Keio University

Carnegie Vellon University

Incremental Class Discovery for Semantic Segmentation with RGBD Sensing Yoshikatsu Nakajima^{1, 2}, Byeongkeun Kang¹, Hideo Saito², Kris Kitani¹ ¹Carnegie Mellon University, ²Keio University

Motivation

Semantic Scene Reconstruction

A task of incrementally building a dense, semantically annotated 3D map in real-time

Issue

In real-world, many types of objects exist. However, most approaches [1, 2] assume <u>closed world</u>.

Our Approach

Incrementally segment both learned and unseen classes

Key ideas to meke clusters

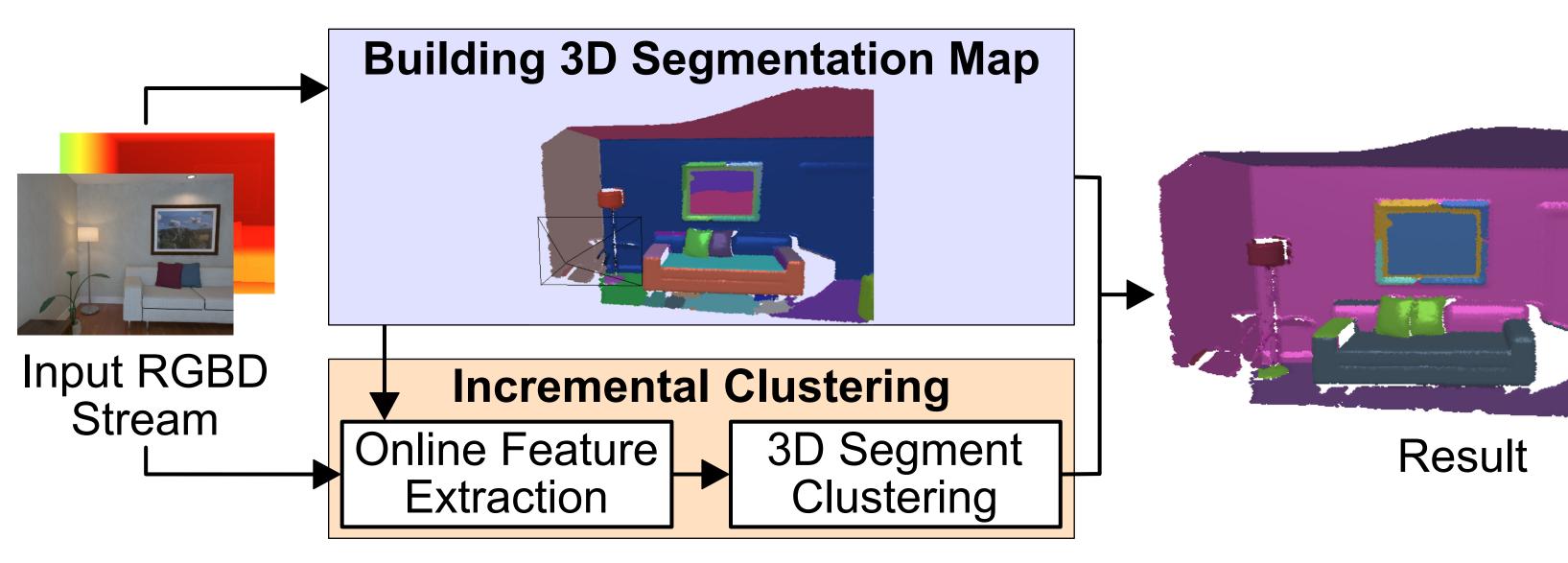
Utilize deep features for grouping learned object classes

Utilize geometric features for grouping unseen object classes

Picture (Unknown)

Picture (Unknown)

