Weiss and Freeman
2007 for both fidelity term and regularization terriMang et al.2009. Con-
trast to the fidelity term of other methods, Shan et al. use several orders of image
derivatives as fidelity ternf§han et all200§. As Simon proves, higher order par-
tial derivatives of image noise follow Gaussian distributions with different stan-
dard deviations if image noise itself followSimon 2004. As regularization
term, Wang et al. consider two image statistics, one represents global property
of images and the other does local propeWahg et al.l2009. For representing
global property of natural images, they adopt Gaussian Scale Mixture Field of Ex-
perts (GSM FOE) model proposed by Weiss and Freeiss and Freeman
2007. GSM FOE model characters the image using a set of high dimensional
linear filters to grasp the long range pixel correlations. Thus, the regularization
term smooths out the image noise. As local property of natural images, they con-
strain smoothness of local areas. The regularization term enforces the blurred
image gradient to be similar to the latent image gradient in the smooth area. For
minimization of these terms, they use IRLS algorithm.

2.5 Blind deconvolution

Blind deconvolution estimates a latent imafjand an unknown PSE given
a blurred image. The methods are categorized into two types based on the types
of target PSFs, one for parametric PSFs and the other for non-parametric PSFs.
Readers may refelKundur and Hatzinak9&l99€¢ and [Levin et al, 2009 for
further discussion.

2.5.1 Parametric PSF estimation

Classical approaches put a constraint on PSFs that target PSF has parametric
form as mentioned in SeB.1 The point of the constraint is that the assumption
severely reduces the potential PSFs. For example, linear motion PSF estimation
is equivalent to blur direction and length, L) estimation and Gaussian defocus
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PSF estimation is equivalent toestimation. Thus, PSF estimation problem is
redefined as PSF parameters estimation problem.

2.5.2 Spectral/cepstral patterns identification

Itis well-known that parametric PSFs have clearer features in spectrum/cepstrum
domain rather than ones in image domain. One of the simplest approaches for
estimating PSF parameters is to find such features. However, the features in spec-
tral/cepstral domain are sensitive to presence of noise. Differences between the
related works are how they identify the features against the noise.

The spectra of parametric PSFs have periodic patterns. The spectrum of LM is
a 2D sinc function that has periodic lines of spectral zero. These lines are orthog-
onal to the motion directiofl and the period is inversely proportional to motion
length L. The spectrum of defocus blur is the Bessel function of the first degree
that has periodic circles of spectral zero. The radii of the circles are inversely
proportional to defocus radius Thus, Spectral periodic patterns of zeros are the
features of parametric PSFs and are corresponding to the blur parameters.

Such spectral zeros are corresponding to negative spikes in the cepstrum do-
main. The cepstrum of an image is the spectrum of log of the power spectrum of
the image as

C()=F"(log|F ()], (2.17)

whereC denotes the cepstrum transform. The cepstrum of an LM has periodic
negative spikes along the motion directiérwith period L. The cepstrum of
defocus blur has periodic circles of negative spikes. The radii of the circles are
proportional to doubled defocus raditilsSame as spectral zero patterns, cepstral
periodic patterns of negative spikes are the features of parametric PSFs and are
corresponding to the blur parameters.

Figurel2.4 shows PSFs in each domain. Top line shows LM PSF and bottom
line shows defocus blur PSF. From left to right, PSF in image, spectrum, and
cepstrum domain are shown. An LM PSF has periodic black lines in spectrum
domain, corresponding to spectral zeros, and periodic negative spikes in cepstrum
domain. Defocus PSF has periodic black circles in spectrum domain and periodic
negative circles in cepstrum domain. These spectral zeros and cepstral negative
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Figure 2.4:PSFs in each domain. Top line shows LM PSF and bottom line shows
defocus blur PSF. From left to right, PSF in image, spectrum, and cepstrum do-
main are shown.

spikes are clear features of parametric PSFs.

Neglecting the noise term of imaging equation (E23J)), the spectrum of
a blurred image is rewritten as E@.7). The equation indicates that i, has
zero value at frequenay, £, should also have zero value at the same frequency
u. Therefore, identifying periodic zeros @f, is equivalent to PSF parameters
estimation.

Regarding image deconvolution problem, the important cepstral property is
that convolution of two images is corresponding to the sum of their cepstra as

Cy =C(g)
= F~' (log|F(g)|)
=F ' (log|F (f@k)])
=Cy + Cy, (2.18)

whereC' denotes the cepstrum of the subscript. Note tHats relatively big-

ger thanC; at lower quefrencies. Since the distribution of spectrum of PSF is
relatively smaller than that of a latent image, converges at lower quefrencies
while C is distributed from lower quefrencies to higher quefrencies. Thus, PSF
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Figure 2.5:Comparison of cepstrum components of a motion blurred image. Blue,
green, and red curves represéht Cr, andC), component along the motion di-
rection.

component’;, is dominant inC, at lower quefrencies. As an example of this be-
havior, Fig.2.3 compares the cepstrum components of a motion blurred image.
Blue, green, and red curves plot cepstrum of the blurred indggéatent image
component'y, and PSF componeqt;, extracted along the motion direction re-
spectively. Comparison of the plots show tligtis very closer toC, while Cy
has smaller values. Hence, we can say thais dominant in the cepstrum of
a blurred image at lower quefrencies. Moreover, periodic negative spik€s of
is clear enough to identify. Therefore, identifying the negative spikeS,af
approximately equivalent to parametric PSFs estimation problem.

Simplest approaches simultaneously estim@td.) by just identifying the
spectral zero values or cepstral negative spik&snj, (1975. Such approaches
are mathematically clear but are often frustrated due to noise effect and the over-
lying structure of unknown latent image component. They require blurred images
to have high Signal-to-Noise ratio enough to recognize the patterns. Thus, the
methods work only when the noise effect is enough small to recognize such pat-
terns. Tabl€.1 roughly classifies the related works according to how they treat
such difficulties.
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Table 2.1:Classification of the spectral/cepstral patterns identification works ac-
cording to their key ideas.

Estimation| Key idea | Papers
Raw cepstrum [Rom 197§
Take derivative [Gennery (1973 Ji_and Liy
0, L) 2009
Spatial invariance of PS c[Cannop (1976 [Kang et al
2004
Natural image statistics | [Sun et al.2009
Global behavior of OTF | [Mayntz et al,[1999
Spatial invariance of PS:[Chang et al..199% [Fabian and
01 Malah, (1997 _
[Moghaddam and Jamzg2D07,
Global behavior of OTF | [Oliveira et al, 2007 Wu_ et al,
2007

One solution takes derivative of a degraded image to suppress the lower fre-
quencies and to accentuate the high frequen@enpery/1973. Generally, the
amplitudes of the lower frequencies are much greater than ones of the higher fre-
guencies. Thus, taking derivative before the Fourier transform tends to flatten
the spectrum so that the patterns in spectrum/cepstrum domain can be identified
easier. Ji and Liu theoretically explain this propefdvdnd Liy 200§. When a
function k() is differentiable, the Fourier transform of its derivative is given by
2miuFy(u). In the case of linear motiork(z) is a rect function and its Fourier
transform £, (u) is a sinc function. The Fourier transform of the derivative of
linear motion becomes

F(ik(;ﬁ)) = 2miuF (k(z))

_sinwu
= 2miu

u
= 2misinu. (2.19)

Thus, taking derivative makes sinc function to sin function so that the spectral
features are identical clearer than the Fourier transform of the original function.

31



Another type of approaches utilizes the spatial-invariance of FG&srioi
1976 |Chang et a]/1997; [Fabian and Malghl99]; Kang et al,200¢. As previ-
ously mentioned, most papers assume shift-invariant blur on a whole image while
latent image and noise is globally shift-variant. By partitioning the blurred im-
age into sub-images and then averaging the spectra of the sub-images, we can
reduce the contribution from latent image component and noise while keeps the
contribution from PSF component. Thus, spectral/cepstral patterns appear clearer.

Suppose we somehow extract the spectrum of PSF from the spectrum of a
blurred image, PSF estimation becomes easier problem. Sun et al. achieved the
above strategy by adding another constraint on latent im&as ét al.[2009.

Their assumption is that the spectrum of latent images can be represented by
monotonically decreasing isotropic polynomial function. Their method first es-
timates the global shape of the spectrum of unknown latent image from one of
the blurred image. Then, the method extracts the spectrum of PSF by subtract-
ing the estimated spectrum from one of the blurred image. As a result, we can
obtain the modified spectrum of PSF. Once obtained, we can estihatd L
simultaneously by autocorrelation.

Sequential estimation can also be robust to noise effect. Instead of direct iden-
tification, sequential estimation first estimates blur directioinom the global
shape of the spectrum of PSF and then estimates blur leidt identifying
the patterns along the estimated motion directi©hdng et al.1997%; [Fabian and
Malah, (1991 Mayntz et al,[ 1999 Moghaddam and Jamza2D07% Oliveira et al,

2007 Wu et al, [2007. For # estimation, general approach utilizes the shape of
Optical Transfer Function (OTF), the spectrum of a PSF. The idea of this method
is to assess the anisotropy caused by linear motion blur in spectrum domain. The
power spectrum of unblurred latent image is approximately isotropic, will discuss
this features later. Since the spectrum of a blurred image is product of that of la-
tent image and PSF, the spectrum of the blurred image becomes anisotropic. Mo-
tion directiond estimation can be done by using this characteristic. OTF affects
the coarse behavior of the spectrum of a blurred image along motion direction.
Therefore, integral along a line on the spectrum can be usefd#l &stimation.
Oliveira et al. estimate a direction that has highest variance of Radon transfor-
mation a9 [Oliveira et al, 2007 while Moghaddam and Jamzad estimate paral-
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lel lines of spectral zeros by Radon transfoishoghaddam and Jamzz2007.

Since the OTF is a 2D sinc functiofi,estimation is equivalent to estimating the
long and short axis of the sinc function. Thus, Mayntz et al. estirfidtem

the inertia matrix, the eigenvectors of which are parallel and orthogonal to mo-
tion direction Mayntz et al,[1999. For L estimation, Fabian and Malah apply
comb-like liftering [Fabian and Malgh1991], filtering in cepstrum domain, so

that negative spikes derived from noise component can be removed flesh-
mation. Bispectrum is known as insensitive to additive, symmetrically distributed
noise [Chang et al.[1991 [Moghaddam and JamzZz@007. When the SNR is
relatively high, both spectrum and bispectrum have observable patterns. On the
other hand, when the SNR decreases, spectrum loses the patterns while bispec-
trum still keeps the patterns. Thusestimation can be done more reliably using
the bispectrum for lower SNR images.

2.5.3 Parameter search

Another type of approaches estimates a PSF as a parameter search problem.
They search blur parameters over the parameter space by evaluating a match met-
ric computed for each parameter value as

~

6 = argmin|Q(g — f © K(0))! (2.20)

where© denotes a set of parametezsy, © = (¢, L) for LM, and the data fidelity
term () is match metric evaluation function. When a parameter provides the best
match according to the metric, the parameter is chosen as the optimum parameter
©. The point of this type of approaches is what kind of metric the algorithm uses.
Table2.2roughly classifies the related works according to their match metric.
Yitzhaky and Kopeika use the spatial property of P$fzhaky and Kopeika
1997. When we take a derivative along with the motion direction, sum of absolute
difference of the gradient image become minimum. Based on this property, they
first estimate the motion directioh Once the direction is estimated, motion
length is estimated along the direction. They compute autocorrelation along with
the estimated direction based on a property that only if the space shift is same as
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Table 2.2:Classification of the parameter search works according to their match
metric.

Match metric | Papers

Spatial behavior of PSF [Yitzhaky and Kopeikg1997]
Spectral behavior of restored image | [Tan et al,[199]]
Kurtosis of histogram of restored imagdLi et al),

Sharpness of restored image [Rooms et a].2004
. . [Levin et all, 2007 [Savakis and
Restoration residual Trussel) 1993

Original
Under scale

Correct scale
Over scale

N

Plots Ion the clross-secl:tion of Ian edgeI

Correct scale Over scale

Figure 2.6:Physical versus numerical focus effect on the cross-section of an edge.

blur length, autocorrelation is minimum.

Restored image provides the information of amplitude of restoration. In the-
ory, edges in a blurred image are fully recovered by a restoration algorithm with
the optimum parameter. When the parameter is smaller than the optimum, the
edges are less recovered while the bigger parameter results ringing artifacts. Fig-
ure[2.6 compares restored edge with varying amount of restoration. With correct
scale, the edge gets closer to the original one while restored edge of under/over
scales are less/more restored. As this figure shows, the behavior of edges in re-
stored image can be a match metric. Tan et al. analyzed how the wrong PSF effect
the restored edgeJan et al,[199]]. Specifically, their method focuses on the
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behavior of the Green'’s function defined as

o (L BE) (2.21)
FeFy +

whereF;, and £, denote the true PSF and the estimate anegnotes PSNR. The
Green’s function describes how a point in the latent image would appear in the
restored image. For linear motion and accelerated motion, they analyzed how
appropriate/inappropriate PSFs affect the recovered edges. Based on their ob-
servations, they classify the blur type, linear motion or accelerated motion, and
estimate the blur parameter. Li et al. measure the sharpness by kurtosis of the
histogram of a restored imagdkifet al!,[2005. Their observation is that the larger
the kurtosis is, the smoother the histogram is. Based on the observation, they
compute the kurtosis of the restored images and then choose the restored image
with the smallest kurtosis and the corresponding parameter is regarded as the opti-
mum parameter. They had experiments on several types oEdyratmospheric
turbulence blur, defocus blur, etc. Rooms et al. use a wavelet basis as an edge
detection filter|Rooms et a]/2004. Natural images have a property that wavelet
coefficients of the images are very spai®shausen and Field997. To char-
acterize the sparsity of wavelet coefficients, their metric for defocus blur is based
on the kurtosis of the histogram of two sub-bands of wavelet coefficients. The
optimum parameter is obtained by finding a parameter maximizing the sharpness
of the kurtosis.

Restoration residual can be another match metric. Suppose we have a set of
PSF candidates,(©,,), wheren = 1,..., N. The restoration residual of th
PSF candidate is computed as

ra(x) = g(x) — f(x) @ kn(x), (2.22)

wherer,, denotes the restoration residual corresponding to a PSF candjdate
The optimum parameter can be estimated by finding a parameter minimizing the
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residual with the following? function:
Qra) =) lra(x)I* (2:23)

However, the latent imagg is unknown, we alternatively use the restored image
for the metric as

ra(x) = (%) — fu(x) ® kn(x), (2.24)

where f,, denotes the restored image obtained by the candigat&he point of

this type of approaches is how to estimate a latent im@adger a PSF candidate

k, and how to compute the residual metric. Savakis and Trussell measure the
residual in spectrum domaigavakis and Trussell99 as

E.,(u) = Fy(u) — F; (0)F, (u). (2.25)

As deconvolution algorithm, they evaluate three algorithms, the inverse filter, the
linear maximum a posteriori probability (MAP) filter, and the Wiener filter. They
conclude that the Wiener filter provides the most suitable analytical expression of
the residual power spectrum. Furthermore, they evaluate three match metric, the
Mean Square Error, the Chi Square test, the Kolmogorov-Smirnov test, and ar-
gued that the MSE test and Chi Square test performed the most consistently over
the blur types and parameters. Levin et al. also measure the restoration residual
in image domainllLlevin et al, 2007. In contrast to other works, they use their
own deconvolution method, described in S&d, and a camera with coded aper-
ture. Their own deconvolution method provides sharper image with less ringing
artifacts when the optimum parameter is used. Fiufdlustrates the benefit of
using a coded aperture. Those images are deblurred with the correct blur scale,
larger scale, and smaller scale. With a coded aperture, deblurred images with both
smaller and larger scale have ringing artifacts while with a conventional aperture
results ringing artifacts only with larger scale. Thus, a coded aperture is better for
evaluating the restoration residual.

ARMA parameter estimation methods parameterize both latent images and
PSFs. The approaches model a latentimage as a 2D Auto Regressive (AR) process
and a PSF as a 2D Moving Average (MA) process. Based on the models, a blurred
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Figure 2.7:Deconvolution with varying blur scale. Top: Restored image captured
by a coded aperture camera. Bottom: Restored image captured by a conventional
aperture camera. Courtesy hivin et al, [2007.

image is represented as an Auto Regressive Moving Average (ARMA) process.
The approaches estimate a PSF by identifying the ARMA parameters. A latent
image is modeled as

f(x) = a(x) @ f(x) + n,(x), (2.26)

wheren, denotes modeling error. The problem of blind deconvolution is equiv-
alent to estimating andk. The Maximum-Likelihood (ML) methods attempt to
derive restoration filtersTekalp et al.[198¢. The Generalized Cross-Validation
(GCV) methods, also known as leave-one-out, are based on second order statistics
[Reeves and Mersere&lD97).

2.5.4 Non-parametric PSF estimation

Even though the assumption on parameterization of PSF provides analytical
solutions, real world images usually violates this assumption. Thus, itis natural to
focus on non-parametric PSF estimation. Similar to numerical solutions of non-
blind deconvolution, blind deconvolution for non-parametric PSF is formulated
as

(75) = angmin|Qg = f @ B) + ARy (1) + MR, (227)
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whereR and\ denote the regularization term and the regularization parameter of
the subscript.

There are two types of approaches for solving BZ1), sequential methods
and iterative methods. Sequential methddkédn et al.2008 [Dai and W(j[2009
Harmeling et all201Q [Rav-Acha and Pele@005 [Xu and Jia201( separate the
problem into two parts as

k = argmin |Q(g — f ® k) + Ao Re(k)]
k

. _ . (2.28)

f= argmin Qg — f @ k) + ApRy(f)]

The methods first estimatefrom g, and then estimatg from g andk. Due to the
separation, they can directly apply existing non-blind deconvolution approaches
for the latter problem. On the other hand, the other type of methods iteratively
solve bothk and f as

key = argmin 1Q(g — fio1 ®@ k) + MRy (k)|

. - . (2.29)
fi= argmin Qg — f ® ki) + Ap Ry (f)]

As the equations indicate, the methods iterfatstimation andf recovery. For
initial valuesk, and f,, delta function and the blurred imagere usually chosen.

2.5.5 Unknown f for PSF estimation

For both types of methods, E@.28 and Eq.[2.29, PSF estimation requires
the information of unknowrf for the fidelity term evaluation. Sincgéis unknown,
we should somehow prepare an alternative.

One solution is that we use another image or images as the alternative. Con-
trast to the appearance of natural images, their representatipriourier trans-
form and wavelet transform, have similar distribution, so called natural image
statisticsTorralba and Olive2009 (see Appx[Blfor more detail). Following this
property, we can use another image or images as the alternative of unknown latent
image f for the fidelity term evaluation. Caron et al. assume a power-law distri-
bution on the spectra of image€aron et al.2002. The assumptions are that
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the spectra of natural images have peak at a very narrow range of low frequen-
cies and a flat tail at high frequencies and that Optical Transfer Function (OTF),
which is the spectrum of a PSF, is slowly varying function. From the above as-
sumptions, OTF can be represented by power-law scaled spectra of blurred image
with a power-law scale factor. Thus, PSF estimation is equivalent to identifying
the scale factor. Neglecting the noise effect and giving the spectrum of a refer-
ence image that shares similar frequency characteristics with the unknown latent
image, their algorithm directly recovers OTF, and then apply inverse filtering in
the frequency domain. Wan and Nowak assume the distributions of wavelet coef-
ficients of natural imaged&Van and Nowak1999. The assumptions are that the
distribution of wavelet coefficients of natural images has peaky and heavy-tailed
symmetric shape and wavelet coefficients are statistically independent. Specif-
ically, they model the distribution by mutually independent two Gaussian mix-
tures, one of lower variance represents sharp peak of the distribution while the
other one of higher variance represents heavy-tail of the distribution. Fergus et al.
and Shan et al. assume the distributions of image gradiargis et aJ.l2006
Shan et al.200§. The assumptions is that the distribution of pixel intensities
of image gradient of natural images has high-peak at zero and heavy-tailed sym-
metric shape. Fergus et al. represent the distribution of first order derivatives by
Mixture of Gaussian distribution$-prgus et aJl200¢. Shan et al. mention that
the distributions of several orders of derivatives still behaves following the 0-peak
and heavy-tailed distributiorShan et al.200§. For representation of the distri-
bution, they introduce concatenating two piecewise continuous functions, one for
0-peak and the other for heavy-tailded representation. The representations differ
by the papers, all the methods use the parameters of another image or images as
the alternative off in @) function.

The other solution estimates the alternative from the blurred imagerevi-
ous estimate;_;. Considering the numerical optimizatiofijn ) contributes to
compute the direction to search the answand alsof. Ideal situation is that we
have f (though this is not held for image deblurring) means that object function
derives the steepest descent direction for each iteration. Even though we don't
know true f, if we have approximatiorfapn, We can expect such approxima-
tion to provide the descent direction. Thus, straight forward solution is to use the
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previous estimate of;_; directly [AImeida and Almeida200§ 2009 [Cai et al,
2009&bc; [Chen et al.l2008 Dai and Wy 2009 (Gupta et al.201Q [Harmeling
et al, 2009 2010 Hirsch et al,[2010 Hu et al, 2010 Huang et al.2009. How-
ever, there is a risk that the previous estimAtg contains some deconvolution
error such as ringing. Thus, some filtered image is used instegd;0fCho and
Lee 2009 Xu and Jia201(. Well-used filters are shock filtefsher and Rudin
199(] to restore strong edges and bilateral fili@oinasi and Manduchi1999 to
suppress noise. Joshi et al. assume sharp edges on latent fnfidoghi et al.
200§. Based on the assumption, they predict step edges on the latent image from
gradients ofy and use it ag of Q.

Some methods assume another image of same scene with shorter exposure
time [Babacan et §|2009 Sorel andSroubek2009 Yuan et al,[2007. Due to
the exposure time, shorter exposure image should be blur free but noisy. Even
though the noisy image is not perfect image, it can be a good referencg for
function evaluation.

