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Abstract—Superquadrics represent various types of primitive
shapes in a single equation with several parameters. Su-
perquadric parameters of an object is estimated from 3D
point cloud. However, the task of superquadric parameter
estimation is computationally expensive and it is unacceptable
for robot applications. Therefore, the concept of our research
is to predict superquadric parameters directly from an image.
We apply regression Convolutional Neural Network (CNN) that
predicts parameters from images to superquadric parameter
estimation. Moreover, we use not only depth but also RGB
image to predict superquadric parameters for improve the
accuracy of prediction. Experiments show that proposed CNN
with the input of RGB-D image predicts more accurate pa-
rameters than baseline methods.

1. Introduction

Approximating shape of objects into 3D primitives such
as cuboids, cylinders and spheres is applied to the task of
object grasping. Approaches to approximate objects into
a single primitivie shape have been proposed [1], [2]. As
the goal of these methods is to grasp specific objects, it
is sufficient to approximate shape into limited kinds of
primitives. On the other hand, Quispe et al. applied su-
perquadric as primitive shape representation for complete
shape representation from a single depth image to grasp
household objects [3]. We employ superquadrics as primitive
shape representation.

Superquadrics are parametrizable models that offer a
large variety of different primitive shapes with a single
equation [4]. Applying the superquadric to an object enables
the object to be expressed by various primitives, such as
cuboids, cylinders and spheres, with several parameters.

Superquadric parameters of an object are estimated with
an image of 3D point cloud captured from a single viewpoint
[5]. An equation obtained by substituting the 3D point cloud
of an object into superquadric representation is regarded as a
non-linear least squares problem. Superquadric parameters
are estimated using the Levenberg-Marquardt (LM) algo-
rithm [6].

However, estimating superquadric parameters of the 3D
point cloud is a computationally expensive task and it is
unacceptable for real-time robotics [7]. To address this issue,
Duncan et al. proposed rapid superquadric parameter fitting
by multi-scale voxelization [8]. They achieved reducing
the computational time while maintaining the accuracy of
superquadric parameter estimation.

Superquadric parameter estimation requires preprocess-
ing of the captured depth image to generate 3D point cloud
of the object. As object detection has become possible with
high accuracy [9], we assume that the object detection is
applied to the captured depth image beforehand in this
paper. After the object is detected, background extraction
and noise reduction are required to generate 3D point cloud
of the object. These preprocessing tasks would be also time
consuming. Therefore, the concept of our approach is to
predict superquadric parameters directly from a depth image
of an object.

Nowadays, there are methods which predict parameters
from a single image using regression CNN [9], [10]. As
superquadric parameter estimation can be regarded as a re-
gression problem, we apply regression Convolutional Neural
Network (CNN) to predict superquadric parameters from a
depth image of object.

Moreover, it is known that the prediction accuracy im-
proved at the task of object detection [11] or object recogni-
tion [12] by using not only depth but also color information
as inputs of CNN. Therefore, we use both RGB and depth
images (RGBD image) for superquadric prediction.

In this paper, we present CNN-based superquadric pa-
rameter prediction method from both RGBD image. In the
experiment, we evaluate the prediction accuracy of our
method verify the effectiveness of using RGBD image for
the prediction. We also show that the prediction using our
method is robust against the viewpoint in which the object
was captured.

2. Superquadric parameters

Superquadrics have been introduced in computer graph-
ics in 1981 [4], as a generalization of quadrics and has been
well studied in graphics and computer vision [13]. The topic
was started from superquadric parameter estimation from a
depth image [5]. Thus, superquadrics have been used for
object shape approximation [14], [15], object recognition
[16], [17], object segmentation [18], and object grasping
[19], [20], [21].

A Superquadric is defined by the inside-outside function
with a shape parameter ε = (ε1,ε2) and a scale parameter
s= (s1,s2,s3):
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Figure 1: Some examples of superquadric surfaces according
to (ε1,ε2).