Dverview



Building 3D Segmentation Map

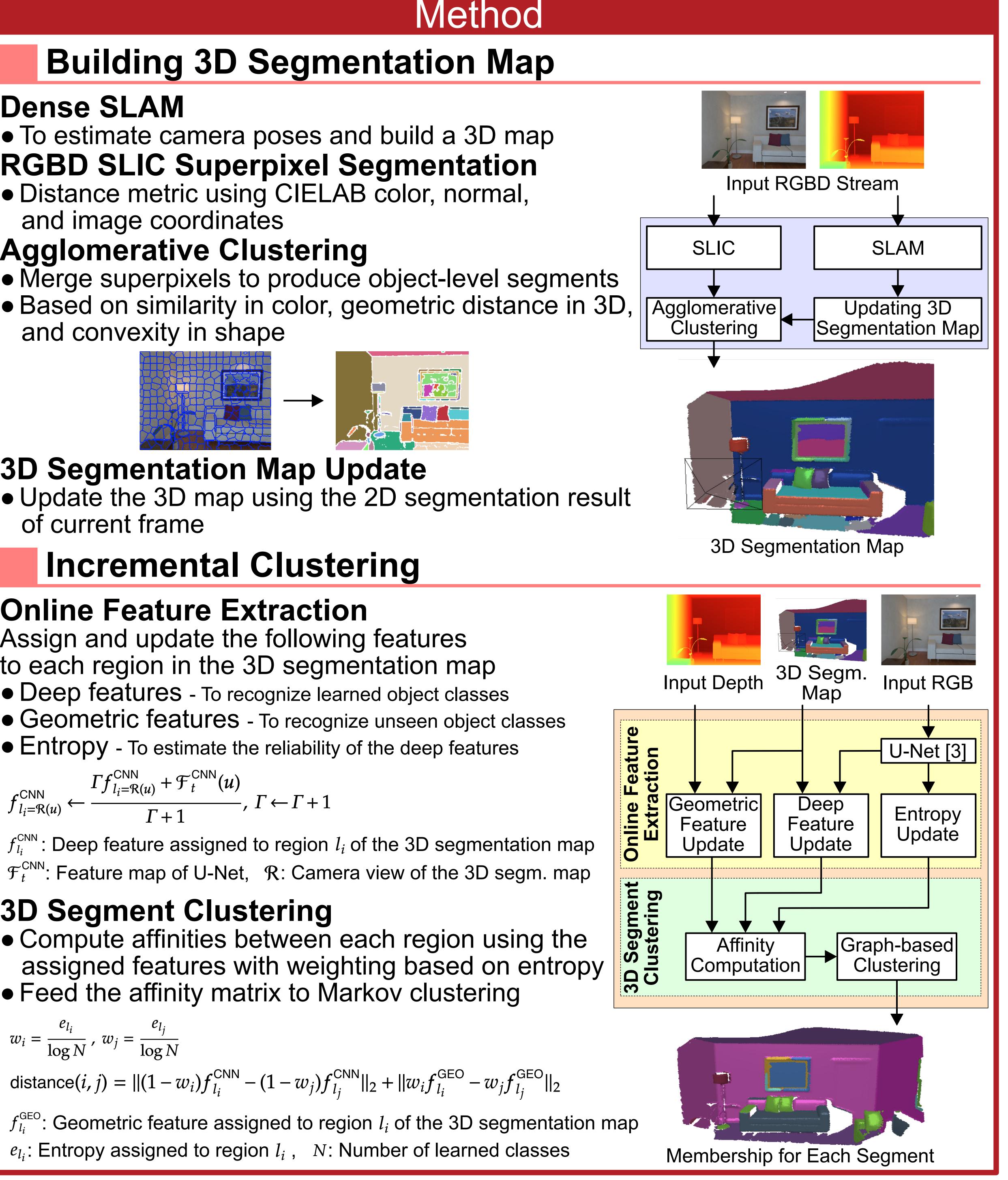
To identify object regions in the scene

 Use for aggregating information from 2D image segmentation Incremental Clustering