2.5.6 Regularization term on PSFR;

Similar to the regularization term on latent imafe, one on PSHz,, varies
the form depending on what kind of proper®y, reflects. Without any loss of
generality, we can put assumptions that PSF is non-negative and the energy of
PSF is conserved as

k(x) >0, (2.30)
D k(x)=1. (2.31)

Note that these constraints can reduce the potential PSFs not much.

One assumes smoothness on PSFs. Since a PSF represents motion, smooth
PSF is plausible. Thus, TV regularization norm/ois used/Cho and Leg2009
Gupta et a].2010 Harmeling et al.201(] as smoothness constraint. The formu-
lation of the regularization term is same as EQl4).

Addition to smoothness constraint, sparsity of PSFs is considered. The size
of PSF is relatively smaller than one of images and PSF’s values are almost zero.
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Thus, Tikhonov regularization term on pixel intensitiescadr on gradients of:

are usedCai et al, 20094 [Chen et al.2008 (Cho and Leg2009 |Gupta et al.

2010 Harmeling et al.2010 Hong and Park201Q Huang et al.2009 Joshi

et al,’2008 [Shan et a]l2008 Xu and Jia201Q Yuan et al,2007. Smoothness of

PSF is equivalent to sparsity of the distribution of PSF representation parameters
of coefficients. Therefore, mixture of exponential is used to represent the distri-
bution of PSF intensitiedBabacan et &l2009 [Fergus et dJ/200€ and curvelet
transform is used to represent P&R[ et al, [20091ic].

2.5.7 Other constraints

For a scene consists of two-layeesg, foreground and background, we can
derive an additional constraint on the scene. The constraint isxtimaétte of
the latent image should be binary and motion smears the boundary between the
objects. Thus, the regularization term ammatte is designed to favor binary
matte JAImeida and Almeida2008§ Jig, (2007 [Shan et a|.2007. Dai and Wu
also put constraint on matte Dai and W(;[2009. Their regularization term on
the scene consists of two matrices. One minimizes the softcuts metric that helps
obtaining smooth soft edges with transitions and the other one favors hinary
matte.

Similar toa matte constraint, Huang et al. use bi-level region constiinang
et al,2009. Their method performs PSF estimation only on bi-level regions that
seem to be binary in the latent image. Joshi et al. assume that observed edges in
blurred image is originally ideal step edg#oghi et al.200§. The method first
finds the location and orientation of edges in the blurred image, and then predicts
ideal sharp edges. PSF estimation is done by comparing edges of blurred image
and the predicted ideal sharp edges.

2.5.8 Spatially varying PSF

The above discussion focuses on uniform blur on an image but the assumption
of uniformity cannot cover the entire motion blur. Thus, some recent works try to
solve spatially varying PSFs.
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Piecewise homogeneous PSF

When PSF is locally homogeneowesg, moving object captured by a fixed
camera, we can assume that the scene consists of several regions each of which is
blurred by homogeneous PSF. Simply speaking, applying uniform PSF estimation
on each region is enough for such scene.

One uses multiple images of same scene so that geometric relation between
the images helps PSF estimation. Cho et al. use several images of roughly the
same scen&dho et al,[2007. Based on geometrical constraint, they iterate PSF
refinement, image segmentation into regions of homogeneous motions, and the
corresponding PSFs estimation.

When a scene consists of two-layeesy, foreground and background, one
may use a constraint on boundaries between the layers as mentioned2ibSEc.
Since motion smears boundaries between the objectstte of the scene is also
blurred. Based on the assumption thahatte of the same scene but no motion is
binary, we can estimate PSFs on each regions by comparmmagtte of the blurred
image and binarized on&lmeida and Almeida2008§ Dai and Wy 2009 Jig,

2007 [Shan et al.2007. Note that this type of methods requires user input to
segment the scene.

Instead of manual segmentation, we can use PSF estimated on every pixel to
segment the scene. Levin use restoration error to estimate PSF of moving fore-
ground Levin,2006§. Her method is based on the image statistics that linear mo-
tion blur changes the statistical property of an image. Based on the analysis on the
statistical property, her method first estimates PSFs on several pixels. Restoration
operation with estimated PSF recovers the image in the blurred areas but serious
artifacts occurred in the background. Therefore, her method segments the im-
age into blurred and unblurred layers by considering image smoothness and blur
smoothness. Chakrabarti et al. point out the spectral behavior of local windowed
image helps to identify blur length of linear moticd@hakrabarti et al.201(.

Their method identifies PSF at every pixel based on the probabilistic model con-

sidering above characteristics. The obtained PSF map contains estimation error
because the estimation considers only the probabilistic model. Thus, they refine
the PSF map by considering object boundaries, blur smoothness, and color infor-
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mation.

Piecewise non-homogeneous PSF

When PSF is smoothly varies along an image,, camera rotation, we have
to estimate PSF on every pixel. In such case, we assume homogeneous PSF on
neighboring pixels or regions.

One assumes 2D motion motions on local regi@wrel andSroubek estimate
spatially varying PSFs by interpolating estimated PSFs on image grid of sub im-
ages|Borel andSroubekZ009. Using a pair of images of same scene, one blurred
image and one underexposed noisy image, they estimate PSFs on grid. Since some
of the PSFs contain estimation error, they replace such PSFs by the average of ad-
jacent PSFs. Harmeling and his colleague introduce filter flow framev@ekZ
and Baker2009 to represent smoothly varying PSHRddrmeling et al.201Q
Hirsch et al,201(. Based on the filter flow model, we can efficiently describe
spatially varying PSFs rather than PSFs on image grid.

Another focuses on camera motion what is well approximated by a few pa-
rameters and recover parameters of the motion rather than spatially varying PSFs.
Gupta et al. represent 6D camera motion (3D translation and 3D rotation) by 3 de-
grees of motion (in-plane translation and rotatiddypta et al.’201(. Whyte et al.
focus on camera rotation about its optical center and describe a motion blur by se-
quential Homography instead of a convolution of the latent image and\RE¥A¢
et al,,201(.

2.6 Blur estimation/correction suited to next gener-
ation imaging technologies

Here, let me consider what kind of blur estimation/correction approaches are
suited to upcoming imaging technologies.

In the history of PSF estimation, we initially focused wmform & paramet-
ric PSF. Thennon-uniform & parametrid®SF was focused with an assumption
that parametric PSF well-represents the blur in local region. In 1990s, some re-
searchers started solvingpiform & non-parametrid®SF but they assumed sym-
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metric form or simpler shape. Fergus et al.’s wdFlefgus et a)'’200€ provided

big impact that we can estimate more complicated non-parametric PSF. Then, we
get started estimatingniform & non-parametrid®SF. Very recently, some works
reported their works omon-uniform & non-parametrid®®SF estimation. Con-
sidering versatility to target scene, non-parametric PSF is better than parametric
one and non-uniform PSF is better than uniform one. Some of recent works use
additional data or deviceg,g, multiple images with different camera parame-
ters Rav-Acha and Pelé@004 or data obtained by motion sensdd®§hi et al.

201(. These works aim to relax the difficulty of the deconvolution problem.

What solution is suited to upcoming imaging technologies? To develop a sys-
tem with cheaper cost, using additional devices is not suited. But how about ad-
ditional images? In on-line system, sequential datg, previous image of video
stream, is available in practice. Thus, using sequential data is better to relax the
difficulty. However, approaches using sequential data implicitly assume that we
get correct answer in the previous image. In other words, estimation/correction er-
ror propagates. In such sense, a single image based method is suited even though
the difficulty still remains.

Another concern is its theoretical reliability. Even thougbn-parametric
PSF estimation has more generality and has get attention, we cannot say whether
this approach works or not because most of such works are numerical solutions.
If we need guarantee that the approach works, analytical solutogs,spec-
tral/cepstral analysis are suited.

Considering issues mentioned above, let me give a future perspective of 2the
blur correction/estimation methods suited to upcoming imaging technologies. The
method should be single image based approach without any additional data nor
devices so that the approach can contribute to more people and be developed with
cheaper cost. Furthermore, one with theoretical reliability is preferred. Thus,
extension of analytical solution is suited to the imaging technologies in next era.
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Chapter 3

Cepstral Analysis based Non-Linear
Motion PSF Estimation

This chapter proposes a non-linear motion PSF estimation method from a sin-
gle blurred image for motion deblurring. Based on the traditional signal pro-
cessing theory, the proposed method estimates a PSF with two steps as shown in
Fig.B.d First step (red frame in Fi@.1) is PSF candidates estimation. In this
step, the method first estimates PSF candidates from the cepstrum of the blurred
image based on the cepstral analysis. Second step (blue frame B ¥Fig. PSF
candidates evaluation. In the step, the method chooses the most likely PSF by
evaluating the candidates based on the imaging equation.

3.1 Related works

There exist several works investigating camera motion. To know the real cam-
era motion, they prepare known pattern consists of point light sources and shoot
it. The light source appear in the image should represent the camera motion path.
Xiao et al. investigate the 2D trajectory corresponding to camera motion in yaw
and pitch axesXiao et al, 200€. Figure[3.2 shows how the camera motion pat-
tern changes according to exposure time change. With shorter exposure time, mo-
tion path looks point and line. The more exposure time is, the more complicated
the PSF is. Even complicated PSF, the shape seems to be decomposable with line
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Figure 3.1: Overview of the proposed method. The proposed method takes a
single blurred image as an input and estimates a PSF with two steps. The method
first estimates PSF candidates from the cepstrum of the blurred image. Then, the
most likely PSF is chosen by evaluating the candidates.

segments. Park et al. represent 3D trajectory by optical flow mdek|et al.

2004. They mention that linear motion PSF can represent the basic camera mo-
tion with enough shorter exposure time. Nishi and Onda analyze the behavior of
3D camera motionNishi and Onda201( for quantitative evaluation of camera
manufacturers’ image stabilizers. FigiBe illustrates 3D camera motion with
shorter and longer exposure time. 3D camera motion with longer exposure time
appears on the image as shown in the left image. Taking light source by video
camera with shorter exposure time, the sequence represents the motion segments
of 3D camera motion. As shown in the right figure, each segment is represented
by linear motion.

As mentioned in Sed.5 the classic approaches target parametric motion
while the recent approaches focus on non-parametric motion. Considering the ca-
pability for the various types of PSFs, non-parametric PSF estimation seems to be
the best solution. The success of the approach is derived by the constraints on the
latent image. Contrast to the approach, classic approaches target only parametric
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Figure 3.2: How the camera motion changes with exposure time changes. From
left to right and top to bottom, exposure time increases from 0.01 to 0.8 second.
Courtesy ofKiao et al, [200§.

PSFe.g, linear motion. The reason why the classic approaches focus on paramet-
ric PSF is because of our constraint on PSF not because of the methods’ limitation.
We assume parametric PSF in order to constraints on the spectral/cepstral behav-
ior of the PSFs. Thus, it is natural that the approach handles only parametric PSF.
Even though the target PSF is limited, the performance of the approaches is an-
alytically guaranteed. On the other hand, the performance of the non-parametric
PSF estimation is not guaranteed because the approach relies on the numerical
minimization algorithms for computation. Therefore, some methods may require
user’s assist or have heavy computation cost.

3.2 Motivation

For upcoming imaging technologies, e.g., capturing moving contents by han-
dled camera to show with volumetric display, what kind of deblurring technique
is required? In other words, the questions is how complicated shape blur in video
sequence is. Considering the works investigating camera midishiland Onda
2010 [Park et al.2004 [Xiao et al, 2006 mentioned above, linear motion repre-

47



= tagal

Actual camera motion Test pattern Detected 3D motion
with longer exposure time with shorter exposure time

Figure 3.3: 3D camera motion with shorter and longer exposure time. (Left)
Actual camera motion shot with longer exposure time. (Middle) Test pattern con-
sists of point light sources for acquiring 3D camera motion. (Right) Detected 3D
camera motion shot with shorter exposure time. Courtes\N@hi and Onda
2010.

sentation is enough for PSF of shorter exposure time and for PSF of segments of
3D camera motion with longer exposure time. As Xiao et al. mentioXeab|
et al, 200§ (Fig.[3.2), blur with exposure time of video sequenegy, 24 fps, is
not simple linear motion but not too complicated, far from non-parametric motion
PSF shown in Fig2.2 Even though such blur is not linear motion, we can assume
locally linear motion as Nishi and Onda ddighi and Ondg201( (Fig.[3.3).
Considering such background, | focus on non-linear but locally linear motion
for upcoming imaging technologies. When the motion is locally linear, it seems
to be possible to apply classical parametric PSF estimation methods so that we
can analytically solve the problem. Therefore, | set the goal of this work to find
the possibilities of classical PSF estimation not to propose very complicated PSF
estimation methods.

3.3 Overview of the proposed Method

| propose non-linear motion PSF estimation method based on traditional sig-
nal processing theory. Instead of putting constraints on latent image, the proposed
method utilizes constraints on the cepstral behavior of target PSFs. As mentioned
in Sec3.2 | focus on locally linear motiorg.g, piecewise linear motion. How-
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ever, | empirically find that the cepstrum helps PSF estimation when the motion
is approximately linear motion but has small bounce. Thus, the proposed method
focuses on two types of non-linear motion, Piecewise Linear Motion (PLM) and
Noisy Linear Motion (NLM), both introduced in S€8.4 Next, the detail of the
proposed method is described in S&&and Sed3.6.

As an input, the proposed method takes a blurred image observed by a normal
camera. For developing the analytical solutions, the proposed method assumes
the cepstral behavior of target motions. However, the cepstral behavior can not
directly solve PSF estimation problem, the proposed method separates the prob-
lem into two sub problems. First part estimates a set of PSF candidates from the
cepsrtum of a blurred image. Next, the estimated candidates are evaluated and
one of the candidates is chosen as the final estimate.

3.4 Target non-linear motions

Here, | describe the target non-linear motions, namely Piecewise Linear Mo-
tion (PLM) and Noisy Linear Motion (NLM). Figuri@.4shows examples of target
motions. One intuitive extension of linear motion representation is Piecewise Lin-
ear Motion that consists of several linear motions. The other one is Noisy Linear
Motion (NLM). NLM is approximately linear motion but includes some small
bounce.

3.4.1 Piecewise Linear Motion (PLM) PSF

One intuitive approximation of non-linear motion is to use a piecewise smooth-
ness constraint like Ben-Ezra and Nayar/Bef-Ezra and Nayg2004 and Nishi
and Onda ddNlishi and Ondg201(. A Piecewise Linear Motion (PLM) is a non-
linear motion but partially linear. The PSF of such motion can be represented by
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Piecewise Linear Motion (PLM) PSFs

Noisy Linear Motion (NLM) PSFs

Figure 3.4:Target motion of the proposed method. (Top) Piecewise Linear Motion
(PLM) PSFs. (Bottom) Noisy Linear Motion (NLM) PSFs.

sum of linear motion PSFs as

N
= ankﬁ(a: — Ax,), (3.1)
-1
Ly,

>

m=1

Wp =

Y

wherek? andk’ denote PLM PSF and linear motion PSF, called component PSF,
respectivelyw, is scaling parameter forcing the constant speed motionfand
denotes connectivity of linear motions as

Az,
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Ayy,
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With this parametric form, a PLM PSF is decomposed into two types of informa-
tion. First one is blur information of each component P&§, motion direction
6,, and motion lengtlL,,. The other one is the order of the component PSFs. Thus,
PLM PSF estimation is decomposed into two sub problems, component PSFs es-
timation and PSFs order estimation.

The cepstrum of a PLM PSF is obtained by applying the cepstrum transform

to Eq. B.J) as

C (k" (x)) = (log

(Z wak(x Axn)> D . (3.2)

Here, | limit the discussion to spectral/cepstral features. When all the blur di-
rections differ, namely,, # 6,, is held for alln # m, spectral zero values do

not overlap. This means that eagtik%) does not interfere, they are independent

in other words. In such case, the Fourier transform of sum of component PSFs
is equivalent to the sum of the Fourier transform of the component PSFs. Thus,

Eq. 3.2 is approximated as
N
F (Z wnk(x — Axn)) D
n=1

Z]:—l (log | F (wakp (x — Ax,)) )

C(k"(x) = F! <log

Q

= Z]’“ log‘]: wnkL( ))D
= ZC(wnkL(x)). (3.3)

From line two to three, the Fourier transform property that shift in image space
does not vary the power spectrum is used. EquaBdi) (ndicates that the cepstra
of a PLM PSF equals sum of the cepstrum of the component PSFs under the
assumption. Therefore, we can expect that the cepstrum of a PLM PSF provides
us blur information of all component PSFs.

Figurel3.3shows the cepstrum of a PLM PSF. Figi3& (a) and (b) show the
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(a) PSF (b) Cepstrum

Figure 3.5: A PLM PSF and its cepstrum. Yellow point is the peak of the cep-
strum, and red and blue points denote the negative spikes resulting from each
component PSF.

PSF and the cepstrum, respectively. In the figure, yellow point is the peak of the
cepstrum, and red and blue points denote the negative spikes resulting from each
component PSF. For each motion directignthe spikes is located &t, far from

the peak.

3.4.2 Noisy Linear Motion (NLM) PSF

A Noisy Linear Motion (NLM) is a non-linear motion that is approximately
linear motion but has small bounce. Since such small bounce is not easy to pa-
rameterize, we call this kind of motion path ‘curve’. Suppose a curve C connects
two pointsx; andx,. The curve consists oV points c= (c;,...,cy) and g
and gy corresponds ta; andxs, respectively. | put one-way constraint on noisy
linear motion ¢ = (¢, ,yc,)* as

T, > ¥¢,_,, and
ycn Z yc’nfl'
Here, we analyze the behavior of the cepstrum of a NLM PSF. Empirically, |
found that the cepstrum of a NLM PSF has strong values along the blur direction

and that the cepstrum has distributed negative valleys along the motion direction.
Figurel3.6 compares the cepstrum of a NLM P&k and that of the blurred im-
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Figure 3.6:The cepstrum of a NLM PSF. From left to right, PSF, the cepstrum, and
plotted values are shown. In the right figure, the cepstral peak of ceptrum, negative
valleys, and strong values are plotted as white, red, and blue pixels, respectively.

ageCy,. Red pixels in the right figures show th@f, has negative valleys along

the motion direction but they are not periodic. Same as a linear motion(®SF,
has additional negative valleys around the cepstral peak. Blue pixels in the right
figures show that’;, has strong values along the motion direction. Different from
linear motion PSFs, the strong values are distributed not located on an exact line.
From this observation, | derive assumptions that

e the strong values of the cepstrum of a NLM forms approximate shape of its
PSF, and

e such shape connects the cepstral peak and one of negative valleys.

3.5 PSF candidates estimation

This section describes PSF candidates estimation method using the cepstral
behavior mentioned in S€8.4 Since PLM and NLM have different cepstral be-
havior, | develop different PSF candidates estimation methods for each. For PLM,
the method is based on the behavior that the cepstrum of a PLM PSF provides us
blur information of all the component PSFs. For NLM, the method is based on the
assumption that the strong values of the cepstrum of a NLM forms approximate
shape of its PSF.
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Figure 3.7:0verview of PLM PSF candidates estimation.

3.5.1 PLM PSF candidates estimation

Sectior3.4.1derives the cepstral behavior of PLM that the cepstra of a PLM
PSF equals sum of the cepstrum of the component PSFs when all the blur di-
rections differ, namely, # 6,, is held for alln # m. The proposed method
estimates PSF candidates of a PLM BSHrom a single blurred image based
on the cepstral behavior. FiguBed shows the overview of the method. First, a
set of component PSFs is estimated based on the cepstral feature identification
approaches from the cepstrum of the blurred image. Then, potential PLM PSF
candidates are generated from the set by combining the components.

Cepstrum transform

The proposed method estimates component PSFs based on the cepstral behav-
ior of linear motions. However, raw cepstrum obtained by Edl) is noisy. For
robust PSF estimation, the proposed make the cepstral feature by using traditional
approaches.

One cepstral feature harming the proposed method is the effects of noise and
the overlying structure af’;. Even thouglC, dominates the cepstrum around the
cepstral peak, there exist the contribution(gf and noise effect. To reduce the
effect of such feature, we usually use spatially-invariance of E3RHhon1976
Chang et a][1997; [Kang et al,[2006 [Maki and Sugimot@2007 Moghaddam and
Jamzag2007. Under the assumption, PSF is uniform on a blurred image while
latent image component varies by region. Suppose we partition an input blurred
imageyg into N sub images ag,(n = 1,..., N). Taking an average of cepstra of
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partitioned images, we have
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As previously mentioned, we assume uniform blur on the blurred image while
f varies by region. In such cas€), differs according to region whil€’; is
constant. Thus, the contribution 6f;,, decreases by taking average as

Cfn + Ckn

2 |

QZI

e - (3.4)

Figure[3.8 shows the effect of averaging cepstra. Comparing raw cepstrum and
averaged cepstrum, averaged one has clearer lines than raw one.

Another feature is vertical and horizontal line due to discontinuities at the
image boundaries. The cepstrum transform assumes periodic images but normal
images have discontinuities at the image boundaries. Such discontinuities appear
as vertical/horizontal lines going through the cepstral peak. Since the proposed
method relies on the strong values on the cepstrum, those lines should be re-
moved. Typical solution for this is windowing that tapers the image values at the
boundaries. Since we have to take care of discontinuities at both image space and
frequency space, we should apply windowing twice as
Cx = F (W (log |F (W (9))])) , (3.5)

g

whereC* denotes cepstrum obtained with windowing did) denotes a win-
dowing function. Specifically, Tukey window {ikey, (1967 is used to reduce the
discontinuities on image boundaries. FigBt8 shows the effect of windowing.
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Figure 3.8: The effect of averaging cepstra. (Top) PLM PSF and its cepstrum.
(Bottom) Blurred image, raw cepstrum, and averaged cepstrum.

