
Mirage 2003 Proceedings

Computer Vision / Computer Graphics Collaboration for
Model-based Imaging, Rendering, image Analysis and

Graphical special Effects

INRIA Rocquencourt, France, March, 10-11 2003

http://telin.rug.ac.be/mirage2003

Jacques Blanc-Talon, André Gagalowicz, Philippe Gérard,
Wilfried Philips (editor), Dominique Potherat

http://telin.rug.ac.be/mirage2003

MODELING AND RENDERING IN 3D COORDINATE DEFINED BY TWO CAMERAS
FOR SHARED VIRTUAL SPACE COMMUNICATION

1Daisuke Iso, 1,2Hideo Saito

1{iso, saito}@ozawa.ics.keio.ac.jp
1Department of Information and Computer Science, Keio University

3-14-1 Hiyoshi Kouhoku-ku Yokohama 223-8522, Japan
2PRESTO, Japan Science and Technology Corporation(JST)

ABSTRACT
In this paper, we describe an arbitrary view generation system
using reconstructed voxel model in 3D space defined by two
cameras. Saito and Kanade have proposed a method to define
3D space by using two camera-rays starting at the image’s cen-
ter. However, the 3D space was skew because it was generated
based on projective geometry. In this paper, we propese a new
method to reduce the skewness, so that the reconstructed model
can be approximately represented in the Euclidean space without
camera calibration. For making the reconstruction faster, we use
Shape from Silhouette method with our new octree algorithm.
In addition, we introduce an improved background subtraction
algorithm by using not only color images but also disparity im-
ages to generate silhouette images with few noises. After the
reconstruction, we color the model which consists of a set of
voxels and render the model for synthesizing an arbitrary view
image. Using this method, we build an application that com-
poses two models reconstructed at two remote sites in a shared
virtual space and being visualized by arbitrary view image.

1. INTRODUCTION

In 1999, many people in the world were surprised at a
movie. “The matrix” [1] presented some scenes that view
point moved freely in the world that time passed very
slowly. Unfortunately, these amazing scenes called “Bul-
let Time Walk Through” were constructed by hand-made
CG effects that cost much time and human work. For
such backgrounds, the techniques for automatic genera-
tion of arbitrary view image from multiple real images are
recently developed.
In the past decade, efforts have been put in developing
methods for reconstructing 3D models of real world from
multiple cameras. Shape from Silhouette[2] is a method
using object silhouettes extracted from camera images and
reconstructs the objects to separate 3D space based on in-
formation of silhouettes and cameras.
Representation of 3D space or shape is also discussed.
Baker[3] built a wire-frame model from multiple silhou-
ette images. One of the benefits of wire-frame model is its

simplicity. Only vertices of triangles are required for con-
struction. Martin and Aggarwal[4] represented the model
as 3D volume data. It can represent accurate 3D models,
but it took a long time to process all voxels. Potmesil[5]
proposed octree. The octree structure is an 8-ary tree struc-
ture generated by a recursive subdivision of the whole 3D
space called as “universal cube” into octants until homo-
geneous blocks of voxels are reached. The feature of oc-
tree structure is less computation.
Using these 3D shape representations, 3D shape recon-
structing systems are actively researched. Kanade[6] pro-
posed the method of generating arbitrary view of time
varying events with modeling from multiple cameras. How-
ever, this method can’t run in real-time because the pro-
cesses are complex. Cheung[7] et al. presented a multi-
PC/camera system that can perform 3D reconstruction and
ellipsoids fitting of moving humans in real time. However,
they focused on the human motion tracking, so they did
not render virtual view images in real time. Image Based
Visual Hulls[8] was proposed by Matusik et al. in recent
years. They realized real-time arbitrary view image gen-
eration system using their own Visual-Hull computation
algorithm. However, their system needs camera calibra-
tion.
We propose the system automatically reconstructs real world
objects on computer using multiple view camera images.
It runs about 5 frames per seconds in our current system
configuration. Using two cameras for defining world coor-
dinates, our system doesn’t need camera calibration. The
result of the reconstruction is displayed as an arbitrary
view image.
An overview of our system and algorithm is given in Sec-
tion 2, followed by detailed description of each process in
Section 3 and 4. The result of experiments is in Section 5
and an application using our method is described in Sec-
tion 6. Finally, conclusion and future work are provided
in Section 7.

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

28

Figure 1: Two base cameras and PGS coordinates

2. OVERALL SYSTEM AND ALGORITHM

Our system consists of four stereo cameras and five PCs
connected to the LAN. When we build world coordinates,
we use other two cameras. Four PCs for capturing are
Pentium 3 processor 750MHz. A PC for generating ar-
bitrary view image is Dual-Xeon processor 1.8MHz. The
LAN is Gigabit-Ethernet. The stereo camera called “Color
Digiclops”[9] by Point Grey Research Corp. consists of
three CCD cameras and can capture color image and dis-
parity image at the same time. It creates a disparity image
with the combination of the two-baseline stereo method.
Each camera is connected a PC which locally extracts the
silhouettes from the image captured by the camera.
We use not only color images but also disparity images to
generate silhouette. As the result of this, we can perform
robust background subtraction. We don’t use these dis-
parity images for model reconstruction because disparity
values in each image are too rough to reconstruct model.
After silhouette image generation, JPEG compression is
carried out to the silhouette images to reduce image data
size and camera images and they are then sent to host com-
puter to perform 3D reconstruction. If these images are
not compressed, high-traffic situation is caused because
host computer receives many color and silhouette images
per second from capturing PCs. Just to avoid such sit-
uation, the images are converted into compressed JPEG
format.
We use octree generation algorithm[5, 10] with Shape from
Silhouette method to reconstruct 3D object shape because
of its runtime, and improved it. After generating octree,
we convert octree to voxel models and perform internal
voxel removal, because we need only surface to display
result model. After coloring of voxels, we render surface
voxel model as an arbitrary view image.