Figure 2: Two-stream regression convolutional neural net-
work for superquadric parameter prediction. The input of
the network is a pair of RGB and depth images.

where q is a 2-tuple as (s,ε). Parameters s1, s2, and s3 are
scale parameters that define the superquadric size at the x, y,
and z coordinates, respectively. Parameters ε1, ε2 are shape
parameters that express squareness along the z axis and the
x-y plane. Fig. 1 shows some examples of superquadric
surfaces according to shape parameters. For example, su-
perquadric surface is spherical with (ε1,ε2) = (1.0,1.0).

Given a point (x,y,z), if F < 1, the point is inside the
superquadric, if F > 1, the point is outside the superquadric,
and if F = 1 the point lies on the surface of superquadric.
Superquadric parameter q can be estimated from given K 3D
points pi = (xi,yi,zi) of 3D point cloud. The minimization
of the algebraic distance from points to the superquadric
model can be solved by defining a non-linear least-squares
minimization problem:

min
q

K

∑
i=0

(
√

s1s2s3(F(pi,q)−1))2, (2)

where (F(pi,q)− 1)2 indicates the point to superquadric
surface distance minimization, where the term

√
s1s2s3 is

proportional to superquadric volume, compensates for the
fact that the previous equation is biased toward larger
superquadric surfaces. In the literature, Eq. (2) can be
solved via the Levenberg-Marquardt (LM) algorithm [6]. It
is known that (2) is numerically unstable when ε1,ε2 < 0.1
and the superquadric surface has concavities with ε1,ε2 > 2.
Constraints are applied [14] when minimizing (2) for shape
parameters; 0.1 ≤ ε1,ε2 ≤ 2 and for the scale parameters;
s1,s2,s3 > 0.

3. CNN-based superquadric parameter predic-
tion

Our network aims at predicting superquadric parameters
with the input of a pair of RGB and depth images. Network
architecture is as simple as shown in Fig. 2. Our architecture
consists of two convolutional network streams operating on
color and depth information respectively. The network au-
tomatically learns to combine these two processing streams
in a late fusion approach. The architecture of each RGB
and depth stream is based on the architecture proposed by
Li and Chan [22]. They use the regression CNN for human
joint prediction, and their model performs well to predict
joint position from an image. The architecture of late fusion
is based on the idea proposed by Karpathy et al. [23]. Their
late fusion network merged two streams in the first fully
connected layer.

For training our model to predict superquadric parame-
ters, training data, which consists of RGB images, depth im-
ages of objects and corresponding parameters, are required.
We assume that the object detection is already applied to the
scene. The superquadric parameters have to be computed
beforehand to train the model.
Notation. Let T be a sample for training our model as

T = (x,d,q), (3)

where x ∈ RH×W denotes the cropped RGB image with
the image height H and width W , d ∈ RH×W denotes the
cropped depth image and q = (s,ε) is a 2-tuple of su-
perquadric parameters corresponding to the RGB and depth
image. Also, ε and s denote a 2-tuple of shape parameters
(ε1,ε2) and a 3-tuple of scale parameters (s1,s2,s3), respec-
tively.
Loss Function. As the characteristics of shape parameters
ε = (ε1,ε2) and scale parameters s = (s1,s2,s3) are differ-
ent, the loss of shape parameters and scale parameters are
calculated, separately.

We use the mean squared error as the loss function. We
define a loss for shape parameters as

Lshape(ε̂,ε) =
1
n1

n1

∑
i
‖ε̂i− εi‖2, (4)

where ε is the ground truth of shape parameter, ε̂ is the
predicted shape parameter, and n1 is the number of elements
of shape parameter, which is n1 = 2. Likewise, we define a
loss for scale parameters as

Lscale(ŝ,s) =
1
n2

n2

∑
i
‖ŝi− si‖2, (5)

where s is the ground truth of scale parameter, ŝ is the
predicted scale parameter, and n2 is the number of elements
of scale parameter, which is n2 = 3. With weighted summing
for these loss functions, we define a loss as