The raw cepstrum has both vertical and horizontal lines derived from the discon-
tinuities on image boundaries while windowed cepstrum does not have.

These two processes are concurrently applicable. As a result, the cepstrum
transform of the proposed method averages the cepstra obtained with windowing
of sub-imagey,, as

N
~ 1
Co= > cx. (3.6)
n=1
For ease of explanation, l€f, denote@g in the followings.

Component PSFs estimation

Next, the proposed method estimates a set of component PSFs by cepstral
feature identification mentioned in S&5.2

First, the motion direction parametets are estimated from the cepstrum of a
blurred image. As mentioned above, the cepstrum of a PLM PSF should keep the
cepstral features of all the component PSFs whe# 6,, is held for alln # m.
For 6,, estimation, the proposed method applies the Radon transform to extract
the strong lines appearing along the motion directions. The Radon transform
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Figure 3.9: The effect of windowing. (Top) PLM PSF and its cepstrum. (Bottom)
Blurred image, raw cepstrum, and windowed cepstrum.

R(Cy(p), p,¢) integrates the cepstrudi,(p) along a linep = pcosvy + gsiny
as

R(Cy(p)). pr ) = / / C,(p)3(p — peos — gsint)dpdq,  (3.7)

whered denotes the Dirac delta function apd= (p, q)* denotes a quefrency.
Since the strong lines pass through the cepstral peak, we have to apply the Radon
transform forp = 0. To avoid the negative spikes works as negative bias, we
use absolute value as input. Thus, motion directions estimation finds directions
» maximizing R(|C,(p)|,0,) as motion directiond. FigureB.10 shows the
performance of Radon transform whén= 30 andf, = 120. In the plot, blue
and red curves plot Radon transforms of raw cepstrum and processed one. As the
plot shows, the raw cepstrum has peak both correct directiors30, 120 and
wrong directions) = 0,90. On the other hand, the processed cepstrum has peak
only correct directiong = 30, 120.

Next, the blur length parameters, are estimated along the estimated blur
directionsf. The negative spikes, each of which is derived from one of the com-
ponent PSFs, should appear along the strong lines and the distance between a
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Figure 3.10: Motion direction estimation based on Radon transform when

01 = 30 andf, = 120. (Left) PSF and blurred image degraded by the PSF. (Mid-
dle) Raw cepstrum (top) obtained by BHB.X7) and processed cepstrum (bottom)
obtained by Eq.3.6). (Right) Plot of Radon transform. Blue and red curves
represent Radon transform of raw cepstrum and processed cepstrum, respectively.

spike and the peak is equivalent to blur lengthThus, the method finds the lo-
cationp of negative spike along each blur directibp and setl,, the distance
between the spike and the peak.

PSF candidates generation

Now, we have a set of component PSFs with motion paraméfiersl.,,,).
The potential PLM PSFs should be one of a permutation of the estimated compo-
nent PSFs. Thus, we generate all the permutation of the component PSFs. The
generated PLM PSHs2" (n = 1,..., N) are called PSF candidates.

3.5.2 NLM PSF candidates estimation

Section3.4.2derives assumptions that the strong values of the cepstrum of a
NLM PSF forms approximate shape of its PSF, and shape connects the cepstral
peak and one of negative valleys. If these assumptions are correct, NLM PSF can
be estimated by finding a correct valley and then tracing the strong values between
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Blurred image Cepstrum PSF candidates

Figure 3.11: Overview of NLM PSF candidates estimation. Blue point represents
the cepstral peak and red points represent negative valleys. The proposed method
estimate PSF candidates each of which connects the peak and one of valleys.

the peak and the valley. Based on this assumption, the proposed method estimates
PSF candidates of a NLM PSE' from a single blurred image. Figure3.11

shows the overview of the method. Instead of finding the correct valley, the pro-
posed method estimates several PSFs each of which is corresponding to one of
negative valleys as candidates. Since the cepstrum is symmetric around the peak,
both the estimated candidates (top of the right figure) and their symmetric ones
(bottom of the right figure) are regarded as PSF candidates.

LM PSF estimation from another aspect

Before describing the detail of NLM PSF candidates estimation, let me con-
sider cepstral patterns identification method for LM PSF estima@iang et al.
1997 [Fabian and Malghl997; Ji and Liy 2008 [Mayntz et al,[1999 Moghad}
dam and Jamza@007% Oliveira et al,2007% Wu et al,[2007 from another aspect.
Figurel3.12 compares the cepstrum of a LM PSF and that of the blurred image.
On the right figure, PSF shape (blue lines) is overlaid on the cepstrum. As you
can see, botld’;, andC, have strong values along the motion direction and the
appeared shape lies between the cepstral peak and the negative valley.

Let us consider LM PSF estimation using this cepstral features. Suppose we
detect several negative valleys from the cepstrum of a blurred idiagad check
lines each of which connects the cepstral peak and one of the negative valleys. A
detected valley on a line that has strong values should be equivalent to one of the
periodic valleys. Thus, the LM PSF can be estimated by finding such line. This
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Figure 3.12: Cepstral strong values along the motion direction. A LM PSF of

(0, L) = (45,30) (top) and blurred image degraded by the PSF (bottom). From
left to right, image, cepstrum, and plotted values are shown. In the right figure,
yellow point represents the cepstral peak, red points represent the negative valleys,
and blue lines are overlaid PSF shape, respectively.

PSF estimation can be formulated by path integral equation as

L= argmax/C’g(p)ds, (3.8)
L L
X 1 ifxel
kL(X) _ ITx € -
0 otherwise

where L denote a set of lines, each of which connects the cepstral peak and one of
negative valleys ands denotes an elementary arc length of lines. The estimated
line L has same shape as the PSF and also the position of the corresponding val-
ley tells us the parameters of the PSF. This LM PSF estimation method can be
regarded as a special case of LM PSF estimation based on Radon transform de-
scribed in Sed3.5.1 Radon transform based method integrates the cepstrum over
all directions and choose a direction having most strong value while this path in-
tegral based method integrates the cepstrum only for a few directions.

Then, same investigation is performed to NLM PSF. Fighi&compares the
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Figure 3.13: Cepstral strong values along the motion direction. A NLM PSF
(top) and blurred image degraded by the PSF (bottom). From left to right, image,
cepstrum, and plotted values are shown. In the right figure, yellow point represents
the cepstral peak, red points represent the negative valleys, and blue curves are
overlaid PSF shape, respectively.

cepstrum of a NLM PSF and that of the blurred image. On the right figure, PSF
shape (blue curves) is overlaid on the cepstrum. On the cepstrum, strong values
appear like Mobius strip. Comparing the cepstrum with the blue curves, strong
values of the cepstrum of NLM seems to approximate PSF shape. Contrast to the
cepstrum of LM PSF, the cepstrum of NLM PSF has distributed negative valleys.

NLM PSF candidates estimation based on path integral

From the discussion above, | derive an assumption that the cepstrum of a NLM
PSF has approximate shape of the motion that lies between the cepstral peak and
correct negative valley. If this assumption is correct, we can estimate NLM PSF by
finding a curve, not a line, that maximizes the path integral between the cepstral
peak and correct negative valley. However, there is no solution that finds cor-
rect negative valley from distributed negative valleys. Alternatively, the proposed
method estimates a curve for each distributed negative valley as PSF candidate.
Considering the cepstral symmetric property, symmetric PSFs of estimated curves
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Blurred image Cepstrum PSF candidates Full PSF candidates

Figure 3.14: NLM PSF candidates estimation. Given a blurred image, the method
first computes the cepstrum and detects several negative peaks. Then, the pro-
posed method estimates a curve connecting the cepstral peak (yellow point) and
one of negative valleys (red point) for each valley as PSF candidate.

are also added as PSF candidates. FigukBbriefly explains the PSF candidates
estimation method.

Here, | re-formulate the path integral based PSF estimatiori3&s).for NLM
PSF. Since the NLM PSF estimation method is based on path intégralbm-
ponent and cepstral vertical/horizontal lines of image discontinuities may violate
the integral. Same as PLM PSF estimation, the method takes averaging cepstra of
sub images and apply Tukey windoWwukey, [1967. Then, the method detecld
negative valleys from the computed cepstrum. The number of negative valleys
is empirically decided 10.

The path integral equation E@.8) is re-formulated for NLM PSFs as

Cm:argmax/ Cy(p)ds, (3.9)
Cm m
) — 1 ifxe(_:m |

0 otherwise

where G, denotes a curve connecting the cepstral peakiatite negative valley.

Now, the problem to be solved is finding a curve maximizing path integral
given the cepstral pegi®®®and a negative vallep'®'®y. Regarding this problem
as a kind of shortest path searching problem, the proposed method solves this
path searching problem by dynamic programming. Specifically, the Dijkstra’s
algorithm is performedDijkstra, [1959. Figure[3.15 shows the strategy of the
method. Given the cepstrum of a blurred imagg we assign the value af,
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Cep. of NLM Zoom-up

Figure 3.15: Path integral on the cepstrum of a NLM. In the figure, yellow point
represents the cepstral peak, red points represent the negative valleys, and blue
curves are overlaid PSF shape, respectively.

as a graph where each positipn= (p, ¢)T corresponds to a node, and an edge
is defined to connect three neighboring nopé% € {(p,q + 1), (p+ 1,9), (p +
1,q + 1)}. We define a weight over the nodes as

i (P i)
w(pl®) = — L —" (3.10)
7 eyl el

wherep'e¢ = pPeaipValley js yector connecting the cepstral peak and the negative
valley andp’* = p'“’e'ﬁ“‘p;‘ei IS vector connecting the cepstral peak and a neigh-
boring nodep’®. The cost function represents the cosine of the angle formed by
plaley preak andp"®, Since the cost function enforces a path to connect the peak
and the valley with shorter length, the estimated path tends to be a straight line
rather than a zigzag line. After taking integral frgsff'® to pP®2 we find a path
maximizing the path integral between the cepstral peak and the negative valley.
This path estimation is performed for all detected negative valleys, thus we obtain
M curves each of which corresponds to each negative valley.

Since a cepstrum is symmetric about the cepstral peak, the symmetric shape
of an estimated path may be another candidate of the correct PSF. Thus, we regard
both M estimated curves™ and their symmetric curvesY™ as PSF candidates.
Totally, we obtainV = 2)\/ PSF candidatek® = {k" | n, = 1,..., N} from
M negative valleys.
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3.6 PSF candidates evaluation

This section describes PSF candidates evaluation method based on the imag-
ing equation. Regarding the estimated PSF candidates as PSFs with different pa-
rameters, the proposed method evaluates the candidates similar to the parameter
searching methods, mentioned in S2&.3 as

k= argmin |Q(g — f ® k). (3.11)
fican

This evaluation should theoretically choose the best PSF among the candidates
but in practice it does not work because H8.1{) uses unknown latent image
f. Alternatively, the proposed method uses a recovered irﬁ@gwhich is the
deconvolution result with a PSF candidf@", with a regularization term on PSF
Ry, as

k= argmin |Q(g — Fo @ ES) 4 N\ Ry, (kS2)|. (3.12)

fican

One may doubt that Eq3(12 can choose the correct PSF candidates because
the fidelity termQ(g — f, ® k") seems to be zero for any PSF candidfe.
However, it works. Since any deconvolution algorithm is pseudo inverse of con-
volution operation, recovered image has deconvolution error. Thus, the fidelity
termQ(g — f, ® k) is not zero. FigurB.I8shows how the fidelity terms work
on linear motion blur case. In this case, horizontal linear motion blur ef 15
is applied to ‘Lena’ image. To the blurred image, Wiener filtering with different
PSFs with different motion length parametérare applied. Figui8.16(a)shows
restored imageg, and ideal fidelity termy — f ® k" and Fig/3.16(b) shows
re-blurred imagey, ® k%" and practical fidelity termy — f, ® k°". From left
to right, PSF used for deconvolution differs its motion lengtirom 1, 7, 15,
and 20. In ideal case, correct cake= 15 results zero error while other wrong
cases contain some errors. On the other hand, practical case results zero error with
L =1 case but some errors with other cases. Even with correc/PSH5 case,
residual of re-blurred image is not zero. Figl3&7 plots the error value change
w.r.t. motion length parameters. Blue plot validates that the ideal fidelity term can
choose the correct PSF. On the other hand, pink plot shows interesting observa-
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(a) Ideal case. (Top) Restored imagés (Bottom) Ideal fidelity term
g— @K

fn@kcan ﬂﬂﬂﬂ

g fn, ® kCal‘l

L=1 L=7 L=15 :20

(b) Practical case. (Top) Re-blurred imafie k" (Bottom) Practical
fidelity termg — f,, ® kean

Figure 3.16:Example of PSF candidates evaluation with a case of horizontal lin-
ear motion blur ofL, = 15.

tions. Error value globally increases with the increasg,@specially the increase

is accelerated ovel > 15. However, there exists local minimum arouhd= 15.
Considering these two observations, correct PSF seems to be estimated by find-
ing such local minimum. Thus, the regularization term of EJI® should be
designed to find such local minimum against to the global behavior of the fidelity
term.
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Figure 3.17: Plot of the fidelity term according t6. (Blue) Fidelity term values
of ideal case. (Pink) Fidelity term values of practical case.

3.6.1 Data fidelity term

As mentioned in Se@.5.3 the data fidelity term evaluates the mean square
error as

Qg — fu0 ke = 3" \lg = f @ ke (3.13)

Following Savakis and Trussefbhvakis and Trussgll993, Wiener filtering Wienei,
1949 is used to compute recovered imaf;e

3.6.2 Regularization term

As mentioned above, regularization term should be designed to find such local
minimum against to the global behavior of the fidelity term. Thus, the regular-
ization term considers the difference of neighboring motion direction parameters

Width? (/%gan> + Height (izgan)

Ry (/%fﬁ”) - ’ 0 (3.14)

where Width and Height functions return PSF’s width and height, respectively,

as

1.can
kn

~ 0
and LO norm of a candida#kga”H counts the number of non-zero components.
Denominator works only for NLM to favor a straight line rather than a zigzag line.
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3.7 Experimental results

This section validates the proposed method by using both synthesized im-
ages and real world images. Synthesized images are used to evaluate the per-
formance of both each process and entire process of the proposed method. Then,
the proposed method is applied to real world images. Furthermore, comparisons
with other blind deconvolution methods are shown. All experiments are done
Intel ® Core™ i7 Quad CPU 3.20GHz and 6GB RAM.

3.7.1 Synthetic experiments

In these synthetic experiments, a set of 200 images from Berkeley Segmenta-
tion DatasetBel] is used as latent images and randomly generated PSFs is used
to synthesize blurred images. This section first assesses sub processes of the pro-
posed method, which are PSF candidate estimation process and PSF candidates
evaluation process. Next, the entire method is evaluated with synthesized images.
Since the synthesized images are noise-free, Wiener filtevagner, (1949 is
used as a deconvolution algorithm.

Synthetic experiments for PLM PSF

Here, the quantitative evaluation of NLM PSF estimation is shown. To gener-
ate random NLM PSFs, the experiments are done with the following conditions:
number of component PSF$ = {2,3,4}; potential range of motion length of
component PSE = {10 ~ 30,30 ~ 50,50 ~ 70} [pixel]; and minimum angle
of two different motion directiol\d = {10, 20, 30} [deg.]. For example, the case
(N, L,A#) = (3,10 ~ 30, 20) generates a PLM PSF consists of three component
PSFs, motion length of each of them randés~ 30 pixels, and each motion
direction parametet is distributed at least 20 degrees.

PLM PSF candidates estimation
First experiment is validation of Radon transform based motion directions esti-
mation under the conditions mentioned above. Here, success case is defined to
satisfy that the number of maximum of Radon transform is equivalemt, tthat
estimation error of is less than 5 degrees. Tal@ld shows the number of success
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Table 3.1:PLM PSF candidates estimation: The number of success cases.

A0 10 | 20 | 30
N

2 3 4| 2 3 4] 2 3 4

10~30 [ 110 50 12| 114 58 20/180 145 82
30~50 | 159 92 75/161 117 87 199 194 189
50~ 70 | 173 123 84 164 115 82 200 200 193

Table 3.2:PLM PSF candidates estimation: RMSE of estimated motion directions
[deg.]

A 10 | 20| 30
N

2 3 4,2 3 4,2 3 4

10~30 |05 05 04/04 05 0.6/03 04 04
30~50 {01 0.1 0.100 00 0.1/0.0 0.0 0.0
50~70 | 0.0 0.0 0.000.0 0.0 0.0/0.0 0.0 0.0

cases of 200 trials under different conditions. Almost failure cases are undetected
cases. The table shows that both smallé and bigger/N have more failure
cases. This indicates that these conditions make Radon transform disable to lo-
calize two neighboring maxima. On the other hand, biggéave more success
cases. This indicates that biggeclarifies the corresponding maximum of Radon
transform. Next, TablB.2 computes the Root Mean Square Error (RMSE) of es-
timated motion directions only for success cases. In all cases, RMSE is less than
1 degree. Especially, biggdr cases provide better results than smaller cases.
Table[3.3 computes the RMSE of estimated motion length parameters only for
success cases. Contrast to motion directions estimation, results differs according
to the conditions. Especially, the conditigv, L) = (4,10 ~ 30) marks rela-

tively worse results. So far, | have not found arrived at a clear conclusion for this
results. However, | guess that each negative spike interferes each other, thus the
results are relatively bad.
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Table 3.3: PLM PSF candidates estimation: RMSE of estimated motion length
parameters [pixel]

A0 [ 10 [ 20 | 30
N

2 3 4|12 3 4)2 3 4

10~30 |1.6 55 9.1/ 23 56 85 3.0 80 12.0
30~50 [ 1.7 24 3215 22 27/19 3.3 438
50~70 |19 23 3219 21 2514 20 238

Table 3.4:PLM PSF candidates evaluation: The number of success cases.

A 10 | 20 | 30
N

2 3 4 2 3 4 2 3 4

10~ 30 | 189 170 149 189 166 146 191 170 156
30~50 | 173 115 83163 128 095|176 127 79
50~70 | 134 70 38|139 94 41|143 87 75

PLM PSF candidates evaluation
Next, candidates evaluation process is validated. In this experiment, correct com-
ponent PSFs are used to validate the evaluation function chooses the correct PLM
PSF. Thus, Tabl@.4just counts the number of success cases of 200 trials for each
condition. The result indicates that larg€rcases and largdr cases seem to fail.
Since larger size PSF causes more ringing artifacts even though the PSF is correct.
Therefore, above conditions have more failure cases.

PLM PSF estimation
Finally, entire method is validated. Considering the above experimants set
to 30 degree. Here, the success case is defined to satisfy that blur direction error
is less than five degree. Tal8e3 shows the number of success cases, RMSE of
motion directions, and RMSE of motion length parameters. The number of suc-
cess cases differs according to the conditions more than previous experiments. In
the previous experiments, larger PSF size is better for candidates estimation while
smaller PSF size is better for candidates evaluation. In this experiment, the case of
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Table 3.5:PLM PSF estimation: The number of success cases, RMSE of motion
directions [deg.], and RMSE of motion length parameters [pixel].

| #success | RMSE ofd [deg.] | RMSE of L [pixel]

N 2 3 4,2 3 4 2 3 4
10~ 30 | 150 63 12/03 06 15 |11 15 11
30~50 | 157 92 7100 0.0 0.0 09 18 2.1
50~70 | 136 76 49/00 00 0.0 |15 18 2.7

L = 30 ~ 50 results most success cases. Calculated RMSE of success cases are
that motion direction$ is less than 1.5 degree and motion length paramétéss

less than 3 pixels. For an image o820 x 240 resolution, the proposed method
takes 0.1 sec for PSF candidates estimation(anelV! sec for PSF candidates
evaluation,e.g, 0.1 + 0.15 x 3! = 1.0 sec for a PLM consisting of three linear
motions.

Synthetic experiments for NLM PSF

Since NLM PSF does not parametric form, quantitative evaluation is not easy.
To evaluate the accuracy of estimated PSFs, we compare a restored image using
estimated PSF with one using the ground truth PSF not with the latent image
because deconvolution algorithms cannot perfectly recover the latent image even
with the ground truth PSF.

PSF shape estimation process
| first evaluate the PSF shape estimation process. The assumption is that the cep-
strum of a NLM PSF has unclear PSF shape that lies between the positive peak
and one of negative valleys. To validate the assumption, | input a correct negative
valley, corresponding to a ground truth PSF, to EQ9)(so that the process can
ideally estimate the correct PSF. Since it is not easy to evaluate an estimated PSF
by its shape, we compare the restored image obtained by the estimat¢d\R8F
that by ground truthfyes: Figuré3.I8shows the histogram of NCC of the restored
imagesf and fpest W.I.t. PSF size. It is natural that the process recovers higher
NCC images for smaller size of PSFs. Empirically, NCCs below 0.9 are visually
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Figure 3.18:Experimental result: NCC histogram of the restored imafesd
foestW.r.t. PSF size.

unacceptable. With this threshold, more than 70 percent of the trials are success-
ful for all the sizes of PSFs. FiguBI9shows some of the restored images. From
left to right, the size of ground truth PSF is increasing. Red framed figurés in
show the estimated PSFs while thatﬁ;gstshow the ground true PSFs. In both
PENGUIN and HsH cases, PSF is well-estimated, thus the restored images by es-
timated PSF recover the detail of the latent imageg penguin’s fur skin and fish
skin. The Goat case shows that the restored image is slightly damaged by even
the ground truth PSF because of the bigger PSF size. In such case, the estimated
PSF is not perfectly same as the ground truth. As a result, the ringing artifacts in
f is more obvious than that ifyest

PSF candidates evaluation
Next, | evaluate the performance of the PSF candidates evaluation process. | syn-
thesize 200 blurred images and prepare 10 PSF candidates, containing the ground
truth and others are wrong. For validation, estimate PSF is evaluated using the ob-
jective function Eq.[8.12). Table€3.68 shows the number of success of 200 blurred
images w.r.t. varying\ and varying PSF size. The casks= 0 denote that the
objective function evaluates the PSF candidates with only error term. The results
show that the objective function could successfully choose the ground truth PSF
more than 80 percent of the trials without the regularization term. All the fail-
ure cases ok = 0 chose the smaller size PSF than the ground truth. This result
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Restored image ]@
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by ground truth PSF fb(:st

Zoomed up

PENGUIN FISH GOAT

Figure 3.19:Examples of the PSF shape estimation experiment. From top to bot-
tom, latent images, blurred images, restored images by estimated PSFs, restored
images by ground truth PSFs, and zoomed up of the restored images are shown.
Red framed figures in restored images are PSFs used for deconvolution (for better
visualization, we enlarge the PSFs 3 times the normal size). From left to right,
PSF size is increasing.

indicates that the error term can discriminate the ground truth PSF, however, the
ringing artifacts caused by PSF size degrades the performance of the error term.
With A = 5 ~ 15 x 107°, the objective function provides better results than that

of A = 0. However, the cases > 15 x 10~° provide worse results according to

A. This result indicates that the regularization term assists the error term for the
evaluation but relatively biggex makes the regularization term dominant in the
evaluation function. In this experiment, the result has less correlation with PSF
size. Thus, we expect that the objective function works invariant to PSF size with
optimum\ value. In the latter experiments,is set to5 ~ 20 x 1075,
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Table 3.6:Experimental results of PSF candidates evaluation w.r.t. varying PSF
size and\ of Eq. 3.12.

