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ABSTRACT

In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system,
interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is
developed as an example of an AR application of the proposed method. Using interior simulator, users can visually
simulate the location of virtual furniture and articles in the living room so that they can easily design the living
room interior without placing real furniture and articles, by viewing from many di�erent locations and orientations
in real-time. In our system, two base images of a real world space are captured from two di�erent views for de�ning
a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are
registered interactively. After such coordinate determination, an image sequence of a real world space is captured
by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual
objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed
system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects.
Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a
living room nearly at video rate (20 frames per second).

Keywords: vision based system, registration, 3D interaction techniques, augmented reality

1. INTRODUCTION

Many Augmented Reality (AR) technologies and applications have been studied in recent years.1 One example
of AR is overlaying virtual CG objects onto an image sequence captured by a video camera for �lms and TV
programs. One of the most important issues for AR is geometric registration between the real and virtual worlds.
This generates a correct view of a virtual object, and overlays it onto a view of the real world. Conventional methods
for achieving geometric registration can be categorized into two groups: methods based on 3D sensing of the real
world (3D measurement-based methods) and methods based on image appearance of the real world (appearance-
based methods). The former category covers methods in which the location and orientation of the viewpoint and/or
some points in the real world are explicitly measured with 3D positioning sensors to obtain the relationship between
the real world, the virtual world, and the viewpoint.

One popular 3D positioning device is the magnetic tracker, which is used for measuring the location and orientation
of the viewpoint in the system.2 Methods that use such positioning devices can run stably and do not require any real-
world information such as the positions of some markers in the real world. However, the locations and orientations that
can be obtained by the existing devices are not accurate enough to achieve geometric registration with satisfactory
accuracy. Furthermore, the measurement area of such devices is limited to some special environments, which prevents
the use of AR systems in broader environments such as outdoors. Recent advances in computer vision research have
also contributed to measure the location and orientation of the viewpoint by extracting feature points from images.
Such methods can be achieved using cameras alone, but the 3D position of feature points for estimating the location
and orientation of the camera (extrinsic parameters) have to be known beforehand. Additionally, intrinsic parameters
also have to be known beforehand. Neumann et al. estimated the parameters of a monocular camera,3 where metric
of three feature points must be measured beforehand. Kanbara et al. estimated the location and orientation of the
camera at arbitrary positions from three non-metric mesured feature points by reconstructing the 3D positions of
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these points using stereo cameras with a head-mounted display (HMD),4 but the stereo cameras had to be well
calibrated.

Methods that combine the advantages of a positioning sensor and computer-vision-based techniques have been
suggested56.7 Anabuki et al. constructed the AR application system "Welbo" with this combination method,
where one can visually simulate the location of virtual furniture and articles in the living room with HMD.8 The
combination is stable and accurate enough for a practical system, but the applicable environment is still limited
because of the limitations of the 3D positioning devices.

On the other hand, the image-appearance-based method does not provide the location and orientation of the
viewpoint explicitly, but implies similar information based on two or more base images of the real world, where
a virtual object is overlaid. The appearance-based methods can be achieved using cameras alone, without any
positioning devices, and do not require the intrinsic and external parameters of the camera and metric measured
feature points. Kutulakos et al. achieved geometric registration from two base images, assuming an a�ne camera.9

Since an a�ne camera assumes orthographic or weak-perspective projection, the distance of the viewpoint from the
object must be long relative to the focal length of the camera, and the depth range of the virtual object must be
small compared to the focal length. Kobayashi et al. achieved augmentation by applying a linear algorithm based
on three base images assuming a�ne representation.10

Sato shows the theoretical possibility of geometrical registration in perspective by projective reconstruction from
two base images applying fundamental matrices calculated from seven or more corresponding points between the
base images and the projective basis de�ned from �ve or more corresponding points of which four are not coplanar
and three are not collinear in the real world.11 Since this method assumes projective representation, it has none
of the limitations of a�ne representation, about, for example, the distance or di�erence in depth. Seo et al. also
achieved geometric registration by projective reconstruction.12 In their method, intrinsic and external parameters
are also estimated based on the projective reconstruction.

We propose a geometric registration method of image-appearance-based method taking into account the per-
spective projection by using uncalibrated cameras. The key idea of our method is related to Kutulakos' method,9

but we extend that method to a perspective camera by applying the Projective Grid Space (PGS).13 Although the
theoretical background of our method is similar to their ones1112 in terms of the projective geometry based method,
our method is more practical because the PGS explicitly de�nes the projective position in a real-world scene by using
two base images. Since their methods1112 are based on the projective reconstruction, the position of epipoles must
be explicitly estimated. However, epipole estimation is known to be unstable, so accurate registration is not easy in
a practical implementation. Our method, on the other hand, does not need to estimate epipoles because of the PGS.
This makes our method more accurate in practical applications.