LR(q̂,q) = Lshape(ε̂,ε)+wsLscale(ŝ,s), (6)



where q is the ground truth of superquadric parameter, q̂ is
the predicted superquadric parameter, and ws is the hyper-
parameter for weighting between shape loss Lshape and scale
loss Lscale.
Network Architecture. The architecture of proposed CNN
is shown in Fig. 2. Our network consists of two streams
- processing color and depth data independently - which
are combined in a late fusion approach, and predicts su-
perquadric parameters q. Scale parameters ŝ are predicted
at the output of layer fc3scale, and shape parameters ε̂
are predicted at the output of layer fc3shape. The loss
is computed at each fc3scale, fc3shape layer by (6). For
the output of convolutional and fully connected layers, the
activation function is applied to learn non-linearity. All
layers except fc3shape are activated with Rectified Linear
Unit (ReLU) activation function [24], which showed that
ReLU has good performance to train fast. For an activation
function for fc3shape, we use the fε defined as

fε(u) =
2

1+ exp(−u)
. (7)

The function fε is the sigmoid function multiplied by 2.
The reason to apply the this function instead of ReLU is
that the range of shape parameters are set to from 0 to 2
when estimating superquadric parameter in (2).
Network Training. For training, dropout [25] is applied to
the first fully-connected layers (fc1) to prevent over-fitting.
Also, spatial dropout [26] is applied to the first convolutional
layer (conv1), which extends the value across the entire
feature map so that it improves the performance especially
when the training set size is small.

4. Experimental Setup

For the evaluation of parameter prediction, the dataset
used in the experiment, detailed information of training, and
training loss and validation loss are described below.

4.1. Dataset

A dataset was constructed for the evaluation of the
accuracy of superquadric parameter prediction. The dataset
is composed of pairs of RGB-D images of objects and
superquadric parameters of each object.

RGB and depth images are chosen from the RGB-D Ob-
ject Dataset [27]. The RGB-D Object Dataset [27] contains
51 categories of objects, and it consists of RGB-D images,
and 3D point clouds of 300 distinct objects. Each object is
captured on a turntable from different viewpoints. These are
common household objects, such as apples, cameras, food
cans, keyboards, shampoo, and toothpastes.

We selected objects of nine categories from the RGB-D
Object Dataset [27]. The dataset is composed of a combi-
nation of the RGB-D images and superquadric parameters
estimated using the LM algorithm from 3D point clouds.
For the training of our CNN model, RGB-D images and
superquadric parameters are used. We splited training, val-
idation and test data with the ratio of around 6 : 2 : 2 per

layer type kernel stride output size activation fn
conv1 7×7 2×2 72×72×32 ReLU
pool1 – 2×2 36×36×32 –
conv2 5×5 1×1 36×36×16 ReLU
pool2 2×2 2×2 18×18×16 –
conv3 3×3 1×1 16×16×16 ReLU
pool3 2×2 1×1 8×8×16 –

fc1 – – 256 ReLU
fc2 – – 256 ReLU

fc3scale – – 3 ReLU
fc3shape – – 2 fε

TABLE 1: Network parameters of each layer. The name in
the column of layer type corresponds to the layer visualized
in Fig. 2.

each category randomly. There are around 25,000 RGB-
D images and superquadric parameters for training, 8,100
for the validation and 8,100 for the test. As we randomly
split train and test data per category, test set includes data
which were captured from the viewpoints not included in the
training set. We also evaluate the robustness of superquadric
parameter prediction against viewpoints with the dataset.

4.2. Training details

The network detail of our model is shown in Table
1. At the row of layer type, conv, pool, and fc is the
abbreviation of convolutional, pooling, and fully connected
layer, respectively. The row of layer type corresponds to the
layer named in Fig. 2.