A(x10° [0 5 10 15 20 25 30 35 40 45
10x10~20x20 | 176 192 191 186 179 172 160 152 142 131
20x20~30x30 | 181 188 186 179 173 166 157 148 142 125
30x30~40x40 | 174 179 178 176 169 165 152 147 137 127

PSNR(f, g)[dB]
35

30 * * *

25

20

15
15 20 25 30 35
PSNR(f, f)/dB]

Figure 3.20:Experimental results: The plots of PSNR ratio. Red line denotes
PSNR ratio PSNR{,f)/PSNR(f,g) equals 1. The ratio greater than 1 indicates
that the restored imaggis closer to the original imagethan the blurred image

g.

Performance of entire method
Here, | validate the performance of the entire method by using 200 blurred images.
PSF size is set to 2010~20x20 pixels. For each image, we compute the Peak
Signal-to-Noise Ratio (PSNR) of the blurred image and the one of the restored
image and compare them. The case that P$I,\jzfi)ms greater than PSNR(g)
represents that the restored imag closer to the latent imagéthan the blurred
imageg. Figure320plots PSNR ratio PSNR(f)/PSNR(,g) of the results and
ared line in the figure represents the ratio equals 1. In the experiment, 159 of 200
cases result PSNR ratio greater than 1. Fi@i&d shows some of the success
cases. Each caption of the blurred images and one of the restored images by es-
timated PSF represent PSNR{) and PSNRY, f), respectively. The MUNTAIN
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case is an example of higher PSNRY) cases, which denotes less blurred case.
Zoomed up figures show that wood area is well-recovered. Middle column shows
the result of the V@MAN case. The restored image by estimated PSF is slightly
damaged by more ringing artifacts than that by ground truth PSF, however, the
detail of the imagei.e., hair and eye, are recovered. Lower PSKR) case, the
SHIP case, is severely blurred than other two examples. The estimated PSF is not
perfectly same as the ground truth, however, the text on the\dKIING LINE

gets much better than the blurred imagEor an image 0820 x 240 resolution,

NLM PSF estimation method tak€9)01 sec for PSF candidates estimation and
0.15N sec for PSF candidates evaluatierg, 0.001 4+ 0.15 x 10 ~ 1.5 sec for a
NLM.

3.7.2 Real-world experiments

In the real world experiment, | compare the proposed method with a max-
imum likelihood algorithm [MathWorkg (Matlab’s deconvblind function) and a
Bayesian approaclfFgrgus et a).2006 based on variational Bayes estimation
[Miskin and MacKay[200(] to validate the proposed method. To deal with the
noise effect on blurred images, | use a regularized minimization deconvolution
method [Levin et al, 2007.

Real-world experiments for PLM PSF

For PLM PSF estimation, following scenes are use@eH (natural image,
smaller blur), EOWER (natural image, larger blur), ®LL (artificial object, larger
blur), TEXT (text image, larger blur). Figui@.22 shows blurred images, esti-
mated PSFs, and recovered image using Wiener fliéener, [1949. The num-
ber of component PSFs are 2 for#E, FLOWER, and DoLL scenes and 4 for
TEXT scene. In the restored images ;#8E and R.OWER scenes, leaves of tree
and flowers are well-recovered without ringing artifacts, thus we can say that es-
timated PSF is correct. On the other handyD and TEXT scenes have little
ringing artifacts. This indicates that the estimated PSF is not perfect, however,
text in both scenes recovered enough to read. Therefore, the proposed method can
estimate PLM PSF from various types of scenes.
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Next, the proposed method is compared with the conventional metlieafs, |
gus et al..2006 anddeconvblind. Figure3.23shows the results. Fergus’ method
recover REE and HLOWER scenes with less artifacts but fail oroDL and TEXT
scenes.deconvblind estimates obscure PSFs and recovered images are visually
unacceptable.

Real-world experiments for NLM PSF

Figurel3.24shows the results of four scenesp. (natural image), @ANGE
(artificial object), 3N BOARD (natural image), and 8T scene. The red frame
in a restored image shows the estimated PSF. The caption of the restored image
denotes size of the estimated PSF. The scer@s nd CRANGE are selected
as examples of natural images. For such scenes, both our method and Fergus’
method recover clearer images. doll's eye and the text in ORANGE scene,
while deconvblind provides the restored images damaged by heavy ringing arti-
facts. The other scenes are selected as examples of less-textured scenes: text pat-
tern in natural scenei8N BOARD and text-pattern only sceneeXT. For SGN
BOARD scene, both proposed method and Fergus’ method can recover satisfying
quality images. The reason why Fergus’ method can recover the satisfying image
is that the background area of text part in the blurred image obeys the statistics
of natural images in the case of text-pattern in natural scene. Contrast to above
scenes, EXT scene has only text component in the image. For the scene, our
method recovers readable text even with ringing artifacts, wiitenvblind and
Fergus’ method cannot recover clearly readable images. These results indicate
that our method can estimate PSFs for various scenes.

3.8 Conclusion

The motivation of this work is to search for the answer to the question that
is it possible that the classic approach estimates non-linear motion P&Rhis
guestion, | tackle non-linear motion PSF estimation issues with cepstral approach.
To achieve the purpose, | analyzed the cepstral behavior of two types of constant
speed non-linear motion PS&g, PLM PSF and NLM PSF. Based on the anal-
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ysis, the proposed method estimates non-linear PSF from a single blurred image.
Experimental results show that the proposed method can estimate non-linear PSF
under the condition that our assumptions are held.

3.8.1 Future direction

There are several future directionsOne is the consistency of the proposed
method. Now, the proposed method does not classify PLM and NLM because the
method uses different types of cepstral features of PSFs. Thus, all experiments
were performed separately. This style lacks of practicability. To develop a unique
solution handling both type of motion, one solution is to merge both types of PSF
such as a Piecewise Noisy Linear Motion PSF that is partially NLM. The cepstrum
should have the sum of the cepstra of all NLMs but has several negative valleys
which may correspond to one of the cepstrum of component NLM. To estimate
each component NLM, our NLM PSF estimation is performed for all negative val-
leys. Since some of estimated NLMs may correspond to wrong negative valleys,
we have to omit them but it is difficult to specify which valley is wrong. Thus, we
first generate PSF candidates by all the permutation considering such ambiguity.
For example/N component NLMs generatég! + (N — 1)!yPy_1 +--- PNLM
PSF candidates. Then, PSF candidates evaluation is applied to the candidates to
choose the best estimate. To realize this PNLM PSF estimation, theoretical foun-
dation of the cepstral behavior of NLM PSF is required. In this thesis, NLM PSF
estimation method is designed based on assumption derived from my observa-
tion but lacks theoretical foundation. Therefore, further analysis on the cepstral
behavior of NLM PSF is required.

Another issue is PSF candidate evaluation process. Regularization term of the
PSF evaluation (Eq[3(14) considers only PSF size. This means that our regu-
larization term considers the likelihood of unknown PSF. Similar to regularized
minimization of non-blind deconvolution, mentioned in SBcl.4 can provide
some information. If we can somehow find better regularization term, PSF can-
didate evaluation (Eq3(12) can be a powerful tool for any blind deconvolution
works because they can evaluate PSF with different parameters of their methods.

Another future direction is to extend cepstral approach as to estimate spatially
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varying PSFs from a single blurred image. First step is discrete PSFs estimation.
Since we don’t have prior knowledge on the scene, we cannot utilize sub regions
that are suitable for PSF estimation. Thus, the discrete PSFs should be computed
on image grid. Since there is no guarantee that a sub region is well-textured, we
have to consider the possibility of mis-estimation. For this problem, | came up
with some idea. First idea is to introduce constraint on latent image. Similar to
the statistical properties of image gradient, same category scene at same depth
scale follows the same distributions of power spectra at sub regions. Regarding
the averaged power spectra map as reference, PSF estimation can easily be done.
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Figure 3.21:Experimental results: Restored images of the entire method. From
left to right, MOUNTAIN, WOMAN, SHIP cases are shown with NCC values be-
tween the restored images. From top to bottom, original images, blurred im-
ages, restored images by estimated PSF, restored images by ground truth PSF,
and zoomed up of the restored images are shown. Red framed figures in restored
images are PSFs used for deconvolution (for better visualization, we enlarge the
PSFs 3 times the normal size).
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Figure 3.22:PLM PSF estimation for real world images. From top to bottom,
TREE, FLOWER, DoLL, andTEXT scenes are shown. From left to right, blurred
images, estimated PSFs, restored images. Captions of middle column images
denotes estimated PSF size.
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Figure 3.23: Comparison with traditional methods. From left to right, blurred
images, our method, Fergus et al., atedonvblind, respectively. Red framed
image in a restored image shows the estimated PSF.
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Figure 3.24: Experimental results: Restored images of the real world experiment.
From left to right, DoLL, ORANGE, SIGN BOARD, and TEXT scenes are shown

with the image resolution. From top to bottom, blurred images, restored images
by our method, restored images by Fergus’ metfiequs et a)2004, restored
images byleconvblind [MathWorkg, and Zoom up of restored images are shown.
Red framed figures in restored images are PSFs used for deconvolution (for bet-
ter visualization, we enlarge the PSFs 3 times the normal size) and each caption
of restored images denotes the size of the estimated PSF. Other framed figures
correspond to zoomed up regions of restored images.
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Chapter 4

In-Focus Projection from a Single
Projector-Camera Image Pair

In this chapter, | propose a method that displays an in-focus image onto off-
axis surface based on a single projector-camera image pair matching algorithm as
shown in Figld.1l Making a pair of projector and camera, the proposed method
first estimates defocus parameters on the off-axis surface. Then, generate a sharp-
ened image that contains enhanced edge according to the estimated defocus pa-
rameters. Finally, the sharpened image is projected to the surface to cancel the
defocus effect. The proposed method assumes that display surface is planar and
Lambertian.

4.1 Projectors in computer vision and graphics

Thanks to the recent development of projectors, their capabilitigs bright-
ness, resolution, contrast and throw-distance, have made projectors one of the
popular display devices. The greatest merit of a projector is that a projector can
project onto many screens of various sizes and scaled-up projection can show dis-
played image to many observers. Thus, projectors are known to be useful for both
Computer Vision and Graphics researches.
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Normal projection In-focus projection

Setup Displayed image on the screen

Figure 4.1: Overview of the proposed method. The propose method cancels the
defocus effect appears on surface off-axis to a projector. By projecting a sharp-
ened image, defocus effect is cancelled.

Real world measurement

With a projector, we can emit a light forming arbitrary shape. Such property
is useful for real world measurement.

3D volume measurement

One famous application is active stereo that measures 3D volume of objects by
the triangulation algorithm. Active stereo replaces a camera of stereo camera pair
with a projector. Projecting known patteeg, points and marks, correspondence
between the projector and the camera is easily done with the knowledge on the
projected pattern.

One intuitive extension is to reduce the number of projected patterns. Kawasaki et al.
use calibrated pro-cam set up for single-shot 3D reconstrudiawésaki et al.

200§. For decode the projected pattern, they use grid pattern having coplanarity
constraints. They further extend single-shot reconstruction system to work under
uncalibrated pro-cam paiKbwasaki et al'l201(. To achieve single-shot system,
their method does self-calibration using a projected De Bruijn grid pattern. Fer-
nandez et al. do 3D dense reconstruction from a single-shot projeEgondndez

et al,201(. For uniquely decode the projected pattern, they design multiplexed
color pattern. Thus, their pattern decode algorithm provides fast and reliable phase
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map.

One of the big limitations of the above methods is sensitivity to objects’ tex-
ture. Schmalz and Angelopoulou propose single-shot 3D reconstruction for tex-
tured objects|$chmalz and Angelopoulp201(d. To decode the pattern on tex-
tured surfaces, they introduce region adjacency graph. Watershed transform rep-
resents the input image with fewer color, thus the method becomes less sensitive
to the noise caused by objects’ texture.

Yamazaki and Xu measures 3D shape of glossy surface based on Dichromatic
reflection modelYamazaki and X1201(. The system consists of stereo camera,

a projector located at closer position to the cameras, and a display located at op-
posite position to the cameras. Due to the positions, the cameras observe diffuse
component of projector light and sum of specular and diffuse component display
light. Thus, active binocular stereo measures diffuse component from projector
light and shape-from-distortion measures specular component from display light.
When the reflection on the surface is dominated by diffuse component, projec-
tor’s projection is clearer while display’s projection is blurred. On the contrary,
when the surface reflection is mainly specular, display’s projection gets clearer
and projector’s projection is blurred.

Cuypers et al. propose real-time 3D shape acquisition based on silhouette ex-
traction, visual hull in other wordgdJuypers et a).2009. Instead of multiple
cameras, they use multiple colored point light sources. The setup consists of mul-
tiple colored point light sources, a diffuser and a digital camera. For each light
source, a silhouette is extracted from the captured shadows of the scene. These
silhouettes are used for visual hull reconstruction as well as image based collision
detection.

Furukawa et al. measure entire 3D shape of an object using uncalibrated pro-
cam [Furukawa et a).i2009. They estimate initial 3D shape using active stereo
and compute initial estimate of extrinsic parameters. Next, feature points based
rough registration is performed as the initial values of the motion parameters.
Since the wrong correspondence may cause registration error, the motion param-
eters are refined by ICP algorithm. Finally, bundle adjustment is performed to
optimize all the parameters.
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Figure 4.2: A conceptual sketch of the office of the future. CourtesyRdgkar
119984.

Appearance control

Initially, projector is designed to use with a planar that is white and Lam-
bertian. However, adjusting the projection enables to control the appearance of
real-world object. Such appearance control technique is useful for virtual reality,
mixed reality, and augmented reality works.

Immersive display

Raskar and his colleague proposed office of the fuigeskar et a)[1998&b]
as shown in Figd.2 Replacing the normal office lights with projectors, we can

control all over the light in the office. In the back of the system, synchronized
cameras capture the visible surface of the office so that we can control the appear-
ance of images on the surfaces.

One of the biggest limitations of front projection systems is that occluder be-
tween the projector and the surface casts shadow on the surface and that projector
illuminates undesirable projection onto occluder. Using multiple projectors, we
can fill the shadow regiorifudet and Cooperstog200% Jaynes et g12004
'Sugaya et 8/[201(. First step detects shadow region by comparing predicted
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(d) Color Phase Control (e) Unique Brightness (f) Edge Enhance and Blur

Figure 4.3: Example of appearance control results. (a) Original appearance. (b)
Color saturation enhancement. (c) Color removal. (d) Color phase control. (e)
Unique brightness. (f) Edge enhance and blur. Courtesyofano and Katp

2010.

view and actual observation. Once shadow region is detected, another supplemen-
tal projector projects occluded region. Sugaya et al. proposed shadow contrasting
method for multiple projector displajsligaya et g/201(. Their method rec-
ognizes which projector generates the shadow on the display from a single-shot.
The method is available for removing the cast shadow by occluder and undesirable
projection onto occluder.

Texture control

Contrast to the above immersive display, texture control of smaller size objects
is also interesting. Amano and Kato implemented appearance control methods for
the visually impairedJefferson and Harve2007 1994
et all, 2007 on Projector-Camera systeniSrhano and Katp201({. Figure4.3
shows the examples of appearance control results of color saturation enhance-
ment, color removal, color phase control, brightness equalization, and edge en-
hancement and blur. Menk and Koch proposed appearance control under the in-

fluence of ambient lighiflenk and Koch201(. They use spectral data recording
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projector, ambient light, and object separately. The data is used to decide projec-
tion pattern by physically-based simulation. The proposed radiometric model has
the constraint that the pixels of the projector are treated independently of each
other. Park and Kim use a mobile projector to support large disfiayk[and
Kiml,[201(. Colored projection boundary enables the system to track the mobile
projector. By extracting user’s shadow generated by projection, the user can inter-
actively access the content. As mentioned in{iiRaskar et al. presented the idea

of shader lamps where projectors are used to project additional graphical content
onto a neutral and diffuse real obje€tdskar et ajl200]]. Bandyopadhyay et al.

then extendedRaskar et a)i200]] to project onto movable objects, which addi-
tionally could be interactively colored with a tracked paint briBarjdyopadhyay

et all,20017].

4.2 Related works

This section briefly overview the related works. The discussion is mainly
related to projector image adjustment works but not limited to in-focus projection.

As mentioned above, computer vision and graphics research fields have ex-
panded projector’s potential probability during this decade. Projector’s key prop-
erty enables these works is that we can control projecting light so that environmen-
tal information can be extracted by making a pair of projector(s) and camera(s).
For the upcoming imaging technologies, what kind of pro-cam applications are
favored? Considering the number of intended people, projector image adjustment
technique is the one favored. The release of books well-summarizing the related
technologies indicates that my guess is not bad direction. Bimber and Raskar men-
tion the projector based augmented reality technologieBimlber and Raskar
2004 while Majumder and Brown mention the development of multi-projector
display in Majumder and Browjyi20079.

Generally speaking, we, projector-camera researchers, regard the view of cam-
era is equivalent to user’s view. The relationship between a projector imaige
a cameraimageis described as

c(x) = D(p(x), ©), (4.1)
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Figure 4.4: The relationship between a projector image and camera image.

whereD represents any image distortion on the projector imagecaisda set of
distortion parameters. Figuked shows the relationship. The form of distortion
function D varies with considered image distortion and paramételepends on

the scene. The goal of projector image adjustment is to fit the projected image
onto any surface so that we can show what we want to show, namely distortion
free image. For this purpose, two technical problems should be solved. One is how
to synthesize such adjusted image and the other is how to estimate the distortion
paramete® for image synthesis. In this section, | give the brief overview of the
literature for each problem.

4.2.1 Adjusted image synthesis

First problem to be solved is adjusted image synthesis. Suppose we expect the
camera to observe With known distortion parameter s&;, adjusted image to
be projected is synthesized as

p(x) = D (c(x),0). (4.2)

Note that the equation implicitly assumes that the functias invertible. Roughly
speaking, there are two approaches for the synthesis, two pass rendering and pixel-
by-pixel mapping.
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Two pass rendering

Two pass rendering was first introduced by Raskar eRalskar et a)l19984.
The approach assumes known scene geometry and fully calibrated projector-camera
pair. In the first pass, we render the goal imageom the perspective of the cam-
era. Nexti, is mapped onto the display surface. This mapped image is generated
by projective texturing that projects the goal image onto the surface. Then, the
second pass renders the mapped image from the perspective of the projector. This
approach is used for projection onto non-textured objBahfdyopadhyay et al.
2002, Johnson and Fuch2007% [Raskar et a}i2003 2007].

Pixel-by-pixel mapping

The assumption of two pass rendering is too strong to use in everyday appli-
cations because the geometry of the scene is generally unknown. For the case of
unknown geometry, pixel-by-pixel mapping is suitable approach. The approach
somehow finds the correspondence betweandp so that we can precisely con-
trol the projection without the scene information.

Light transport The light transport describes all global illumination effects
between a light source (projector) and an imaging device (cam8ex ét al.

2005. Simply speaking, the light transport matrix is a lookup table describing all
the pixel correspondence of the projector-camera pair. Thus, the transport matrix
is obtained once, we can synthesize any image from the projector’s perspective
under camera illuminatioring et all, 2009 Wetzstein and BimbeR007 [Ya-
mamoto et al’201(. The merit of this approach is that the light transport contains

all the distortion in a matrix form. Thus, both geometric and color distortion can
be cancelled by applying the inverse light transport matrix. Once the light trans-
port of between the projector and the camera is obtained using structured patterns
projection, we can synthesize image from the viewpoint of the projector, the scene
illuminated by a synthetic light sourcetc

Approximate model With light transport, we can synthesize any image of
the scene. However, acquisition takes so long to know all the pixel correspon-
dence of the projector-camera image pair. One may prefer approximate models
rather than pixel level mapping under a situation that display surface is locally
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uniform. Such approximated model finds local region level mapgifgumder
and Brown2007. Contrast to the light transport, this approach should separately
consider the distortion. For geometric distortion, piecewise planar assumption is
well-used. Interested readers may referBoown et al, 2005 for further infor-
mation.