Associate objects of the same class and discover new classes

Method

Building 3D Segmentation Map Dense SLAM • To estimate camera poses and build a 3D map **RGBD SLIC Superpixel Segmentation** • Distance metric using CIELAB color, normal, and image coordinates **Agglomerative Clustering** Merge superpixels to produce object-level segments Based on similarity in color, geometric distance in 3D, [Agglomerative] and convexity in shape **3D Segmentation Map Update** • Update the 3D map using the 2D segmentation result of current frame **Incremental Clustering Online Feature Extraction** Assign and update the following features to each region in the 3D segmentation map Deep features - To recognize learned object classes • Geometric features - To recognize unseen object classes • Entropy - To estimate the reliability of the deep features $\Gamma f_{l_i = \Re(u)}^{\text{CNN}} + \mathcal{F}_t^{\text{CNN}}(u)$ $f_{l_i=\Re(u)}^{\text{CNN}} \leftarrow \underline{---}^{J_i}$ $f_{l_i}^{CNN}$: Deep feature assigned to region l_i of the 3D segmentation map \mathcal{F}_t^{CNN} : Feature map of U-Net, \mathcal{R} : Camera view of the 3D segm. map **3D Segment Clustering** • Compute affinities between each region using the assigned features with weighting based on entropy • Feed the affinity matrix to Markov clustering $w_i = \frac{1}{\log N}$, $w_j = \frac{1}{\log N}$ distance $(i, j) = ||(1 - w_i)f_{l_i}^{CNN} - (1 - w_j)f_{l_i}^{CNN}||_2 + ||w_i f_{l_i}^{GEO} - w_j f_{l_i}^{GEO}||_2$ $f_{l_i}^{GEO}$: Geometric feature assigned to region l_i of the 3D segmentation map

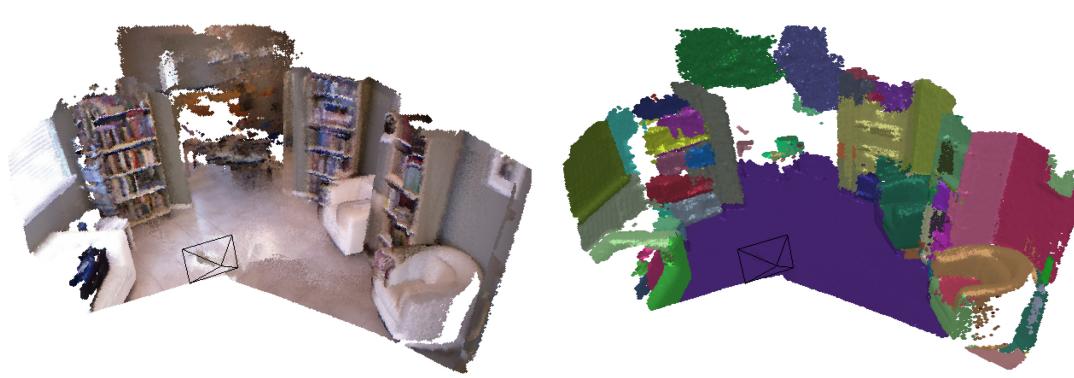


Verified our method on the NYUDv2 dataset [4]. Trained U-Net excluding Ceiling, Picture, TV, and Window.

Accuracy

Table: Quantitative comparison. Supervised methods vs open set method (ours)