We assume that the objects are detected beforehand. The
bounding box of objects are given at the RGB-D Object
Dataset [27]. The input is the cropped RGB and depth image
of objects, and the input of RGB and depth images is all
rescaled to 149x149.

We set the size of the data batch to 256. Weights of the
convolutional and fully-connected layers were initialized by
a zero-mean Gaussian distribution with a standard deviation
of 0.1. We use Adam optimizer [28] with the learning rate
0.00001 to train our CNN according to the loss described
in (6). The parameter weight ws between shape loss and
scale loss is tuned to 100.0 in (6). The dropout probability
of dropout and spatial dropout is set to be 0.5 in the
experiments. We applied early stopping [29] technique that
stops training the network when the validation loss is no
longer decreased. Training and evaluations are performed
on a PC equipped with NVIDIA GTX 1080 GPU.

4.3. Training Loss and validation loss

To confirm the convergence of the training and validation
loss of proposed CNN, Fig. 3 shows the train and validation
loss of both shape and scale parameters. For both scale and
shape losses are decreased over training iterations. Early
stopping is applied after 95 iterations where the loss had
begun to increase.
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Figure 3: Plots of the shape and scale losses of proposed
CNN during training iterations. (a): loss of training shape
parameters, (b): loss of training scale parameters.

5. Experimental Results

We set two baseline methods to evaluate the robustness
of proposed CNN against viewpoints. The first is the net-
work with the input of RGB image, and the second is the
network with the input of depth image.

5.1. Visualization of predicted parameters

Fig. 4 shows the qualitative results of superquadric pa-
rameter prediction. The first row shows the RGB images of
objects, and the second row shows the superquadric surface
estimated by LM algorithm, the third row shows the surface
predicted by CNN with the input of RGB image, the fourth
row shows the surface predicted by CNN with the input of
depth image, and the last row shows the surface predicted by
CNN with the input of both RGB and depth image. Predicted
and estimated superquadric parameters are shown below
each superquadric surface. For example, scale parameters of
apple predicted by proposed CNN are (0.033,0.041,0.048)
and shape parameters are (0.774,0.758).

Visualization of the superquadric surface of the predicted
parameters by proposed CNN with the input of RGBD
image can demonstrate that primitive shapes were success-
fully approximated objects’ shape. For example, spherical
surface is predicted at the category of apple, cubical surface
is predicted at the category of food box and kleenex, and
cylinderical surface is predicted at the category of flashlight
and food can.

5.2. Prediction error comparison

Prediction error of scale and shape parameters are evalu-
ated using mean absolute error. Table 2 shows the prediction
error of shape and scale parameters per category with two
baselines. The mean prediction error of both shape and scale
parameters of proposed CNN is less than it of baselines. Our
proposed CNN predicted accurate parameters against data
captured from different viewpoints in the training dataset.

Moreover, to compare predicted shape and scale param-
eters as superquadric parameters, we employ the error of
volume of predicted superquadric surface. The volume of
superquadric can be calculated from both scale and shape
parameters [30]. Volume error of superquadric surface is
evaluated using mean absolute error between ground truth

surface and predicted surface. The volume error is summa-
rized in Table 3. It also shows the robustness of proposed
CNN against viewpoints.

6. Conclusion

In this paper, we have presented an approach for su-
perquadric parameter prediction from RGBD image. Our
proposed approach is the two-stream regression CNN with
the input of a pair of RGB and depth images. It consists of
two convolutional network streams operating on color and
depth information, respectively. The network trains to com-
bine these two processing streams in a late fusion approach.
The experimental results showed the effectiveness of using
RGBD image for the parameter prediction. Additionally,
the robustness against the viewpoint in which the object
was captured is evaluated. We are currently exploring an
extension to our research to predict not only superquadric
parameters but also rotation and translation parameters of
object.
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Figure 4: Visualization of superquadric surfaces estimated by LM algorithm (ground truth), predicted by CNN with the
input of RGB image, predicted by CNN with the input of depth image, and predicted by CNN with the input of RGBD
image (proposed).