For color adjustment, well-used distortion functioB is3 color mixing matrix
D..1or that maps projector image to camera image as

CR pR
CG — Dcolor pG s (43)
CB pB

whereR, G, B denote red, green, and blue component of an imagg,p” de-
notes red color component of projector image. Using this expression, pixel level
color mapping is realized with geometrically aligned projector-cameralfalr|
down et al,[2006 Bimber et al, 2005 [Fujii et al), 2005 (Grossberg et al2004
Grundtofer et al,[2007% [Nayar et al.2003 Wang et al.2005.

Focal adjustment

The above approaches implicitly assume projector can always display in-focus
image, however this assumption is not hold in practice. Due to its narrow depth-
of-field, projector can make in-focus projection with strict environment. In order
to increase the depth of field of conventional projectors, There are mainly two
solutions, single or multiple projector based methods.

Multiple projectors for in-focus projection One intuitive solution is to use
multiple overlapping projectors with different in-focus positioBshber and Eni-
merling, [200€. Each projector projects an image onto a part of target surface that
is located in the each projector’s depth-of-field as shown inlE£H. This partial
projection by multiple projectors minimizes a degradation caused by projector
defocus on the screen surface. Thus, overlapped image forms in-focus image.

Single projector for in-focus projection When only a single projector is
available, we should tackle the problem with inverse of distortion functioriZeg).
The inverse function against to defocus blur is edge sharpening. Thus, previous
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single contributions final result

focal plane

left projector

right projector

Figure 4.5: In-focus projection with multiple overlapping projectors that have
different in-focus planes. Courtesy @imber and Emmerlindg2004.

methods first sharpen an image and then project the sharpened image so that the
sharpening effect cancels the defocus effBcojvn et al, 2006 [Grosse and Bim-
[Park et al.2008§ [Zhang and NayaP00€. Figureld.6 shows an exam-

ple of single projector based in-focus projection.

4.2.2 Distortion parameter estimation

The other problem to be solved is distortion parameter estimation. Any ap-
proach estimate® by pattern matching algorithm that compares the projection
p and the observation Thus, the categorization considers what kind of patterns
are used.

Structured light

The most popular approach is to use structured light (fiducial pattern). As
listed by Salvi et al., coding strategy of such fiducial is classified according to
the target/$alvi et al, [2004. For geometry estimation, point is to make a set
of corresponding points. Thus, point cloud, binary/gray code, chess board pat-
terns, special markers,g, ARTag [Fialg, 2004, are used. For color/radiometric
parameters estimation, point is to make a correspondence of projector color and

91



Figure 4.6: In-focus projection by sharpened image projection with single projec-
tor. Projector images (top) and their corresponding camera images (bottom). From
left to right, fiducial patterns, original image, and sharpened image are shown.

Courtesy of[Brown et al,200§.

camera color. Therefore, gray color code and color code are used. For defocus
parameter estimation, projected pattern should be sensitive to defocus blur. Thus,
point/circle clouds are well-used. TaBl€l classifies the related papers according

to their target distortion and type of structured pattern.

Image matching based method

Thanks to the recent development of image description/matching researches,
alternative approach relies on image features matching. For static scene, fea-
ture points matchinge.g, SIFT feature points, are usefiakahashi et §1201Q
'Yang and Welch200]]. For moving surface, Lukas-KanadBdker and
like gradient descent methoAlidet et al,201( or stereo based
tracking Johnson and Fuch2007 is suitable. Amano and his colleague directly
modify the appearanc@mano and Katp2008§ [201(. They set the statistical

property of goal imageg.g, color profile and edge intensities of the camera im-

age. Then, they can directly compute the parameter for image synthesis by com-
paring the statistical property of the goal image and the camera image. Another
type of solutions uses some external devices for ease of {Barkdwski et al,

92



Table 4.1:Classification of structured light.

Distortion | Pattern | Papers

Point cloud | [Okatani and Deguchi2005 2009

Binary codes [Tardif et al, 2003

Geometry| Chess board| [Drareni et al,2009 [Sun et al.2008&h]

ARTag [Audet and Okutomi2009 Fialg, (2005
Griesser and GopP004

[Fuijii et al}, 2005 Majumder et all201Q

200Q 2003 [Nayar et al.l2003

Cross dots | [Brown et al, 2006

Chess board| [Park et al.200§

Focus [Bimber and Emmerling2006 Grosse

Circle dots | land Bimber 200§ |Grosse et &/.2009

2010 [Zhang and Naya200q

Color Color codes

2003 Lee et al,[2004 2005 |[Leung et al.l2009. Contrast to the above method, it
works faster and more robust.

Imperceptible structured light

As Raskar et al. mentionefRaskar et a)/1998H, embedding imperceptible
structured light/Cotting et al, 2004 [Grundfofer et al, 2007 [Park et al.[2007%
Zollmann and Bimber2007] is another solution. A temporal modulation of pro-
jector images, flickering projection in other words, allows us to embed structured
light that is imperceptible for human visual system in the projector images. Zoll-
mann et al. combine both normal structured light and imperceptible 2olé![
mann_et al.l2007. The method embeds the imperceptible structured light in
running phase and estimates the distortion parameters on-line. Once the on-line
estimation fails, the method projects normal structured light for re-initialization.

4.3 Motivation

For upcoming imaging technologiesg, dynamic projection in dynamic scene,
what is required? In answer to this question, | develop an in-focus projection
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method without implicit fiducial pattern projection. The reason of this answer
comes from some issues described in the following.

Most of existing projector image adjustment worksy, geometric adjustment
and color adjustment, are constrained by hardware limitations of projector. Nar-
row depth-of-field results defocus blur with volumetric depth or moving screen
object. When its resolution or dynamic range is not enough for the purpose, dis-
played image quality is significantly lost. For dynamic projection systems, one of
the most important things is defocus blur. Thus, in-focus projection technique is
a good topic for the future improvements of projector.

Thanks to the recent development of image feature descriptor, representation,
and matching and tracking works, projector image adjustment researches are go-
ing to remove structured light projection from their method. This trend is per-
suasive because structured light projection is a tool not a purpose. Even though
we can expect imperceptible structured light to provide as same quality result
as normal structured light does, embedding the pattern itself is undesirable addi-
tional process. Therefore, developing image matching based approaches can be a
suitable choice for a system under dynamic scene. Since most projector-camera
researchers carefully use projector to make the display in-focus, focal adjustment
was previously less required. Furthermore, in-focus projection technique is a fresh
research field. Therefore, there does not exist an in-focus projection method based
on image matching method.

Another concern is a way of in-focus projection. As mentioned above, there
are mainly two solutions, multiple projectors or single projector to achieve in-
focus projection. For developing a simple set up, | choose the latter approach.

4.4 Overview of the proposed Method

This section proposes in-focus projection method. The proposed method con-
sists of two steps, distortion parameter estimation and adjusted image synthe-
sis. Figuréd.l shows overview of the proposed method. As input, the pro-
posed method takes a projector imggand a camera image In the distor-
tion parameter estimation step, the proposed method first estimates discrete PSFs
at extracted regions from a pair of projector-camera image (blue dot framed).
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Sharpened image

Discrete PSFs Spatially varying PSFs
at extracted regions D—

Figure 4.7: Overview of the proposed method. As pre-processing, rich textured
regions (yellow dot framed) are extracted. From a pair of projector-camera image
(blue dot framed), the proposed method first estimates discrete PSFs at extracted
regions. Then, spatially varying PSFs covering the entire image is computed by
interpolation/outerpolation. Once the spatially varying PSFs are computed, the
original projector image is sharpened according to the computed PSFs.

Then, spatially varying PSFs covering the entire image is computed by interpo-
lation/outerpolation. Then, the estimated PSFs are used to sharpen a projector
image. Finally, the sharpened image is projected to the surface to remove the
defocus effect. The proposed method assumes that display surface is planar and
Lambertian.

4.5 Spatially varying PSFs estimation

The proposed method estimates spatially varying PSFs from a pair of pro-
jector imagep and camera image When the light direction of the projector is
not perpendicular to the display surface, projector defocus on the surface is not
constant, spatially varying across the surface. In a strict sense, such PSFs should
be estimated on pixel by pixel, however, it's applicable. Assuming the planar
surface, we can regard the spatially varying PSFs locally uniform and smoothly
varying. Thus, the proposed method estimates such PSFs from by interpolating
PSFs estimated at several positions.
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45.1 Discrete PSFs estimation

The projector defocus is described by a 2D Gaussian PSF due to its larger

apertures as
1 z? + y?
k(x;o) = 53 OXP <— 572 , (4.4)

whereo denotes standard deviation of the Gaussian. Thus, camera image
described as

c(x) = p(x) ® k(x;0). (4.5)

Note that the amount of defocusis not constant on the surface.
Given projector-camera image pair, the proposed method estimatehe
PSF as

6 = argmin @ (c(x) — p(x) ® k(x;0)). (4.6)

Considering projector light attenuation and noise effect, evaluation funglion
computes NCC values of the argument as

6 = argminQ (c(x) — p(x) ® k(x;0))
= argmax NCC (¢(x), p(x) @ k(x;0))

Z(C(X) —p(x) ® k(x;0))
Z Zp ® k(x;0) .

Applying thiso estimation on sub images, we can estimate discrete PSFs at dif-
ferent positions.
Since we have both and ¢, one may claim that straightforward strategy is

spectral division as @

- [ Fl(c

k=F (]__(p)>, (4.8)
however, the estimate is not correct because[E§) {gnores other projector im-
age distortion. In addition to defocus blur, the camera imagetually contains
other types of distortiorg.g, geometric and color distortion. The assumption of
geometrically registered projector-camera pair is theoretically cancel the geomet-

= ar gmax

(4.7)
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ric distortion but color distortion still remains on the image. Well-used form of
the color distortion is formulated as

c(x) = Deolor (p(X) ® k(x;0)) . (4.9)

The color distortion functiorD.,., is single scalar for gray scale image ahs 3
matrix for color image. Loss of generality, let us consider the simple gray scale
case. When color distortion function scales and biases input as

C(X) = Dcolor (p(X) & /{I(X, J)) (410)
Ciseale(X)p(X) ® k(X5 0) + Chias(x), (4.12)

where C... and Ch;,s denote scale and bias factors. In supposed situation of
the method, botl’,.... andCy,;,s iS Not constant across the image. In such case,
Eq. @.9) is rewritten as

Pt (20 - o (Z{Cnlelle) o)+ O

F(p) F(p)
o (F(Canl)) © F(0) F (5 0)) + F (Cou()
-7 < F (p) )
= 7 (FCant) @ F i) + T =) )

Therefore, spectral division cannot be applicable.

4.5.2 Spatially varying PSFs estimation

Then, the method interpolates the discrete PSFs for spatially varying PSFs es-
timation. Intuitively, we compute the discrete PSFs on image grid or on image
corners. However, | empirically found that PSF estimation on such region some-
times fails. When a sub image,;, has uniform color, Eql4.6) always returns
o = 0 meaning no defocus blur. This indicates that the PSF estimation4E)y). (
implicitly assumes that projector imagg,, is well-textured. If we use PSFs esti-
mated on less-textured regions, thestimation error propagates. Therefore, we
should carefully extract rich textured sub images for stabkestimation rather
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(a) Original image (b) Image corners (c) Rich textured regions

Figure 4.8:Textures on image corners (green) and on rich textured regions (red).

than less textured ones. Figifted compares image corners and well-textured re-
gions. Contrast to the rich textured regions (red frames), image corners (green
frames) are less textured. On such less textured regions, proposed discrete PSF
estimation (Eq.4.9)) fails.

For rich textured region extraction, the method should consider defocus effect.
Since the proposed method is designed for defocus blur estimation, rich textured
region should be sensitive to projector defocus. Thus, arich textured region should
satisfy the following equation as

ﬁsub = argmax Z ’psub<x> - psub(x) ® k(X, U)' 3 (413)

Psub XEXsub

wherex,,, denotes sub region gf,,;,. Rasterizing the computation over entire
image, the proposed method extract four rich textured regions and use them for
the discrete PSFs estimation. Figdt@ depicts the extraction process.

Once four rich textured regions are extracted, the discrete PSFs are estimated
on the regions. Then, spatially varying PSFs are estimated by simple linear in-
terpolation and extrapolation. For the following process, the method spatially
varying PSFs are interpolated/extrapolated on the image grid not on all the pixels.
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(a) Original imagep (left) and synthetically blurred imag®) Extracted rich textured
p ® k (right). region.

Figure 4.9:Rich textured regions extraction.

4.6 Sharpened image synthesis

Next, the proposed method sharpens the projector image using the estimated
PSFs. To cancel the spatially varying defocus, sharpening should also be spatially
varying. Here, the method uses interpolation again for spatially varying sharpen-
ing.

Now, we have the projector imageand the estimated PSFs on the image
grid o,. The pixel value of final sharpened imaget x is obtained by linear
interpolation as

+ aprD ' (p(x); 04(xER)), (4.14)

where D~! is the sharpening functiory denotes weight parameter, denotes
PSF at neighboring image grid, and the subscripts indicate (T)op, (B)ottom, (L)eft,
and (R)ight respectively. Following this interpolation, spatially varying sharpen-
ing is done.

For sharpening functio®—!, the method uses the Wiener filteriri/iener;
1949.
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Sharpened image p(X)

Figure 4.10: Sharpened image synthesis. As pre-processing, rich textured re-
gions (yellow dot framed) are extracted. From a pair of projector-camera image
(blue dot framed), the proposed method first estimates discrete PSFs at extracted
regions. Then, spatially varying PSFs covering the entier image is computed by
interpolation/outerpolation. Once the spatially varying PSFs are computed, the
original projector image is sharpened according to the computed PSFs.

4.7 Experimental results

This section validates the proposed method with real world images. The ex-
perimental setup is as follows.

e Projector image: 960640 resolution
e Cameraimage: 1024768 resolution
e Subimage: 160160 resolution

e ~ of Wiener filter: 0.001

4.7.1 Spatially varying PSFs estimation

In this experiment, PSF estimation method is validated with on-axis case and
off-axis case.
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(a) Inputimage (b) Estimatedr (c) Fiducial pattern (d) Estimatedr

Figure 4.11Rich textured region extraction and estimated PSFs. (Left) Input im-
age and estimated PSFs on the extracted regions of input image. (Right) Fiducial
pattern and estimated PSFs on the same regions.

|
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€) Inputlmage (b) Estimatedr (c) Fiducial pattern (d) Estimatedr

Figure 4.121mage corners and estimated PSFs. (Left) Input image and estimated
PSFs on the corners. (Right) Fiducial pattern and estimated PSFs on the corners.

Rich textured region extraction

First experiment validates rich textured region extraction and PSF estimation
on the regions. Figuié.11(a)shows an input image and extracted regions on the
image while Figuréf.11(c)does fiducial pattern that has fiducial markers on the
corresponding regions. Here, estimated PSF on the fiducial markerd (Figd)
are regarded as ground truth. Comparing the estimatéde proposed method
estimates similar values. Next, | use image corners for PSF estimation under same
condition. Figuréd.12 shows the results. At the top corners, estimatagsing
input image are zero while fiducial pattern estimates reasonable values. These
results indicate that the proposed method extracts the rich textured regions and
that PSF estimation performs as similar as fiducial pattern method does.
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Table 4.2:PSF estimation on extracted regions. Both mean square error (MSE)
and standard deviation (Std. dev.) of estimation error is shown. Small and big
mean the relative amount of PSF. Partial and entire mean displayed image is par-
tially blurred and entire image is blurred respectively.

On-axis | Off-axis (small)| Off-axis (big)
small | big | partial | entire | partial | entire
MSE 1.09 | 0.61| 0.55 0.88 0.87 | 0.97
Std. dev.| 1.23 | 0.37| 0.70 0.98 1.03 | 0.56

Discrete PSFs estimation

Same experiments are done with different conditions and different images.
Tableld.2 summarizes the results. | compare the estimated PSFs on extracted re-
gions with fiducial pattern approach. Both mean square error (MSE) and standard
deviation (Std. dev.) of estimation error is shown on the table.

Spatially varying PSFs estimation

Next, spatially varying PSFs estimation method is validated. Here, | com-
pare the proposed method with my previous metl@ggmada and Sait@007.
The previous method estimates spatially varying PSFs on image grids, thus it
should mis-estimate PSF on less textured regions. F[gur&(@)tells that the
amount of defocus blur is slightly increasing from top left to bottom right in the
scene. Figur@.13(b)shows that PSFs estimated on the image grid fails on less
textured regions, top area of the image. On the other hand, proposed method es-
timates closer values and does not have outliers. Same as previous experiment,
both methods are compared with fiducial pattern approach and estimation error
is shown in table format. Tablé.3 and Tablé4.4 show the results of previous
method and ones of the proposed method respectively. These results indicate that
the proposed method suppresses the mis-estimation and error propagation caused
by interpolation.
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Figure 4.13:Spatially varying PSFs estimation. From left to right, fiducial pattern
approach (ground truth), previous meth@ypmada and Sait®007, and the
proposed method are shown.

Table 4.3:Spatially varying PSFs estimation by previous meth@gdmada and

Saitq 2007).
On-axis | Off-axis (small)| Off-axis (big)
small | big | partial | entire | partial | entire
MSE 2.05|1.61| 0.83 2.10 1.75 | 2.30
Std. dev.| 1.26 | 2.35| 1.08 3.46 1.35 | 4.23

4.7.2 Sharpened image projection

Next experiment is to validate that sharpening can reduce the defocus effect.
Figureld.14 shows the result of an off-axis case. Figdt&4(a)and Fig{4.14(d)
show that edges in the sharpened image is emphasized. Comparing the displayed
images, the sharpened image preserves lion’s fur and beard while the original
image loses. PSN ratio between the original image and displayed result of original

Table 4.4:Spatially varying PSFs estimation by the proposed method.

On-axis | Off-axis (small)| Off-axis (big)

small | big | partial | entire | partial | entire

MSE 1.58 | 0.96| 0.93 1.35 1.85 | 1.27
Std. dev.| 1.19 | 0.60| 0.86 1.06 1.20 | 1.43
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face
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(d) Sharpened image (e) Displayed (d) on the sur- (f) Zoom up of (e)
face

Figure 4.14:Sharpened image projection.

image and sharpened image are 21.3 and 21.7. Thus, the result indicates that
sharpened image projection can reduce the projector defocus effect.

4.8 Conclusion

The motivation of this work is to achieve in-focus projection without explicit
fiducial patterns projection. Since projector-camera image pair is available in
projector-camera systems, the proposed method estimates spatially varying PSFs
from the image pair. The method has two key points. First point is that the as-
sumption that the projector image is available reduces the difficulty of PSF esti-
mation. Using the assumption, discrete PSF on a sub image can be estimated by
comparing two images. Second point is to rely on the discrete PSFs on only rich
textured regions. Thus, we can prevent PSF estimation error propagation. Experi-
mental results show that the proposed method realizes in-focus projection without
explicit fiducial patterns projection.

One of the biggest contributions of this work to our research domain is to
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introduce simple signal processing strategy to estimate projector defocus without
fiducial patterns projection. In fact, the concept for geometric adjustment was first
realized by Yang and Welclvang and Welch2007] but no prior work exists for

focal adjustment. | first tried to realize in-focus projection without fiducial pat-
terns projection. After | proposed the original idea of this approacyamada

and Saitpl2007, Park et al. developed a prototype method of on-line in-focus
projection Park et al.l200§. This indicates that this work contributes to research
domain.

4.8.1 Future direction

To use the proposed method in dynamic scene, entire process should be com-
pleted in real time. Using a Pentium 4 processor of 3.2GHz and 1.0GB RAM,
entire process takes about 8 sec, 1 sec for PSF estimation and 7 sec for image
synthesis. For speed up, several approaches are conceivable. Simple but powerful
tools for fast image synthesis is to develop the function with GPU. Another idea
for dynamic scene is using sequential data even though | mentioned single shot
based approach is better than sequential data based method[fhé&S&ince the
proposed method uses single projector-camera image pair, the discrete PSF esti-
mation (Eq. [1.6)) searches all potential values. With sequential data, we can
limit the parameter search range close in value to the previous estimate. Another
approach is to compute the discrete PSFs at multiscale. Run PSF estimation at dif-
ferent scale, we obtain several PSF maps each of which corresponds to one scale
as shown in Figd.18 If a sub image contain enough texture for PSF estimation,
the estimated PSF value.g, o value for defocus blur and probably shape for mo-
tion blur, should be similar to neighboring scale. When the estimated PSF value
violates the above assumption, we stop estimation at the regions of finer scale.

Another potential extension of this work is to run the in-focus projection in dy-
namic environment. Spatially varying PSFs estimation itself is not computation-
ally heavy, thus the method potentially runs in real time. Straightforward strategy
is to merge object tracking algorithiBéker and Matthew2004 in the process.

At the initialization step, we extract the rich textured regions of projector image.
On running phase, target surface tracking and PSF estimation are simultaneously
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PSF map at scale 1

Figure 4.15: PSF map at different image scale. From left to right, sub image size

gets smaller. Red text means outlier.

processed. One concern is that discrete PSF estimation takes time proportional
to the amount of defocus. Since PSF estimation contains convolution operations,
the more defocus blur is the bigger kernel size is. As a result, the method runs
slowly for larger defocus scene. To solve this problem, PSF estimation can be
run in cepstrum domain. Different from estimation in image domain, we don't
need to compute convolution operations in cepstrum domain. Thus, adaptive PSF

PSF map at scale 2

25 3.2 2312713505

3.0 ' ' 26[10.0]34|30
23 3.4 2312413203
00]125|34/|0.0

PSF map at scale 3

estimation according to defocus amount is possible solution.
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Chapter 5
Conclusions

The history from ancient photograph to state-of-the-artimage acquisition/display
technology, | imagine the configuration of imaging technology in the future. That
is dynamic contents projection in dynamic scene as shown inlEy. For the
upcoming technologies, we may have to prepare several things. To realize the
future technologies, one issue to be solved is image degradation occurred during
imaging process. To relax the difficulty of the issue, | have separately focused
on image restoration works for both image acquisition and display process. Es-
pecially, key contribution is to introduce traditional signal processing theory to
concrete problems.g, non-linear motion PSF estimation for motion deblurring
and spatially varying PSF estimation for in-focus projection. As the experimental
results in Chi3and Chi, the proposed methods work in real cases.