We also constructed an AR application system, interior simulator, with our geometric registration method. The
interior simulator enables the users to visually simulate the location of virtual furniture and articles in the living room
and easily design the living room interior without placing real furniture and articles, viewing from many di�erent
locations and orientations in real-time.

In this paper, Section 2 presents some preliminaries of geometrical theories. Section 3 presents our geometric
registration method. Section 4 describes the real-time overlay system, interior simulator, which is developed by
applying the proposed method. Finally, concluding remarks are given in Section 5.

2. PRELIMINARIES

2.1. Relationships between the viewpoint, real world, and virtual world

In order to overlay a virtual object onto a real world image from the viewpoint, the relationships between the
viewpoint, real world, and virtual world must be obtained. Basically, there are two main methods for obtaining the
relationships: the 3D measurement-based method and the image-appearance-based method.

In the 3D measurement-based method, four coordinate systems are de�ned: 1) object orthogonal coordinate
system (virtual world), where a virtual object is represented, 2) world orthogonal coordinate system for the real
world, 3) camera coordinate system for the viewpoint, and 4) image plane coordinate system, where a camera image
is projected, as shown in Fig. 1. For accurate projection of a virtual object onto an image plane, it is necessary
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Figure 1. Coordinate system of 3D measurement-
based method.

Figure 2. Coordinate system of image-appearance-
based method.

to obtain the transformation matrices of object-to-world TOtoW and world-to-camera TWtoC and the projection
matrix of the camera-to-image TCtoI in the following equation.
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where [u; v; h]> is a 3D homogeneous coordinate in the image plane coordinate system and [x; y; z; w]> is a 4D
homogeneous coordinate in the object coordinate system. Thus, the 3D measurement-based method is a method of
obtaining the three matrices.

In the image-appearance-based method, on the other hand, three coordinate systems are de�ned: 1) object
orthogonal coordinate system (virtual world), where a virtual object is represented, 2) image-appearance-based
coordinate system (real world), which is constructed by two or more images captured by base cameras, and 3) image
plane coordinate system, where a camera image is projected, as shown in Fig. 2. For correct registration, it is
necessary to obtain the transformation matrix of object-to-base TOtoB and the projection matrix of base-to-image
TBtoI in this equation
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Thus, the image-appearance-based method is a method of obtaining the two matrices.

2.2. Projective Grid Space

In this section, we de�ne the Projective Grid Space (PGS).13 PGS is a 3D space that is constructed by two base
perspective images captured by two base cameras as shown in Fig. 3. The three axes of PGS are expressed by P ,
Q, and R, which are the horizontal and vertical axes of base image 1 captured by base camera 1 and the horizontal
axis of base image 2 captured by base camera 2, respectively. The voxels are not the same size as illustrated Fig.
3-(a) compared with the same size voxels of the Orthogonal Space as illustrated Fig. 3-(b).
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(a) (b)

Figure 3. Coordinate systems of (a) Projective Grid Space and (b) Orthogonal Space.

Representing an arbitrary 3D space with PGS de�ned by two base cameras, the relationships between an arbitrary
camera and the 3D space can be represented by only the geometric relationship between the camera at arbitrary
position and the base cameras, which is an epipolar geometry. Therefore, no camera calibration is required to obtain
the relationships between the camera and a 3D space of the orthogonal coordinate system of the real world. Thus,
geometric registration for augmented reality can be achieved with uncalibrated cameras as long as the relationships
among the geometric positions of the cameras are represented in PGS.

The epipolar geometry between two cameras is represented by the fundamental matrix F ,14 which is a 3 � 3
homogeneous matrix of rank 2 with seven degrees of freedom calculated by the correspondence of seven points in
the two images nonlinearly. In order to speed up the calculation of F , our method uses linear algebraic with eight
corresponding points.

3. PROPOSED METHOD

3.1. Outline

The following is the outline of the proposed AR method.

1. Capture two base images at di�erent positions by uncalibrated base cameras.

2. Specify at least eight correspondeing points in the base images interactively for the linear calculation of the
fundamental matrix between the base images.

3. Specify the location of the �ve or more points where a virtual object should be projected in the base images
which construct PGS. For example, these points are the area and height of a virtual object in the base images.

4. Transform a virtual object from object space to PGS.

5. Project a virtual object onto the base images.

These initial operations 1 � 5, described in Fig. 4, are performed before real-time overlay of a virtual object into an
input image sequence captured by an uncalibrated AR camera at an arbitrary viewpoint.
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Figure 4. Outline of the initial process.