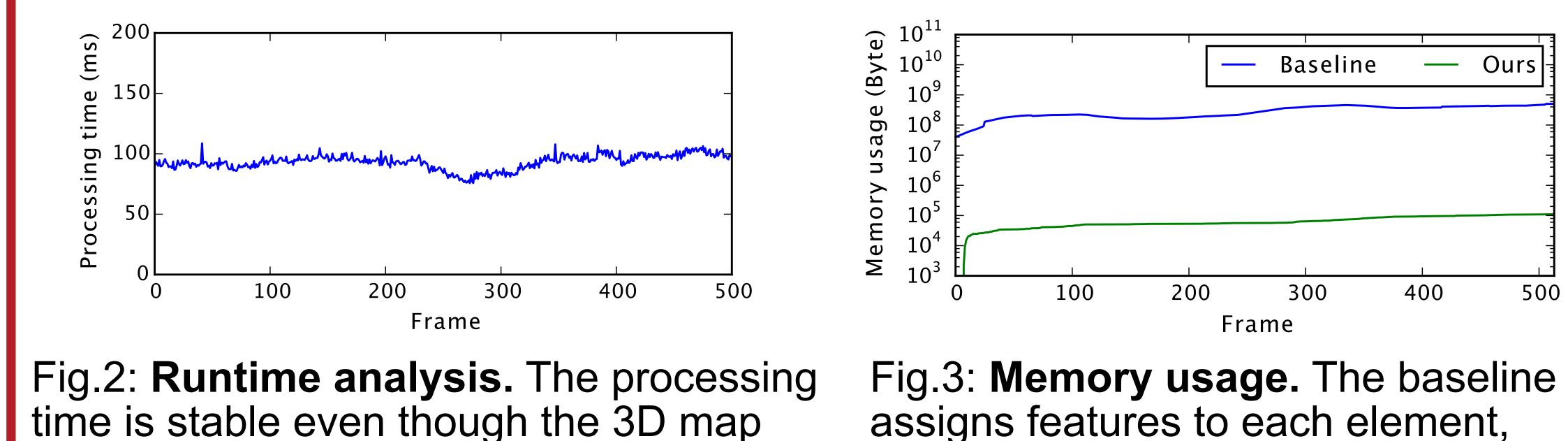
Method	Classes in training data									Novel classes				Mean IoU
	Bed	Book	Chair	Floor	Furn.	Obj.	Sofa	Table	Wall	Ceil.	Pict.	TV	Wind.	
U-Net[3]	50.3	22.4	36.6	55.6	36.9	27.3	48.4	33.8	55.1	-	-	-	-	_
[2]	62.8	27.3	42.6	68.4	44.6	24.6	45.0	42.3	26.8	-	-	_	-	-
Ours	64.2	22.3	41.8	67.4	56.2	28.6	49.3	41.0	63.2	29.3	28.7	52.2	53.9	46.1



Scene

Fig.1: Qualitative results. The proposed method discovers various classes including both unseen classes and the classes in the training dataset.

Efficiency



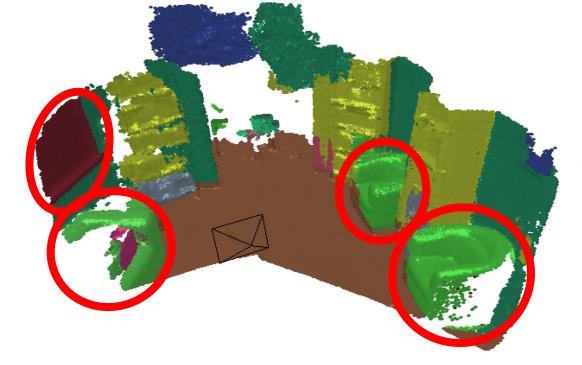
grows larger.

[1] McCormac et al., "SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural Networks," ICRA 2017 [2] Nakajima et al., "Fast and Accurate Semantic Mapping through Geometric-based Incremental Segmentation," IROS 2018 [3] Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI 2015 [4] Silberman et al., "Indoor Segmentation and Support Inference from RGBD Images," ECCV 2012

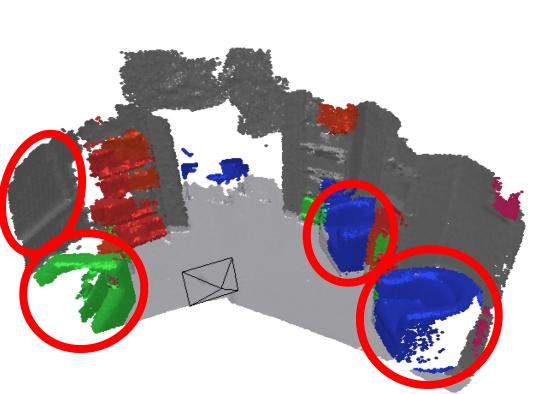
Video Results!

Results

3D Segmentation Map



Clustered 3D Map



Supervised method [2]

Average processing time: 93.2 ms/frame (10.7 Hz) **Space complexity**: # of regions × dimension of features

assigns features to each element, *i.e.* 3D point, of the 3D map as in [1].