Cepstral Analysis based Non-Linear Motion PSF Estimation

Chaptef3 focuses on non-linear motion PSF estimation from a single blurred
image. To solve this ill-posed problem, | analyzed the cepstral behavior of non-
linear motion,e.g, PLM PSF and NLM PSF. To use the analyzed behavior for
non-linear PSF estimation, the proposed method estimates a PSF with two steps,
PSF candidates estimation and then PSF candidates evaluation. The cepstral be-
havior is used for the former process. Once the method estimates PSF candidates,
they are evaluated by considering the imaging equation and the likelihood on PSF.
The main contribution of this work is that the method extends the classic cepstral
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analysis approaches for non-linear motion PSF estimation. With both synthesized
images and real world images, the proposed method is validated. Experimental
results showed that the proposed method can estimate non-linear PSF.

In-Focus Projection from a Single Projector-Camera Image Pair

ChapteHifocuses on spatially varying PSFs estimation from a projector-camera
image pair. For PSF estimation, we can put strong assumption on projector-
camera systems that projector-camera image pair is available. With the assump-
tion, image matching based algorithm can be applicable even for spatially varying
PSFs. Another assumption is that projector image has rich textured region that
is suitable for matching based PSF estimation. Experimental results showed that
the proposed method realizes in-focus projection without explicit fiducial patterns
projection. The main contribution of this work is that | introduce PSF estima-
tion strategy into this field so that the proposed method can passively estimate
the information of projector defocus without fiducial patterns projection. The ex-
perimental results show that the proposed method achieves in-focus projection
without using fiducial patterns.

5.1 Future works

Let me introduce some potential future works in my mind.

Human perception based image restoration

The proposed method considers physical phenomegacamera motion and
projector defocus because target blur for the method is explained as physical phe-
nomenon. If the goal is to find an answer that is physically correct, this type of
approach is fine. However, the final purpose is to show satisfying photograph
to the users. This indicates that we have to consider human perception as well.
Not many but some projector color adjustment works consider human percep-
tion such as Ashdown et al.” worldEhdown et al.200€ and Amano and Kato’s
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work [Amano and Katg201(d. Blur correction considering human perception is
one potential and interesting future works.

Blur information for realistic AR

Blur estimation method is useful for realistic AR. The key issue to develop a
realistic AR system, consistency between real world and virtual world should be
ensured. Thus, elemental technologies of AR have focused on finding geometric
and photometric information from an observed image. In 2009, Park et al. pro-
posed a method that estimates parametric motion blur information from an input
image and then render virtual object under the bRark et al.2009. Since AR
is getting a lot of attention as a dreamlike technology, blur estimation for realistic
AR is also interesting topic. The point of the topic is computation time. Since
most of AR system are required to be run in real time, some idea making the
computation faster is necessary.

Enhanced display for weak eyesight

One application contains the component of the proposed method is image en-
hancement for weak eyesight people. When weak eyesight people go to an eye-
glasses shop, he tries several types of eyeglasses. Unfortunately, eyeglasses set at
shop front do not have lens. This means that he check how much the eyeglasses
suits to him without lens. For such situation, the concept of in-focus projection
can be helpful. Figur®.1 shows the concept of the display. Top is hormal eye-
sight people’s view while bottom is weak eyesight people’s view. By enhancing
texture in the image, weak eyesight people can provably perceive the texture that
is imperceptible without eyeglasses. To realize this application, we need to know
the amount of weak eyesight and to enhance the view according to the weakness.
Each of necessary part is corresponding to PSF estimation and to in-focus image
synthesis respectively.

109



Normal eyesight

Weak eyesight

Original image Sharpened image

Figure 5.1:Concept of enhanced display.
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Appendix A

Richardson-Lucy algorithm

Richardson-Lucy (RL) algorithnmilucy, 1974 [Richardson/1977 is a non-
blind deconvolution algorithm based on Bayes’ theorem. Here, we derive original
RL algorithm and an extended one.

A.1 Bayes’ theorem

Following the Bayes’ theorem, a posterior distribution is formulated as

Plg(x)]f(x)) P(f())
Pl (A1)

whereP(g(x)|f(x)), P(g(x)), andP(f(x)) are the likelihood, the evidence, and
the prior distribution.

P(f(x)lg(x)) =

A.2 Maximum Likelihood estimation

Bayesian estimation is to estimatehat maximizes the posterior distribution
P(f(x)|g(x)), thus called Maximum-A-Posteriori (MAP) estimation. MAP esti-
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mation is formulated as

~

f = argl}naXH P(f(x)]g(x))

g [ PN )P, A2

Since we don’t have any prior knowledge on imageand f, we assume the
evidence term and the prior distribution as uniform distribution. Therefore, MAP
estimation is converted to Maximum-Likelihood estimation as

f o argmax [ Plox)1f(x)). (A.3)

Since the equation computes the products oyethe resulting value may po-
tentially be underflow. To reduce the risk, we usually minimize the negative log
likelihood instead of maximizing the likelihood. Sinte; is monotonically in-
crease, the conversion does not lose the contents. ThudABpig reformulated

as

f= arg}rcnin Z L(x), (A.4)

whereL(x) = —log(P(g(x)|f(x))) is the negative log likelihood.

A.3 Poisson noise

When image noise follows Poisson distribution, the likelihood is formulated
as

X x)9) exp (— f(x X
R | e R
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In this case, the negative log likelihood is written as

L(x) = —log(P(9(x)[f(x)))

= > f(x) @k(x) = g(x) log (f(x) © k(x)) +logg(x)!. (A6)

X

Consider a small perturbatiahx. The negative log likelihood is

L(x+Ax) = Y f(x+Ax)®k(x) — g(x)log (f(x + Ax) @ k(x)) +log g(x)!.

(A.7)
Removing constant term w.r.f, we obtain

L(x+Ax) = ) f(x + Ax) @ k(x) — g(x) log (f(x + Ax) ® k(x)). (A.8)

Assumingf(x + Ax) = f(x) + f(Ax), the equation is rewritten as

Lix+Ax) = ) (f(x)+ f(Ax)) ® k(x) — g(x) log ((f(x) + f(Ax)) @ k(x))
= Y FOkX) + [ @ k(Ax) - g(x)log (f ® k(x) + f @ k(AxX)) .
) (A.9)

Here, letf ® k(-) represenff(x) ® k(-). Then, the equation is expanded as

Lix+Ax) = Y f@kx)+f®k(Ax) - g(x)log (f ® k(x) + f ® k(Ax))

T )]

= ST F@k(x) + £ @ k(AX) — g(x) log {f © k(x) (1 i

= Z fRk(x)+ f®k(Ax) — g(x)log (f ® k(x)) — g(x) log (1 +

f® k(AX))
fekx) )

f® k‘(AX))
[ ®k(x)

= L(x)+ Y [ @k(Ax) - g(x)log (1 +
(A.10)
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Following the Taylor expansion thatg(1 + =) ~ x — % the equation is appro
imated as

Lix+Ax) = Lx)+ Y f®kAx) - g(x)log (1 i@ k@x))

f @ k(x)

= L)+ fokbx) gl —omrs

Omitting the last term, because it’s too small,

f ® k(Ax)
f®k(x)

= L(x)+ > f®k(Ax) (1—fé(zzx)). (A.12)

Lx+Ax) = L(x)+ Y f®kAx)—g(x)

From the definition of convolution integrdlab ® cdz = [ ba ® kdx, wherekk
is the adjoint ofk,

Lx+Ax) = L(x)+) f®hkAx) (1 f §<Z2x>>

— L(x)+ zxj f (1 - fg—;(z@) 2 k(Ax).  (A.13)

The partial derivative of.(x) onx is derived as

OL(x) L(x+ Ax) L(x)

X_

f®k(Ax) %g(x) (J?E@k—lifj) |

(A.11)

0x
(x) ) T
= ® k(x). A.14
O ( A ) @ (A14)
Since the minimization of the negative log likelihood is obtained by finding
satisfying
OL(x) 0
ox

114



Thus, we have

(1 i é(?i?x>) ® k() =0

9 oy
T kg &) =0 (A.15)

1

Using the convergence conditi t(lg‘) = 1, we obtain the update rule as

fin(®) _ 90 o
o) Te ke 2R (A.16)

Finally, we obtain the Richardson-Lucy deconvolution algorithm as

fena) = 100 (250 9. (A17)

A.4 Gaussian noise

When image noise follows Gaussian distribution, the likelihood is formulated
as

P(yx)If(x) = J[N(f@kx),0%)

) Hp (A F2M0) g

202

The negative log likelihood.(x) is

L(x) = —log(P(9(x)|f(x)))
= > (9x)— fRk(x)’. (A.19)

xT

Consider a small perturbatiahz. The negative log likelihood ((x) + A(x))
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L(x+ Ax) = Zg( 12— 29(x)f ® k(x + Ax) + f ® k(x + Ax)?

_ +Z —29(x)f @ x(Az) + 2f @ k(x)f ® h(AX) + f @ k(Ax)2.

(A.20)
Omitting the last term, because it’s too small,
L(x+Ax) = +Z —29(x)f ® k(AX) + 2f @ k(x)f © k(AX) + f @ k(Ax)?
= +Z —29(x)f @ k(Az) + 2f @ k(x)f @ k(Ax)
= L(x)+2 Z f@k(AX) (f @ k(x) — g(x)). (A.21)

From the definition of convolution integrdlab ® cdz = [ ba ® kdx, wherekk
is the adjoint ofk,

Lx+Ax) = L(x)+2)  f@kAx)(f ®k(x) - g(x))
= L(x)+2 Z f(fok(x)—g(x)®@k(Az). (A.22)

The partial derivative of.(x) onx is derived as

OL(x) L(x + Ax) — L(x)
ox Ax

= Y FU ek ) ekx).  (A23)

Since the minimization of the negative log likelihood is obtained by finding
satisfying

Thus, we have
F(fRkkx) —g(x)®kx=0. (A.24)



Using the convergence conditigiy; (x) — fi(x) ~ 0, we obtain the update
rule as

frn(x) = fulx) = (f ® k(x) — g(x)) @ k(x). (A.25)

Finally, we obtain the Richardson-Lucy deconvolution algorithm for Gaussian
noise as

frn(x) = fi(x) + (9(x) — fi ® k(x)) ® k(x). (A.26)
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Appendix B

Natural image statistics

Recently, many computer vision researches have paid attention to the natural
image statistics.

Natural image statistics represents the statistical properties of natural images.
One may doubt that natural images have common statistical properties because
there exist huge number of potential images,, a100 x 100 8-bit gray scale im-
age has more thar)?*°®° potential images. This doubt assumes all pixel intensity
is generated following an i.i.d. (independent and identically distributed) uniform
distribution, however natural images have some redundancy. Since redundancy
helps reducing ambiguity of a problem, seeking the statistical property of nat-
ural images and its usage should take very important roles in computer vision
researches. One example famous example using natural image statistics is JPEG
image format. JPEG is an image format of lossy compression. JPEG compression
is based on a statistical property of natural images that the energy of power spec-
tra of natural images are concentrated mainly in lower frequencies. Thus, higher
frequencies have less contribution to entire images.

Torralba and Oliva analyzed the statistical properties of the spectra of natural
images for scene and object categorization ta$ksralba and Oliva2003. In
their paper, they model the power spectra of images using polar coordinates as

A0
BN 0P] = 225 ®.1)

where f andf denote frequency and orientation of frequency component respec-
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(a) Images

(b) Image patches

Figure B.1:Images and their patches. (a, left) An image randomly generated from
an i.i.d. uniform distribution. (a, middle and right) Images of man-made object
and natural object from Berkeley segmentation datdgs].[ (b) Patches cropped

from the images. Blue, green and red framed patches are the patches from random
image, man-made object image, and natural object image, respectively.

tively, and A, denotes an amplitude scaling factor for each orientationcand

the frequency exponent as a function of orientation. Note fhatEq. [B.) de-

notes a frequency whil¢ in the other parts of this thesis denote unknown latent
images. The equation implicitly tells that mean power spectrum of natural images
is proportional to the inverse of frequency component. Though the paper focuses
on image categorization not on image deblurring, the point of this paper is that the
spectra of natural images and also man-made scenes can be modeled.

Recently, we pay attention to the statistical property of gradient of natural
images. FigurdB.1 compares a random image and natural images. From the
patches cropped from the images, readers can easily classify which patches are
from natural images. Since the random image is synthesized following i.i.d. uni-
form distribution, neighboring pixels in the random image have no relationship.
Thus, patches of the random image look distributed. On the other hand, patches
of natural images seem to consist of a uniform or a few colors. Even though we
don’t know exactly where a patch is coming from, our perception systems distin-
guish the difference between random image and natural images. Bglpéots

119



L
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(a) Histogram of images (b) Histogram of gradient images

Figure B.2:Histograms of three images of F[B.1. Blue, green and red curves
represent histograms of random image, man-made object image, and natural ob-
ject image, respectively. (a) Histograms of images. (b) Histograms of gradient
images.

histograms of the images and ones of gradient images. Histograms of images
show that pixel intensities of random image are distributed while ones of natu-
ral images concentrate on. Histograms of gradient images show more interesting
observation. Contrast to one of random image, the histograms of gradient of nat-
ural images are 0-peaked and heavy-tailed distributions. This observation means
that natural images are locally uniform color or consist of a few colors. Thus,
0-peaked and heavy-tailed distributions is corresponding to the observation that
patches cropped from natural images seem to consist of a few colors.

The above statistical property can be a prior knowledge of natural images as
mentioned in Se@.4.4and SedZ2.5.8 For further information, readers can refer
to [Hyvarinen et a].2009.

120



Bibliography

The Berkeley segmentation dataset. http://www.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/. xviil 67 119

Mariana S. C. Almeida and Luis B. Almeida. Blind deblurring of natural im-
ages. Innternational Conference on Acoustics, Speech and Signal Processing
(ICASSP)pages 1261-1264, 20080, [41,[42

Mariana S. C. Almeida and Luis B. Almeida. Blind deblurring of foreground-
background images. Imternational Conference on Image Processing (ICIP)
pages 1301-1304, 20080

Toshiyuki Amano and Hirokazu Kato. Real world dynamic appearance enhance-
ment with procam feedback. International Workshop on Projector-Camera
Systems (PROCAMS)008.02

Toshiyuki Amano and Hirokazu Kato. Appearance control by projector cam-
era feedback for visually impaired. International Workshop on Projector-
Camera Systems (PROCAM®Rges 57-63. IEEE, 2010. URhttp://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543478. [Xvj, [86,

[92, (109

C. V. Angelino, E. Debreuve, and M. Barlaud. A nonparametric minimum entropy
image deblurring algorithm. Imternational Conference on Acoustics, Speech
and Signal Processing (ICASSPages 925-928, 20024

Mark Antunes, Michael Trachtenberg, Gabriel Thomas, and Tina Shoa. All-in-
focus imaging using a series of images on different focal planednténna-

121


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543478
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543478

tional Conference on Image Analysis and Recognjtpages 174-181, 2005.
20

Apple Inc. iPhonehttp://www.apple.com/iphone/.

Mark Ashdown, Takahiro Okabe, Imari Sato, and Yoichi Sato. Robust content-
dependent photometric projector compensationintarnational Workshop on
Projector-Camera Systems (PROCAM&)06.090,

Samuel Audet and Jeremy R. Cooperstock. Shadow removal in front projection
environments using object tracking. International Workshop on Projector-
Camera Systems (PROCANMS3007.[85

Samuel Audet and Masatoshi Okutomi. A user-friendly method to geometrically
calibrate projector-camera systems. Iernational Workshop on Projector-
Camera Systems (PROCAMBages 47-54, 20083

Samuel Audet, Masatoshi Okutomi, and Masayuki Tanaka. Direct image align-
ment of projector-camera systems with planar surfacedEHE Conference
on Computer Vision and Pattern Recognition (CVPpjges 303-310. IEEE,
2010. URLhttp://www.computer.org/portal/web/csdl/doi/10.1109/
CVPR.2010.5540199. 9,02

Hacheme Ayasso and Ali Mohammad-Djafari. Joint image restoration and seg-
mentation using gauss-markov-potts prior models and variational bayesian
computation. Innternational Conference on Image Processing (ICIp3ges
22652277, 200924

S. Derin Babacan, Rafael Molina, and Aggelos K. Katsaggelos. Total variation
image restoration and parameter estimation using variational posterior distribu-
tion approximation. Ifinternational Conference on Image Processing (ICIP)
pages 1-97—-1-100, 20024

S. Derin Babacan, Rafael Molina, and Aggelos K. Katsaggelos. Sparse
bayesian image restoration. limernational Conference on Image Processing
(ICIP), pages 3577-3580, 2010. URlttp://decsai.ugr.es/vip/files/
conferences/0003577Icip2010restoration.pdf.

122


http://www.apple.com/iphone/
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5540199
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5540199
http://decsai.ugr.es/vip/files/conferences/0003577Icip2010 restoration.pdf
http://decsai.ugr.es/vip/files/conferences/0003577Icip2010 restoration.pdf

S. Derin Babacan, Jingnan Wang, Rafael Molina, and Aggelos K. Katsaggelos.
Bayesian blind deconvolution from differently exposed image pairdntier-
national Conference on Image Processing (IGIpPages 133-136, 200%0,

41

Simon Baker and lain Matthews. Lucas-kanade 20 years on: A unifying frame-
work. International Journal of Computer Vision (IJC\§6(3):221-255, 2004.
9,192,105

Deepak Bandyopadhyay, Ramesh Raskar, and Henry Fuchs. Dynamic shader
lamps : Painting on movable objects. limernational Symposium on Aug-
mented Realitypages 207-216, 200, 6, [7, 87,

Peter Barnum, Srinivasa Narasimhan, and Takeo Kanade. A projector-camera
system for creating a display with water drops. Itternational Workshop on
Projector-Camera Systems (PROCAMX)09.[x, [,

Moshe Ben-Ezra and Shree K. Nayar. Motion-based motion deblurti§E
Transactions on Pattern Analysis and Machine Intelligen2@(6):689—-698,
2004.49

Oliver Bimber and Andreas Emmerling. Multifocal projection: A multiprojector
technique for increasing focal depttEEE Transactions on Visualization and
Computer Graphicsl2(4):658—667, 2006w, 90, @1,

Oliver Bimber, Andreas Emmerling, and Thomas Klemmer. Embedded entertain-
ment with smart projectors. IACM SIGGRAPH Course2005.00

Oliver Bimber and Ramesh Raskar. Spatial Augmented Reality: Merg-
ing Real and Virtual Worlds A K Peters LTD, 2005. ISBN
1568812302. URMhttp://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20&amp;path=ASIN/1568812302. 6,

Stanislaw Borkowski, Olivier Riff, and James L. Crowley. Projecting rectified
images in an augmented environmentlrternational Workshop on Projector-
Camera Systems (PROCANM3003.02

123


http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&amp;path=ASIN/1568812302
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&amp;path=ASIN/1568812302

Michael Brown, Aditi Majumder, and Ruigang Yang. Camera-based calibration
techniques for seamless multiprojector displd$<EE Transactions on Visual-
ization and Computer Graphic41(2):193-206, 20080

Michael S. Brown, Peng Song, and Tat-Jen Cham. Image pre-conditioning for out-
of-focus projector blur. IHEEE Conference on Computer Vision and Pattern
Recognition (CVPR)pages 1956-1963, 2008v, 91, 92 93

Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei Shen. Blind motion deblur-
ring from a single image using sparse approximationlEIBE Conference on
Compuer Vision and Pattern Recognition (CVPpges 104-111, 200940,

41

Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei Shen. Blind motion deblurring
using multiple imageslournal of Computational Physic228(14):5057-5071,
2009b.140,147

Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei Shen. High-quality curvelet-
based motion deblurring from an image pairllBEE Conference on Compuer
Vision and Pattern Recognition (CVPRRages 1566—-1573, 200940, 41

Michael Cannon. Blind deconvolution of spatially invariant image blurs with
phase. IEEE Transactions on Acoustics, Speech, and Signal Proces&ihg
(1):58-63, 197631, 132,

Canon. Canon in-lens image stabilizerattp://web.canon. jp/imaging/
lens/index.html), 1995.[10 [11

James N. Caron, Nader M. Namazi, and Chris J. Rollins. Noniterative blind data
restoration by use of an extracted filter functidppl. Opt, 41(32):6884-6889,
2002.138

Ayan Chakrabarti, Todd Zickler, and William T. Freeman. Analyzing spatially-
varying blur. InNIEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pages 2512-2519. IEEE, 2010. URktp://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=5539954. [42

124


http://web.canon.jp/imaging/lens/index.html
http://web.canon.jp/imaging/lens/index.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5539954
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5539954

Michael M Chang, Murat A Tekalp, and Tanju A Erdem. Blur identification using
the bispectrum.IEEE Transactions on Signal Processjr89(10):2323-2325,
1991.31,132, 133, 54, 59

Jia Chen, Lu Yuan, Chi-Keung Tang, and Long Quan. Robust dual motion de-
blurring. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pages 1-8, 20088, 140,41

C. Chesneau, M. J. Fadili, and J. L. Starck. Image deconvolution by stein block
thresholding. Innternational Conference on Image Processing (ICIPages
1329-1332, 200922

Sunghyun Cho and Seungyong Lee. Fast motion debluré@M Transactions
on Graphics (SIGGRAPH ASIA)8:5, 2009[40, 41

Sunghyun Cho, Yasuyuki Matsushita, and Seungyong Lee. Removing non-
uniform motion blur from images. Iinternational Conference on Computer
Vision (ICCV) pages 1-8, 20042

Michael F. Cohen and Richard Szeliski. The moment cam@mamputey 39(8):
40-45, 20065

Daniel Cotting, Martin Naef, Markus Gross, and Henry Fuchs. Embedding imper-
ceptible patterns into projected images for simultaneous acquisition and display.
In International Symposium on Mixed and Augmented Reality (ISM#eges
100-109, 200493

Tom Cuypers, Yannick Francken, Johannes Taelman, and Philippe Bekaert.
Shadow multiplexing for real-time silhouette extractionlrternational Work-
shop on Projector-Camera Systems (PROCANS0(9.84

Shengyang Dai and Ying Wu. Removing partial blur in a single imageEEE
Conference on Compuer Vision and Pattern Recognition (CVpaR)es 2544—
2551, 200938 140,147, 42

Paul Debevec. Virtual cinematography: Relighting through computat@om-
puter, 39(8):57-65, 20065

125



E. W. Dijkstra. A note on two problems in connexion with graphsimerische
Mathematik 1:269-271, 19592

Yuanyuan Ding, Jing Xiao, Kar-Han Tan, and Jingyi Yu. Catadioptric projec-
tors. INIEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2009.[89

Jamil Draéni, $bastien Roy, and Peter Sturm. Geometric video projector auto-
calibration. IniInternational Workshop on Projector-Camera Systems (PRO-
CAMS) 2009.03

R. Fabian and D. Malah. Robust identification of motion and out-of-focus blur
parameters from blurred and noisy imag&saphical Models and Image Pro-
cessing (CVGIR)53:403-412, 199131, 32,33,

Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis, and William T.
Freeman. Removing camera shake from a single photogra@il Transac-
tions on Graphics25(3):787—-794, 2006w, 39, 41, [44, 74, [75,

Sergio Fernandez, Joaquim Salvi, and Tomislav Pribanic. Absolute
phase mapping for one-shot dense pattern projection. Interna-
tional Workshop on Projector-Camera Systems (PROCANMSJyes 64—71.
IEEE, 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=5543483.