6. Capture the AR camera image (or image sequence) by uncalibrated AR camera at an arbitrary viewpoint.

7. Detect and tracking eight or more corresponding feature points in the AR camera image. These points are
corresponding ones between the AR camera image and each base image for fundamental matrices.

8. Transfer a virtual object in the base images onto the AR camera image.

9. Render a virtual object.

These process of generating an overlaid AR image, described in Fig. 5, are applied to an image sequence and repeated
in real-time.

Note that there is no need to know the intrinsic and external parameters of all cameras.

Figure 5. Outline of the real-time overlay process.
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Figure 6. Overview of the process of the transformation and projection of a virtual object.

3.2. Speci�cation and tracking of corresponding points

In order to calculate the fundamental matrices linearly, eight or more feature points have to be detected and related
to each other between the base images, and each base image and the AR camera image. The procedure for specifying
and tracking the corresponding points is described below.

1. Specify the corresponding markers interactively in base images and the �rst frame of an image sequence of AR
camera.

2. Set the tracking windows to the size of 10 � 10 pixels around each speci�ed position and searching within
each tracking window. Then the regions of the markers can be extracted from the images. In the images of
the other frames of an image sequence, on the other hand, assuming that the positions of the markers hardly
move compared with the pre-frame image when the capturing speed of the AR camera is high enough, set the
tracking windows to the size of 10�10 pixels around each position of the corresponding points in the pre-frame
image and search within each tracking window; then the regions of each markers can be extracted.

3. Each centroid of the regions is calculated as each position of the corresponding points.

3.3. Registration

In this section, we describe the algorithm for projecting a virtual object de�ned in a object space onto AR camera
images in an appropriate position.

As described in Section 2.1, for correct registration by the appearance-based method, the relationships between ob-
ject space, camera based or base point space, and image plane are required. The registration procedure is overviewed
below (shown in Fig. 6).

1. Transformation of a virtual object from object space into PGS.

2. Projection of a virtual object from PGS onto base images.

3. Transfer of a virtual object from base images onto an AR camera image.
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Figure 7. Projection and transfer of a virtual object onto each image.

3.3.1. Transformation from object space into PGS

In this section, we describe the transformation of a virtual object from object space, which is de�ned as the orthogonal
3D coordinate system where the origin is the center of a virtual object, into PGS, where the origin is the center of
base images. The relationship between object space and PGS is expressed by

APi
� TOtoPAOi

(3)

where AOi
� [xi; yi; zi; 1]> is a 4D homogeneous point in object space, APi

� [pi; qi; ri;1]> is a point in PGS, and

TOtoP =

2
664

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

3
775 (4)

is the transformation matrix from object space into PGS.

Since TOtoP has 15 degrees of freedom because of t44 = 1, TOtoP can be calculated from at least �ve corresponding
points between object space and PGS.

3.3.2. Projection from PGS onto base images

In this section, we describe the projection from PGS onto base images, using the property of PGS and the fundamental
matrix as illustrated in Fig. 7, where AP � [p; q; r;1]> is a 4D homogeneous point in PGS and A1 � [u1; v1; 1]

> and
A2 � [u2; v2;1]

> are 3D homogeneous points projected Ap onto base images 1 and 2, respectively. By the property
of PGS, A1 and A2 are described by

A1 � [p; q; 1]>;A2 � [r; v2; 1]
>: (5)

Since the epipolar line l12 corresponding to A1 is described in base image 2 by the fundamental matrix F12 between
base images, v2 can be calculated.

3.3.3. Transfer from base images onto AR image

In this section, we describe the transfer from base images onto an AR camera image, using the fundamental matrices
as illustrated in Fig. 7, where Ai is 3D homogeneous point projected A1 and A2 onto the AR camera image. Since
the epipolar lines l1i and l2i corresponding to A1 and A2 are described by the fundamental matrices F1i and F2i
between each base image and the AR camera image, Ai can be calculated as the cross point of the epipolar lines.
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Figure 8. Each position of cameras in Projective Grid Space.

3.4. Rendering

Since the hidden surfaces of a virtual object have to be removed for correct rendering, our method uses the Z bu�er
algorithm. In this algorithm, the distance between a viewpoint and a virtual object must be required as the Z value.
By referring to the Z value, we can detect the nearest surface of a virtual object from the viewpoint of the AR
camera. Then, by painting the pixels with the color of the nearest surface, a correct view of a virtual object can be
generated. Thus, the relative position between a viewpoint and a virtual object must be obtained in order to apply
the Z bu�er algorithm.