Mark Fiala. Vision guided control of multiple robots. ®anadian Conference
on Computer and Robot Visippages 241-246. IEEE Computer Society, 2004.
ISBN 0-7695-2127-491

Mark Fiala. Automatic projector calibration using self-identifying patterns. In
International Workshop on Projector-Camera Systems (PROCARIB.03

Kensaku Fujii, Michael D. Grossberg, and Shree K. Nayar. A projector-camera
system with real-time photometric adaptation for dynamic environments. In
IEEE Conference on Computer Vision and Pattern Recognition (CMizgEes
814-821, 200590,

126


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543483
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543483

Ryo Furukawa, Keniji Inose, and Hiroshi Kawasaki. Multi-view reconstruction
for projector camera systems based on bundle adjustmentntémational
Workshop on Projector-Camera Systems (PROCARI®)9.84

Donald B. Gennery. Determination of optical transfer function by inspection of
frequency-domain plot.Journal of the Optical Society of Americ&3(12):
1571-1577, 19731

Helmut Gernsheim. The 150th anniversary of photograptstory of Photogra-
phy, 1(1):1:3-8, January 1972

Jessica Gorman. Photography at a crossro&dgence Newsl62(21):331-333,
November 2002. URhttp://www. jstor.org/stable/4013861.

Andreas Griesser and Luc Van Gool. Automatic interactive calibration of multi-
projector-camera systems. International Workshop on Projector-Camera
Systems (PROCAMS)006.03

Michael D. Grossberg, Harish Peri, Shree K. Nayar, and Peter N. Belhumeur.
Making one object look like another: Controlling appearance using a projector-
camera system. IlEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) pages 452-459, 20080

Max Grosse and Oliver Bimber. Coded aperture projectiomtirnational Work-
shop on Immersive Projection Technologies/Emerging Display Technologiges
(IPT/EDT), pages 1-4, 20081, 03

Max Grosse, Gordon Wetzstein, Anselm Gruafdin, and Oliver Bimber. Adap-
tive coded aperture projection. AKCM SIGGRAPHpages 68:1-68:1. ACM,
2009. URLhttp://doi.acm.org/10.1145/1597990.1598058.

Max Grosse, Gordon Wetzstein, Anselm Gruafdn, and Oliver Bimber. Coded
aperture projection. ACM Transactions on Graphic9:22:1-22:12, 2010.
ISSN 0730-0301. URhttp://doi.acm.org/10.1145/1805964.1805966.
93

127


http://www.jstor.org/stable/4013861
http://doi.acm.org/10.1145/1597990.1598058
http://doi.acm.org/10.1145/1805964.1805966

Anselm Grundifer, Manja Seeger, Ferryatitsch, and Oliver Bimber. Dynamic
adaptation of projected imperceptible codes.Irternational Symposium on
Mixed and Augmented Reality (ISMARD07.[97, 03

Ankit Gupta, Neel Joshi, C. Lawrence Zitnick, Michael Cohen, and Brian Cur-
less. Single image deblurring using motion density functions Edropean
Conference on Computer Vision (ECCWages 171-184. Springer, 2010. URL
http://www.springerlink.com/index/Y07467510533568U.pdf. [0, 41
43

Stefan Harmeling, Hirsch Michael, and Bernhard &@kbpf. Online blind decon-
volution for astronomical imaging. Imternational Conference on Computa-
tional Photography (ICCR)pages 1-7, 200910

Stefan Harmeling, Hirsch Michael, and Bernhard &@kbpf. Space-variant
single-image blind deconvolution for removing camera shake. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editéi;
vances in Neural Information Processing Systems (NIp&yes 829-837,
2010.38 140, [41,43

Jeremy M. Heiner, Scott E. Hudson, and Kenichiro Tanaka. The information per-
colator: Ambient information display in a decorative object. AGM Sympo-
sium on User Interface Software and Technology (Ulages 141-148. ACM
Press, 1999x,[7,[8

Michael Hirsch, Suvrit Sra, Bernhard Scholkopf, and Stefan Harmeling. Effi-
cient filter flow for space-variant multiframe blind deconvolution. IEEE
Conference on Computer Vision and Pattern Recognition (CVp&jes 607—
614. IEEE, 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5540158. [4Q, 43

Hanyu Hong and In Kyu Park. Single image motion deblurring using anisotropic
regularization. Irinternational Conference on Image Processing (ICB9ges
1149-1152. IEEE, 2010. URhttp://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5650775. [4]

128


http://www.springerlink.com/index/Y07467510533568U.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540158
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540158
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650775
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650775

Tingbo Hou, Sen Wang, Hong Qin, and Rodney L. Miller. Image de-
convolution using multigrid natural image prior and its applications. In
International Conference on Image Processing (ICIPages 3569-3572.
IEEE, 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=5651083.

Zhe Hu, Jia-Bin Huang, and Ming-Hsuan Yang. Single image deblurring with
adaptive dictionary learning. Imternational Conference on Image Process-
ing (ICIP), pages 1169-1172. IEEE, 2010. URttp://ieeexplore.ieee.
org/xpls/abs_all.jsp7arnumber=5651892.

Po-Hao Huang, Yu-Mo Lin, Hao-Liang Yang, and Shang-Hong Lai. Image de-
blurring by exploiting inherent bi-level regions. International Conference on
Image Processing (ICIPpages 1321-1324, 20080, 47

Aapo Hywvarinen, Jarmo Hurri, and Patrik O. Hoy@&atural Image Statistics — A
Probabilistic Approach to Early Computational Visio8pringer-Verlag, 2009.
[120

Christopher Jaynes, Stephen Webb, and R. Matt Steele. Camera-based detection
and removal of shadows from interactive multiprojector displdf&E Trans-
actions on Visualization and Computer Graphit8(3):290-301, 200485

Luke Jefferson and Richard Harvey. An interface to support color blind computer
users. IConference on Human Factors in Computing Systems (SIGQaties
1535-1538. ACM, 2007. ISBN 978-1-59593-593-9. URItp://doi.acm.
org/10.1145/1240624 .1240855.

Hui Ji and Chaogiang Liu. Motion blur identification from image gradients. In
IEEE Conference on Computer Vision and Pattern Recognition (CMizges
1-8, 2008[31, 59

Jiaya Jia. Single image motion deblurring using transparentHE Conference
on Computer Vision and Pattern Recognition (CVR#R)ges 1-8, 20041, [42

129


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5651083
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5651083
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5651892
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5651892
http://doi.acm.org/10.1145/1240624.1240855
http://doi.acm.org/10.1145/1240624.1240855

Tyler Johnson and Henry Fuchs. Real-time projector tracking on complex geom-
etry using ordinary imagery. Imternational Workshop on Projector-Camera
Systems (PROCAMS)007.[89,

Andrew Jones, Magnus Lang, Graham Fyffe, Xueming Yu, Jay Busch, lan Mc-
Dowall, Mark Bolas, and Paul Debevec. Achieving eye contact in a one-to-
many 3d video teleconferencing systeACM Transactions on Graphics (SIG-
GRAPH) 28:64:1-64:8, 2009. ISSN 0730-0301. URttp://doi.acm.org/
10.1145/1531326.1531370.

Andrew Jones, lan McDowall, Hideshi Yamada, Mark Bolas, and Paul Debevec.
Rendering for an interactive60° light field display. ACM Transactions on
Graphics (SIGGRAPHYR6:1-10, 2007. ISSN 0730-0301. URkLtp://doi.
acm.org/10.1145/1276377.1276427.

Neel Joshi, Sing Bing Kang, Lawrence C. Zitnick, and Richard Szeliski. Image
deblurring using inertial measurement sens@SM Transactions on Graphics
(SIGGRAPH)29:30:1-30:9, 2010. ISSN 0730-0301. URttp://doi.acm.
org/10.1145/1778765.1778767. 20,144

Neel Joshi, Richard Szeliski, and David J. Kriegman. Psf estimation using sharp
edge prediction. IlEEE Conference on Compuer Vision and Pattern Recogni-
tion (CVPR) pages 1-8, 200810, 41

Neel Joshi, C. Lawrence Zitnick, Richard Szeliski, and David J. Kriegman. Image
deblurring and denoising using color priors. IFEE Conference on Compuer
Vision and Pattern Recognition (CVPRRages 1550-1557, 20026

Xiumei Kang, Qingjin Peng, Gabriel Thomas, and Chunsheng Yu. Blind image
restoration using the cepstrum method.Canadian Conference on Electrical
and Computer Engineering (CCECEages 1952-1955, 20081, [32,

Hiroshi Kawasaki, Inose Kenji, Toshihiro Kawasaki, Ryo Furukawa, Ryusuke
Sagawa, and Yasushi Yagi. Projector camera system for realtime 3d scanning.
In International Workshop on Projector-Camera Systems (PROCARBS.

130


http://doi.acm.org/10.1145/1531326.1531370
http://doi.acm.org/10.1145/1531326.1531370
http://doi.acm.org/10.1145/1276377.1276427
http://doi.acm.org/10.1145/1276377.1276427
http://doi.acm.org/10.1145/1778765.1778767
http://doi.acm.org/10.1145/1778765.1778767

Hiroshi Kawasaki, Ryusuke Sagawa, Yasushi Yagi, Ryo Furukawa, Naoki Asada,
and Peter Sturm. One-shot scanning method using an uncalibrated projector
and camera system. International Workshop on Projector-Camera Systems
(PROCAMS) pages 104-111, 2010. URittp://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=5544604. [83

KonicaMinolta. Anti-Shake. http://ca.konicaminolta.com/products/
consumer/digital_camera/slr/dynax-7d/02.html, 2003.11

Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-Laplacian
priors. InAdvances in Neural Information Processing Systems (NIpP&)es
1033-1041, 200925

Deepa Kundur and Dimitrios Hatzinakos. Blind image deconvolutiB&E Sig-
nal Processing Magazind 3(3):43—-64, 199627

Johnny C. Lee, Paul H. Dietz, Dan Maynes-Aminzade, Ramesh Raskar, and
Scott E. Hudson. Automatic projector calibration with embedded light sen-
sors. INACM Symposium on User Interface Software and Technology (UIST)
2004.193

Johnny C. Lee, Scott E. Hudson, Jay W. Summet, and Paul H. Dietz. Moveable
interactive projected displays using projector based trackindAakl Sympo-
sium on User Interface Software and Technology (Ul$apes 63—72, 2005.

Man Chuen Leung, Kai Ki Lee, Kin Hong Wong, and Michael Ming Yuen Chang.
A projector-based movable hand-held display systemEEE Conference on
Computer Vision and Pattern Recognition (CVPR)09.03

Anat Levin. Blind motion deblurring using image statisticsAkdivances in Neural
Information Processing Systems (NIP&ges 841-848, 20082

Anat Levin, Rob Fergus, Fredo Durand, and William T. Freeman. Image and
depth from a conventional camera with a coded apera@M Transactions on
Graphics 26:1-10, 2007kil, xii, 25, 26, 34, [36, 37, [74

131


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5544604
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5544604
http://ca.konicaminolta.com/products/consumer/digital_camera/slr/dynax-7d/02.html
http://ca.konicaminolta.com/products/consumer/digital_camera/slr/dynax-7d/02.html

Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman. Understanding
and evaluating blind deconvolution algorithms. Technical report, MIT, 2009.

27

Marc Levoy. Light fields and computational imagin@omputey 39(8):46-55,
2006.5

Marc Levoy and Pat Hanrahan. Light field rendering SIGGRAPH pages 31—
42,19965

Dalong Li, Russell M. Mersereau, and Steven Simske. Blur identification based
on kurtosis minimization. Irinternational Conference on Image Processing
(ICIP), pages 20-23, 20084, 35

Peter Lincoln, Greg Welch, Andrew Nashel, Andrei State, Adrian llie, and Henry
Fuchs. Animatronic shader lamps avata¥artual Reality, 15(2-3):225-238,
2011.x,[6,[7,9

L. B. Lucy. An iterative technique for the rectification of observed distributions.
The Astronomical Journalr9:745-754, 197423 [111

Aditi Majumder and Michael S. BrownPractical Multi-Projector Display De-
sign A. K. Peters LTD., 2007. ISBN 15688131047, 90

Aditi Majumder, Robert G. Brown, and Hussein S. EI-Ghoroury. Dis-
play gamut reshaping for color emulation and balancing. Idterna-
tional Workshop on Projector-Camera Systems (PROCAM&Yyes 17-24.
IEEE, 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=5543467.

Aditi Majumder, Zhu He, Herman Towles, and Greg Welch. Achieving color
uniformity across multi-projector displays. International Conference on Vi-
sualization (VIS)pages 117-124, 20003

Aditi Majumder, David Jones, Matthew McCrory, Michael E Papka, and Rick
Stevens. Using a camera to capture and correct spatial photometric variation
in multi-projector displays. Irinternational Workshop on Projector-Camera
Systems (PROCAMS)003.03

132


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543467
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543467

Wikky Fawwaz Al Maki and Sueo Sugimoto. Blind deconvolution algorithm for
spatially-invariant motion blurred images based on inverse filtering and dst.
International Journal of Circuits, Systems and Signal Processing2—100,
2007.54

MathWorks. Matlab function deconvblind.http://www.mathworks.com/
help/toolbox/images/ref/deconvblind.html. Xv, (74, [81

C. Mayntz, T. Aach, and D. Kunz. Blur identification using a spectral inertia
tensor and spectral zeros. linternational Conference on Image Processing
(ICIP), pages 885-889, 19987, 32, 33,53

Christoffer Menk and Reinhard Koch. Physically-based augmentation of real
objects with virtual content under the influence of ambient light. Inn
ternational Workshop on Projector-Camera Systems (PROCANHg)es 25—

32. IEEE, 2010. URIhttp://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=5543472.

James Miskin and David J. C. MacKay. Ensemble learning for blind image sep-
aration and deconvolution. lAdvances in Independent Component Analysis
Springer-Verlag, 200074

Andrew Vande Moere. Beyond the tyranny of the pixel: Exploring the physical-
ity of information visualization. Ininternational Conference on Information
Visualisation pages 469-474. IEEE Computer Society, 2008. ISBN 978-0-
7695-3268-4. URIhttp://portal.acm.org/citation.cfm?id=1439280.
1440187.[7

Mohsen Ebrahimi Moghaddam and Mansour Jamzad. Motion blur identification
in noisy images using mathematical models and statistical measbatt®rn
Recognition40:1946-1957, 200131, 32,33 &4,

NAO Design. infernoptix - digital pyrotechnic matrix. http://www.
infernoptix.com/. [X,[7,

Shree K. Nayar. Computational cameras: Redefining the im@genputer 39
(8):30-38, 20065

133


http://www.mathworks.com/help/toolbox/images/ref/deconvblind.html
http://www.mathworks.com/help/toolbox/images/ref/deconvblind.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543472
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543472
http://portal.acm.org/citation.cfm?id=1439280.1440187
http://portal.acm.org/citation.cfm?id=1439280.1440187
http://www.infernoptix.com/
http://www.infernoptix.com/

Shree K. Nayar, Harish Peri, Michael D. Grossberg, and Peter N. Belhumeur. A
projection system with radiometric compensation for screen imperfections. In
International Workshop on Projector-Camera Systems (PROCARDSB.[A0,

93

NEC Display Solutions Europe. Keystone correction. http:
//www.nec-display-solutions.com/p/edu/en/technology/
keystonecorrect.xhtml?e=e2s1, a.11

NEC Display Solutions Europe. Wall colour correction. http:
//www.nec-display-solutions.com/p/edu/en/technology/
wallcolorcorrect.xhtml?e=e3s1, b.[1]

NEC Display Solutions, Ltd. Autofocus.http://www.nec-display.com/
global/technology/con_pj_adjust.html. 20

Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval, Mark Horowitz, and Pat Han-
rahan. Light field photography with a hand-held plenoptic camera. Technical
report, Stanford University, 2005

Nikon.  Vibration Reduction. http://imaging.nikon.com/products/
imaging/technology/vr/index.htm, 2000.[10, 17,

Kazuki Nishi and Tsubasa Onda. Evaluation system for camera shake and im-
age stabilizers. linternational Conference on Multimedia and Expo (ICME)
pages 926-931, 201Rii, 46, 47, 48,

Takayuki Okatani and Koichiro Deguchi. Autocalibration of a projector-camera
system.|EEE Transactions on Pattern Analysis and Machine Intellige2de
(12):1845-1855, 2005. ISSN 0162-88Z8

Takayuki Okatani and Koichiro Deguchi. Easy calibration of a multi-projector
display systemlInternational Journal of Computer Visio85:1-18, 200993

Jdao P. Oliveira, Mrio A.T. Figueiredo, and JésM. Bioucas-Dias. Blind es-
timation of motion blur parameters for image deconvolution.3td Iberian
conference on Pattern Recognition and Image Analysis, Part Il (IbRRBges
604-611, 200731, [32,

134


http://www.nec-display-solutions.com/p/edu/en/technology/keystonecorrect.xhtml?e=e2s1
http://www.nec-display-solutions.com/p/edu/en/technology/keystonecorrect.xhtml?e=e2s1
http://www.nec-display-solutions.com/p/edu/en/technology/keystonecorrect.xhtml?e=e2s1
http://www.nec-display-solutions.com/p/edu/en/technology/wallcolorcorrect.xhtml?e=e3s1
http://www.nec-display-solutions.com/p/edu/en/technology/wallcolorcorrect.xhtml?e=e3s1
http://www.nec-display-solutions.com/p/edu/en/technology/wallcolorcorrect.xhtml?e=e3s1
http://www.nec-display.com/global/technology/con_pj_adjust.html
http://www.nec-display.com/global/technology/con_pj_adjust.html
http://imaging.nikon.com/products/imaging/technology/vr/index.htm
http://imaging.nikon.com/products/imaging/technology/vr/index.htm

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete
basis set: A strategy employed by v1? Vision Research37(23):3311—
3325, 1997. URLhttp://www.sciencedirect.com/science/article/
B6TOW-494SR70-19/2/b4c138506b06df6f332ced73e8501a3e.

Stanley Osher and Leonid I. Rudin. Feature-oriented image enhancement
using shock filters. SIAM Journal on Numerical Analysis27:919-940,
1990. ISSN 0036-1429. URkttp://portal.acm.org/citation.cfm?id=
80058.80065. [40

Yuji Oyamada and Hideo Saito. New type face display with augmented reality
system (in japanese). I&EICE General Confereng@age 257, 2006xil, @, 11

Yuji Oyamada and Hideo Saito. Focal pre-correction of projected image for de-
blurring screen image. Imternational Workshop on Projector-Camera Sys-
tems (PROCAMSR007.xvil, Xviiil, [103

Hanhoon Park, Moon-Hyun Lee, Byung-Kuk Seo, Yoonjong Jin, and Jong-Il Park.
Content adaptive embedding of complementary patterns for nonintrusive direct-
projected augmented reality. International Conference on Virtual Reality
(ICVR), pages 132-141. Springer-Verlag, 2007. ISBN 978-3-540-73334-8.
URL http://portal.acm.org/citation.cfm?id=1770090.1770106.

Hanhoon Park, Byung-Kuk Seo, and Jong-Il Park. A nonintrusive method for
generating all-focused projection. International Conference on Image Pro-
cessing (ICIP)pages 529-532, 20081, 03, 105

Jiyoung Park and Myoung-Hee Kim. Interactive display of image details using
a camera-coupled mobile projector. limternational Workshop on Projector-

Camera Systems (PROCANM$)ages 9-16. IEEE, 2010. URhttp://
ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=5543466. [81

Sang-Cheol Park, Hyoung-Suk Lee, and Seong-Whan Lee. Qualitative estima-
tion of camera motion parameters from the linear composition of optical flow.
Pattern Recognition37(4):767—779, 200486, 47

135


http://www.sciencedirect.com/science/article/B6T0W-494SR70-19/2/b4c138506b06df6f332ced73e8501a3e
http://www.sciencedirect.com/science/article/B6T0W-494SR70-19/2/b4c138506b06df6f332ced73e8501a3e
http://portal.acm.org/citation.cfm?id=80058.80065
http://portal.acm.org/citation.cfm?id=80058.80065
http://portal.acm.org/citation.cfm?id=1770090.1770106
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543466
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543466

Youngmin Park, Vincent Lepetit, and Woontack Woo. Esm-blur: Handling &
rendering blur in 3d tracking and augmentationlriternational Symposium on
Mixed and Augmented Reality (ISMARages 163-166, 2009. ISBN 978-1-
4244-5390-0. URLhttp://dx.doi.org/10.1109/ISMAR.2009.5336480.

109

Eli Peli, Estella Lee, Clement L. Trempe, and Sheldon Buzney. Image enhance-
ment for the visually impaired: The effects of enhancement on face recogni-
tion. Journals of Optical Society of Americg A1(7):1929-1939, 1994. URL
http://josaa.osa.org/abstract.cfm?URI=josaa-11-7-1929.

Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure photography:
Motion deblurring using fluttered shutteACM Transactions on Graphic&5
(3):795-804, 200622

Ramesh Raskar, Matt Cutts, Greg Welch, and Wolfgang Stuerzlinger. Efficient
image generation for multiprojector and multisurface display&urographics
Workshop on Renderingages 139-144, 199885, [89

Ramesh Raskar, Jeroen van Baar, Paul Beardsley, Thomas Willwacher, Srinivas
Rao, and Clifton Forlines. iLamps: Geometrically aware and self-configuring
projectors. ACM Transactions on Graphic22:809-818, 200389

Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry
Fuchs. The office of the future: A unified approach to image-based model-
ing and spatially immersive displays. WCM SIGGRAPHpages 179-188,
1998b. URLhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.39.1129. Xv, [85,03

Ramesh Raskar, Greg Welch, Kok lim Low, and Deepak Bandyopadhyay. Shader
lamps: Animating real objects with image-based illuminationEumographics
Workshop on Renderingages 89-102, 200k, 6,7, 9, 87,

Alex Rav-Acha and Shmuel Peleg. Two motion-blurred images are better than
one. Pattern Recognition Lettey26(3):311-317, 200820, 38, 44

136


http://dx.doi.org/10.1109/ISMAR.2009.5336480
http://josaa.osa.org/abstract.cfm?URI=josaa-11-7-1929
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1129
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1129

Stanley J. Reeves and Russell M. Mersereau. Blur identification by the method
of generalized cross-validatiofEEE Transactions on Image Processiig3):
301-311, 199237

William Hadley Richardson. Bayesian-based iterative method of image restora-
tion. Journal of the Optical Society of Amerio®2(1):55-59, 197223 111

David E. Roberts. History of lenticular and related autostereoscopic meth-
ods. Leap Technologies, 2003. URittp://www.microlens.com/pdfs/
history_of_lenticular.pdf. (B

Paul Rodriguez and Brendt Wohlberg. A generalized vector-valued total varia-
tion algorithm. InInternational Conference on Image Processing (ICiges
1309-1312, 200924

Raphael Rom. On the cepstrum of two-dimensional functitlSE Transactions
on Information Theory21(2):214-217, 19780, 31

Filip Rooms, Wilfried Philips, and Javier Portilla. Parametric PSF estimation via
sparseness maximization in the wavelet domairsE - Wavelet applications
in industrial processing lipages 26-33, 20084, 35

Joaquim Salvi, Jordi Pages, and Joan Batlle. Pattern codification strategies in
structured light system$attern Recognition37(4):827-849, 200481

Andreas E. Savakis and H. Joel Trussell. Blur identification by residual spectral
matching. IEEE Transactions on Image Processir&f2):141-151, 199334,
36,66

Christoph Schmalz and Elli Angelopoulou. A graph-based approach for robust
single-shot structured light. Imternational Workshop on Projector-Camera
Systems (PROCAMS)ages 80-87. IEEE, 2010. URIttp://ieeexplore.
ieee.org/xpls/abs_all. jsp?arnumber=5543492. [84

Steven M. Seitz and Simon Baker. Filter flow. limernational Conference on
Computer Vision (ICCV)pages 143-150, 20083

137


http://www.microlens.com/pdfs/history_of_lenticular.pdf
http://www.microlens.com/pdfs/history_of_lenticular.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543492
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543492

Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark Horowitz,
Marc Levoy, and Hendrik P. A. Lensch. Dual photograpAZM Transactions
on Graphics 24:745-755, 2005. ISSN 0730-0301. URttp://doi.acm.
org/10.1145/1073204.1073257.

Qi Shan, Jiaya Jia, and Aseem Agarwala. High-quality motion deblurring from a
single image ACM Transactions on Graphic87(3):1-10, 200827, (39,41

Qi Shan, Wei Xiong, and Jiaya Jia. Rotational motion deblurring of a rigid object
from a single image. Iinternational Conference on Computer Vision (ICCV)
pages 1-8, 200741, 42

Marvin K. Simon. Probability Distributions Involving Gaussian Random Vari-
ables: A Handbook for Engineers, Scientists and Mathematici@pinger-
Verlag, 2002. ISBN 03873465721

Yoshiko Sugaya, Isao Miyagawa, and Hideki Koike. Contrasting shadow
for occluder light suppression from one-shot image. imerna-
tional Workshop on Projector-Camera Systems (PROCAM&)es 96-103.
IEEE, 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=5544603. [85,

Hongwei Sun, Michel Desvignes, and Yunhui Yan. Motion blur adaptive iden-
tification from natural image model. Imternational Conference on Image
Processing (ICIP)pages 137-140, 20081, (32

Wei Sun, Irwin Sobel, Bruce Culbertson, Dan Gelb, and lan Robinson. Calibrat-
ing multi-projector cylindrically curved displays for "wallpaper” projection. In
International Workshop on Projector-Camera Systems (PROCARIBBaO3

Weibin Sun, Xubo Yang, Shuangjiu Xiao, and Wencong Hu. Robust checkerboard
recognition for efficient nonplanar geometry. limernational Workshop on
Projector-Camera Systems (PROCAME)08b.93

Yu-Wing Tai, Ping Tan, and Michael S. Brown. Richardson-lucy deblurring for
scenes under projective motion patfcEE Transactions on Pattern Analysis
and Machine IntelligenceTrBD:TBD, 2011.24

138


http://doi.acm.org/10.1145/1073204.1073257
http://doi.acm.org/10.1145/1073204.1073257
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5544603
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5544603

Toru Takahashi, Tatsuya Kawano, Koichi Ito, Takafumi Aoki, and Satoshi Kondo.
Multi-projector display using SIFT and phase-only correlatiorinternational
Conference on Image Processing (ICIBages 1189-1192, 20192

Toru Takahashi, Norihito Numa, Takafumi Aoki, and Satoshi Kondo. A geometric
correction method for projected images using SIFT feature pointBitdénna-
tional Workshop on Projector-Camera Systems (PROCARE)8.92

Kah-Chye Tan, Hock Lim, and B. T. G. Tan. Restoration of real-world motion-
blurred imagesCVGIP: Graphical Models and Image Processing(3):291—
299, 1991. URLhttp://www.sciencedirect.com/science/article/
B6WDC-4D7CT66-21/2/6523df54c8d1ebbb146d9192eb6b414b.

Jean-Philippe Tardif, &astien Roy, and Martin Trudeau. Multi-projectors for ar-
bitrary surfaces without explicit calibration nor reconstructionlntiernational
Conference on 3-D Digital Imaging and Modeling (3DIM)ages 217-224,
Oct. 2003193

Murat A. Tekalp, Howard Kaufman, and John W. Woods. Identification of image
and blur paramters for the restoration of noncausal bILEEE Transactions
on Acoustics, Speech and Signal Processddg4):963—972, 198637

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
International Conference on Computer Vision (ICCWages 839-846, 1998.
40

Antonio Torralba and Aude Oliva. Statistics of natural image categadviesvork:
Computation in Neural Systents4:391-412, 200338, [118

John W. Tukey. An introduction to the calculations of numerical spectrum analy-
sis. InSpectral Analysis of Time Serjgsmges 25-46, 19665,

Michal Sorel and FilipSroubek. Space-variant deblurring using one blurred and
one underexposed image. linternational Conference on Image Processing
(ICIP), pages 157-160, 20080,143

139


http://www.sciencedirect.com/science/article/B6WDC-4D7CT66-21/2/6523df54c8d1ebbb146d9192eb6b414b
http://www.sciencedirect.com/science/article/B6WDC-4D7CT66-21/2/6523df54c8d1ebbb146d9192eb6b414b

Yi Wan and Robert Nowak. A bayesian multiscale approach to joint image restora-
tion and edge detection. In Wavelet Applications in Signal and Image Pro-
cessing VII, Proc. SPIFages 73-84, 19989

Chao Wang, LiFeng Sun, ZhuoYuan Chen, ShiQiang Yang, and JianWei Zhang.
Robust inter-scale non-blind image motion deblurring.lnternational Con-
ference on Image Processing (IC|Prges 149-152, 20021

Dong Wang, Imari Sato, Takahiro Okabe, and Yoichi Sato. Radiometric compen-
sation in a projector-camera system based on the properties of human vision
system. Innternational Workshop on Projector-Camera Systems (PROCAMS)
2005.90

Yair Weiss and William T. Freeman. What makes a good model of natural images?
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
pages 1-8, 200721

Gordon Wetzstein and Oliver Bimber. Radiometric compensation through inverse
light transport. InPacific Conference on Computer Graphics and Applications
(PG), page 38, 200789

Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean Ponce. Non-uniform
deblurring for shaken images. IEEEE Conference on Computer Vision
and Pattern Recognition (CVPRpages 491-498. IEEE, 2010. URittp:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540175. [43

Norbert Wiener. Extrapolation, interpolation, and smoothing of stationary time
series, 194922 [66,[67,[74,09

Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez,
Adam Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High per-
formance imaging using large camera arraysSIB GRAPH pages 765-776,
2005.5

James S. Wolffsohn, Ditipriya Mukhopadhyay, and Martin Rubinstein. Im-
age enhancement of real-time television to benefit the visually impaired.
American Journal of Ophthalmology 144(3):436-440, 2007. ISSN

140


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540175
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540175

0002-9394. URLhttp://www.sciencedirect.com/science/article/
B6VK5-4P6MCON-3/2/263ae4cb68aadc782b7243818a0ac930.

Shigian Wu, Zhongkang Lu, Ee Ping Ong, and Weisi Lin. Blind image blur iden-
tification in cepstrum domain. 106th International Conference on Computer
Communications and Networks (ICCCNages 1166-1171, 20037, 32,53

Xbox.com. Kinecthttp://www.xbox.com/en-US/Kinect!

Feng Xiao, Amnon Silverstein, and Joyce Farrell. Camera—motion and effective
spatial resolution. Imnternational Congress of Imaging Scienpages 33-36,
2006.[xiil, [45,147, 148

Li Xu and Jiaya Jia. Two-phase kernel estimation for robust motion deblurring. In
European Conference on Computer Vision (EC(QAges 157-170. Springer,
2010. URLhttp://www.springerlink.com/index/Y24XK016678HT3V3.
pdf. [38 40,141

Satoshi Yamamoto, Yasumasa Itakura, Masashi Sawabe, Gimpei Okada, Norim-
ichi Tsumura, and Toshiya Nakaguchi. Precomputed ROMP for light transport
acquisition. InIinternational Workshop on Projector-Camera Systems (PRO-
CAMS) pages 49-56. IEEE, 2010. URdttp://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=5543460.

Masaki Yamazaki and Gang Xu. 3d reconstruction of glossy surfaces us-
ing stereo cameras and projector-display. IHEE Conference on Com-
puter Vision and Pattern Recognition (CVRR)ages 1213-1220. IEEE,
2010. URLhttp://www.computer.org/portal/web/csdl/doi/10.1109/
CVPR.2010.5539830.

Ruigang Yang and Greg Welch. Automatic and continuous projector display
surface calibration using every-day imagery. Ihternational Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision
(WSCG)2001.02,

141


http://www.sciencedirect.com/science/article/B6VK5-4P6MC0N-3/2/263ae4cb68aa4c782b7243818a0ac930
http://www.sciencedirect.com/science/article/B6VK5-4P6MC0N-3/2/263ae4cb68aa4c782b7243818a0ac930
http://www.xbox.com/en-US/Kinect
http://www.springerlink.com/index/Y24XK016678HT3V3.pdf
http://www.springerlink.com/index/Y24XK016678HT3V3.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543460
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543460
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5539830
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5539830

Y. Yitzhaky and N. S. Kopeika. Identification of blur parameters from motion
blurred imagesGraphical Models and Image Processing (CVGI®)(5):310-
320, 19973334

Tatsuo Yotsukura, Shigeo Morishima, Frank Nielsen, Kim Binsted, and Claudio S.
Pinhanez. Hypermask - projecting a talking head onto a real oldjeetVisual
Computer 18(2):111-120, April 20029

Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum. Image deblurring with
blurred/noisy image pairsACM Transactions on Graphic26(3):1, 200720,
40,41

Li Zhang and Shree Nayar. Projection defocus analysis for scene capture and
image displayACM Transactions on Graphic25(3):907-915, 200@®1,

Stefanie Zollmann and Oliver Bimber. Imperceptible calibration for radiometric
compensation. lEEurographics (short paperpages 61-64, 20083

Stefanie Zollmann, Tobias Langlotz, and Oliver Bimber. Passive-active geometric
calibration for view-dependent projections onto arbitrary surfadesirnal of
Virtual Reality and Broadcasting}(6):1-11, 200793

142



Publication list

Journal papers

Yuji Oyamada, Haruka Asai, and Hideo Saito. Blind deconvolution for
a curved motion based on cepstral analydBSJ Transactions on
Computer Vision and Applications (CV/A8:32-43, 2011.

Peer-reviewed conference papers

Haruka Asai,Yuji Oyamada, Julien Pilet, and Hideo Saito. Cepstral
analysis based blind deconvolution for motion blur. IEEE Inter-
national Conference on Image Processing (IGIPages 1153-1156,
2010.

Yuji Oyamada and Hideo Saito. Focal pre-correction of projected im-
age for deblurring screen image. IBEE International Workshop on
Projector-Camera Systems (PROCAMS)ges 1-8, 2007a.

Yuji Oyamada and Hideo Saito. Pre-correction of projected images for
deblurring on projector screen. apan-Korea Joint Workshop on
Frontiers of Computer Vision (FCY2007b.

Yuji Oyamada and Hideo Saito. Defocus blur correcting projector-
camera system. IAdvanced Concepts for Intelligent Vision Systems
(ACIVS) pages 453464, 2008a.

Yuji Oyamada and Hideo Saito. Estimation of projector defocus blur
by extracting texture rich regionin projection image Irternational

143



Conference in Central Europe on Computer Graphics,Visualization
and Computer Vision (WSC@)ages 153—-160x, 2008b.

Yuji Oyamada and Hideo Saito. Blind deconvolution based projector
defocus removing with uncalibrated projector-camera pailEBE
International Workshop on Projector-Camera Systems (PROCAMS)
20009.

Yuji Oyamada, Hideo Saito, Koji Ootagaki, and Mitsuo Eguchi. Cep-
strum based blind image deconvolution. liternational Workshop
on Vision, Communications and Circuits (IWVC@ages 197-200,
2008.

Others

Yoshimitsu Aoki, Yuko Uematsuyuji Oyamada, Ugur Tumerdem,
Baris Yalcin, Wataru Yamanouchi, and Yuki Yokokura. Panel dis-
cussion: Multi-sensory telepresence in access space. International
Workshop on Vision and Control for Access Space, 2009.

Yuji Oyamada, Haruka Asai, and Hideo Saito. Single image blind
deconvolution: Psf estimation methods based on cepstral analysis.
CVL-HVRL Joint Workshop, 2010.

Yuji Oyamada, Yuichiro Ikuma, Tomoya Miyanishi, Toyofumi
Ishikawa, Rii Hirano nd Lin I-Te, Juan Camilo Corena, Haruki
Nishimura, and Yuki Yokokura. Panel session: "access space: This
is my proposal”. International Symposium on Access Space, 2011.

Yuji Oyamada and Hideo Saito. Projector defocus deblurring. G-COE
Winter camp, 2008.

Yuji Oyamada and Hideo Saito. Image based projector image enhance-
ment. MSRA Keio-GCOE Workshop, 2010a.

Yuji Oyamada and Hideo Saito. Visual image enhancement by post/pre-
image restoration approaches. G-COE Winter camp, 2010b.

144



Domestic journal papers

b dd,gdgd.ooodgbbbbbbbbobooddaogo
ggbobbuoooobobuoooobob.ogobboooooon
0o0o00,120 40, 479-48461, 2007.

Domestic conferences

g dg,ddgd.gogogbobboobboboboodougoo
obobooooobOoboooo.oooobobobg 20060
0oog, 2006a.

gbbog,ggbb.oobbodobbbooobbboodobob.o
Oo00oooooooono, 2006b.

O00 00,00 O00O. Projection based augmented reality] [ [
gooooooooboooooooo.goooooooooo
0, 2007a.

oo oo, 00gb.obgbooboboboboooonbgbog
O00oooo0o.0oooooocoooooog (MIRU), 2007b.

b0 gog,0bgg.obbogoboooboooboobobo
oo0Do.00p00o0ooo0oboooooo (MIRU), 2008a.

oo ogg,gg oo.goboobbbbboobbobbboood
ggbbbooobbbooobobuooob.buoooboo
Oooogd, 2008b.

b g, gd.ooooooooobbbbobbbodao
gooobooob.0oboobgoobooobog, 2008c.

gob oo, ob,ogboog,bboo.bboooboboo
ooooooooboboo.oboboboboooooboobo, 2008.

000 00,0000,0000,00000,0000.0000
0000000000000.0000000000000000
0 (VIEW), 2008.

145



gooo,0obg oo, ggoo.obuoooobouoooood
0 0 blind deconvolutionJ O 000000 OO0OOO0O (MIRU),
2009a.

ogd oo, 000 g0, o0 g0.ogggooooocoogogoo
O O blind deconvolution. CVINMI O O, 2009b.

OO0 00,000 00,00 0o. Blinddeconvolutord OO OO
O0ooooboooooo.cviMmooog, 2010.

g oda,uouob,0b od.bbboboddgguoooaao
gbbogbogbboobuogboobobboobooonboo
Oo.cviMoono,2010.

gb o,0bog,bogbb,gobu.gbbbogooboboo
gbooboooooboboooob. 0oo220000b0000
ooooobogo, 2011,

Magazines

oboodg,gbob.0bobobooboboobobo.bo
o000 oooo,20070 800.

dooo,0b0goo,og0oo.obgoooooooooood
0 O O blind deconvolution. OplusEl O 0 00, 20100 30 0O .

146



	Title page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 State-of-the-art imaging technologies
	1.2 For the next generation imaging technology
	1.3 Summary of original contributions
	1.4 Organization of the thesis

	2 Related Works on Blur Correction
	2.1 Problem statement
	2.2 Additional queues for disambiguation
	2.2.1 Blur type
	2.2.2 Available data

	2.3 Deconvolution
	2.4 Non-blind deconvolution
	2.4.1 Analytical solutions
	2.4.2 Numerical solutions
	2.4.3 Non-regularized minimization
	2.4.4 Regularized minimization

	2.5 Blind deconvolution
	2.5.1 Parametric PSF estimation
	2.5.2 Spectral/cepstral patterns identification
	2.5.3 Parameter search
	2.5.4 Non-parametric PSF estimation
	2.5.5 Unknown f for PSF estimation
	2.5.6 Regularization term on PSF Rk
	2.5.7 Other constraints
	2.5.8 Spatially varying PSF
	Piecewise homogeneous PSF
	Piecewise non-homogeneous PSF


	2.6 Blur estimation/correction suited to next generation imaging technologies

	3 Cepstral Analysis based Non-Linear Motion PSF Estimation
	3.1 Related works
	3.2 Motivation
	3.3 Overview of the proposed Method
	3.4 Target non-linear motions
	3.4.1 Piecewise Linear Motion (PLM) PSF
	3.4.2 Noisy Linear Motion (NLM) PSF

	3.5 PSF candidates estimation
	3.5.1 PLM PSF candidates estimation
	Cepstrum transform
	Component PSFs estimation
	PSF candidates generation

	3.5.2 NLM PSF candidates estimation
	LM PSF estimation from another aspect
	NLM PSF candidates estimation based on path integral


	3.6 PSF candidates evaluation
	3.6.1 Data fidelity term
	3.6.2 Regularization term

	3.7 Experimental results
	3.7.1 Synthetic experiments
	Synthetic experiments for PLM PSF
	Synthetic experiments for NLM PSF

	3.7.2 Real-world experiments
	Real-world experiments for PLM PSF
	Real-world experiments for NLM PSF


	3.8 Conclusion
	3.8.1 Future direction


	4 In-Focus Projection from a Single Projector-Camera Image Pair
	4.1 Projectors in computer vision and graphics
	4.2 Related works
	4.2.1 Adjusted image synthesis
	Two pass rendering
	Pixel-by-pixel mapping
	Focal adjustment

	4.2.2 Distortion parameter estimation
	Structured light
	Image matching based method
	Imperceptible structured light


	4.3 Motivation
	4.4 Overview of the proposed Method
	4.5 Spatially varying PSFs estimation
	4.5.1 Discrete PSFs estimation
	4.5.2 Spatially varying PSFs estimation

	4.6 Sharpened image synthesis
	4.7 Experimental results
	4.7.1 Spatially varying PSFs estimation
	Rich textured region extraction
	Discrete PSFs estimation
	Spatially varying PSFs estimation

	4.7.2 Sharpened image projection

	4.8 Conclusion
	4.8.1 Future direction


	5 Conclusions
	5.1 Future works

	A Richardson-Lucy algorithm
	A.1 Bayes' theorem
	A.2 Maximum Likelihood estimation
	A.3 Poisson noise
	A.4 Gaussian noise

	B Natural image statistics
	Bibliography
	Publications