The relative position can be obtained by applying each property of PGS and the fundamental matrices in our
method. Now since the position of a virtual object can be obtained in PGS as described in Section 3.3.1, all we have
to do is obtain that of the viewpoint in PGS. As illustrated in Fig. 8, presenting each position of the viewpoint of base
images as C1 � [C1p

; C1q
; C1r

; 1]> and C2 � [C2p
;C2q

; C2r
; 1]>, respectively, in PGS, the epipole of base image 1 on

base image 2 as e12 � [e12u; e12v ; 1]
>, and the epipole of base image 2 on base image 1 as e21 � [e21u; e21v ; 1]

>, we
can represent them as C1 � [C1p ; C1q ; e12u ; 1]

>, and C2 � [e21u ; e21v ; C2r ; 1]
>, where C1p , C1q and C2r are arbitrary

real numbers and e12u, e21u and e21v are calculated from the fundamental matrix F12. Thus the position of the base
viewpoint C1 and C2 can be obtained in PGS. On the other hand, the position of the AR camera is represented as
Ci � [ei1u

; ei1v ; ei2u; 1]
> in PGS calculated from F1i and F2i. After all, since each position of a virtual object, the

base viewpoints, and the viewpoint of the AR camera can be obtained in PGS, a virtual object is correctly rendered
on all images by the Z bu�er algorithm.

4. EXPERIMENTS AND DISCUSSION

We implemented the augmented reality system, interior simulator, based on our method using only a PC (OS:
Windows NT, CPU: Intel Pentium III 750 MHz, RAM: 512 MB) and a CCD camera (JAI Corporation: CV-M70).
The images used in all the experiments were 320� 240 pixels, and graphical views of a virtual object were rendered
with OpenGL library. The markers used in this system were red and round, and we did not measure the size and
position of the markers in the real world.

In interior simulator, virtual objects such as furniture or articles are overlaid into an image sequence of the real
world. The users can visually simulate the location of virtual furniture and articles in the living room and easily
design the living room interior without placing real furniture and articles, viewing from many di�erent locations and
orientations in real-time.

The process of interior simulator is presented below. First, base image 1 and 2 are captured by an uncalibrated
camera from di�erent positions with markers placed in the real world as shown in Fig. 9. Then a virtual object is
registered in the base images with specifying the eight or more corresponding points for the fundamental matrix and
the locations of the �ve points where a virtual object should be placed in the real world. Fig. 10 shows the base
images where a frame box was overlaid as a virtual object. Next, the AR camera image sequence is captured by a
hand-held uncalibrated camera with only the markers placed, generating overlaid AR camera images with tracking
the markers in real-time.
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(a) Base image 1 (b) Base image 2

Figure 9. Base images.

(a) Base image 1 overlaid a frame of box (b) Base image 2 overlaid a frame of box

Figure 10. Geometrical registrated base images.

We registered a virtual chest as a virtual object into a real world scene with the developed interior simulator.
Fig. 11 shows some images of (a) the input AR camera image sequence, (b) with a virtual frame box registered and
(c) with a virtual chest rendered. In addition, the system runs nearly at video rate (20 frames per seconds on the
average).

The number of the corresponding points of markers for calculating the fundamental matrices is 16 and that for
calculating TOtoP , which are the vertices of a box, is 5.

In the augmented reality system of our method, a rendered virtual object moves a few pixels shakily every a few
frames, because the corresponding points can not be tracked accurately. The centroids of the red round markers are
used as the corresponding points in our system. Since the accurate regions of the markers may not be extracted
because of the ickering of the uorescent light, the extraction of the centroids of the markers may be unstable.
Thus the calculation of the fundamental matrices may be unstable, so shakiness may be generated. The accurate
tracking of feature points in real time is generally a hard problem. Although the positioning error of the markers is
not so large and acceptable for most cases, we will �gure out a fast and accurate tracking algorithm for improving
the overlaying accuracy in feature. Furthermore, we will also implement an algorithm to track arbitrary feature
point in input images rather than the red round markeres, so that we can use the interior simulator in arbitrary
environment.

5. CONCLUSION

We proposed a geometric registration algorithm based on image-appearance-based method for augmented reality. By
applying the fundamental matrix and Projective Grid Space, we were able to generate the correct perspective view
of a virtual object and overlay it onto a view of the real world in an appropriate position using uncalibrated cameras.

We constructed an augmented reality system, interior simulator, that runs nearly in real time (20 frames per
second) by applying our method with an image sequence and tracking the non-measured markers as the corresponding
points between the images.
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(a) the input AR camera image (b) with a virtual frame box registered (c) with a virtual chest rendered

Figure 11. Some geometric registration and rendering results of a virtual chest.
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Since the tracked feature points are not measured in our method, we expect to construct a system with no
markers in the future. To make such a system, we must �gure out methods where natural feature points are tracked
accurately and the corresponding points are speci�ed automatically.
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