Figure 2: Projective Grid Space

Our system doesn’t need camera calibration because it
uses the epipolar lines by which other two camera-rays
are projected on four cameras by Fundamental Matrix as
coordinate axes. In Section 3, we describe about generat-
ing 3D space defined by two cameras in detail.

3. DEFINITION OF 3D SPACE

Our system defines 3D world space without camera cali-
bration and reconstructs 3D model in this space. Now, we
describe about definition of 3D space in this section.
In common, a set of (at least 6) known 3D points in world
coordinates and their corresponding projections in cam-
era images are required to compute camera parameters for
3D-2D correspondences. Especially in huge space, cam-
era calibration is very hard work because many 3D points
in the space need to be surveyed.
Saito and Kanade[11] proposed 3D model reconstruction
in “Projective Grid Space(PGS)” generated by only two
base cameras. However, because the coordinates are too
skew to render the model correctly, the information of
model shape is only used for Image-based rendering.
For reducing the skew effect in PGS, we propose to em-
ploy other two cameras with almost infinite, so that we can
build less skew Projective Grid Space using these camera-
rays as coordinate axes.
In our method, all we need to do is surveying only 2D
points in each image plane because we need only epipolar
lines, so the cost to survey is the same even in large-scale
space. In addition, this space can’t be skew because the
coordinate axes are built with the rays of the base cameras
which projection can be assumed orthogonal.
Figure 1 shows the environment seen from the top. We
call the two cameras which define PGS as “base camera”.
As shown in the figure, these two base cameras are placed
in the distance to capture the space of interest as big as
they can.
We name each base camera to BC1, BC2. A point P(p, q, r)

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

29

in PSG is defined by two points in image coordinates, one
is p1(p, q) in BC1 and another is p2(r, y) on the epipo-
lar line which is the projection of the camera ray through
p1. Here, y is calculated by linear equation of the epipo-
lar line. We calculate the epipolar line with fundamental
matrix computed by Zhang’s method[12].
In our method, we also compute other 3D-2D correspon-
dences between PGS to images captured by the stereo
cameras. The ray through the point p1(p, q) in BC1 im-
age is projected as the epipolar line l1 in ith camera by
following equation,

l1 = F1i

p
q
1

 (1)

where, F1i is the fundamental matrix from BC1 to ith
camera. In the same way, the ray through the point p2(r, y)
in BC2 image is projected as the epipolar line l2 in ith
camera by the fundamental matrix F2i,

l2 = F2i

r
y
1

 (2)

where, the notation F2i represents the fundamental matrix
between BC2 and ith camera. By calculating the intersec-
tion of l1 and l2, we compute a correspondence between
P and a point in ith camera. Figure 2 shows the intersec-
tion of two epipolar lines.
In this way, projected 2D position on arbitrary camera can
be computed for every 3D point in the PGS. Since such
projecting computation is repeated many times for every
3D point in 3D shape reconstruction, we keep the 3D-2D
projection relationship for every 3D position in a lookup
table for reducing the computation time. Because two dis-
crete points in the base camera images define a point in
PGS, and the reconstructed 3D volume is limited by the
FOV of every camera, the entry number of the lookup ta-
ble can be determined as a certain finite number, which
does not require huge memory space. For example, the
size of the lookup table is about 268 MByte in our exper-
imental setup.

4. 3D SHAPE RECONSTRUCTION

4.1. Silhouette image generation

Before 3D shape reconstruction, we must generate silhou-
ette images by background subtraction. Here, we describe
our method of silhouette image generation.
We use both color and disparity information taken by stereo
camera for silhouette image generation. Only color infor-
mation, speculars and shadows affect result images. On
the other hand, disparity images are insensitive for these

(a) current color image (b) background color image

(c) current disparity image (d) background disparity
image

(e) silhouette image without
disparity information

(f) silhouette image with
disparity information

Figure 3: silhouette generation

effects, but we can get only coarse silhouette. So we per-
form background subtraction by combining these two in-
formation.
Given a background image whose (x, y) pixel color is de-
noted by cb(x, y), and disparity value is db(x, y), and
current image pixel color is cc(x, y) and disparity value
dc(x, y), we perform silhouette generation as follows:

if |db(x, y) − dc(x, y)| > thD then
if ‖cb(x, y) − cc(x, y)‖ > thU then

p(x, y) = SILHOUETTE
else

if ‖cb(x, y) − cc(x, y)‖ < thL then
p(x, y) = NOT SILHOUETTE

else

θ = cos−1
�

cb(x,y)·cc(x,y)
‖cb(x,y)‖‖cc(x,y)‖

�

if θ > thA then
p(x, y) = SILHOUETTE

else
p(x, y) = NOT SILHOUETTE

else
p(x, y) = NOT SILHOUETTE

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

30

where, p(x, y) is the pixel condition of a silhouette image,
and thD, thU , thL and thA are the disparity, upper(color),
lower(color), and angle thresholds empirically defined.
The result of silhouette generation is shown in Figure 3.
Compare Figure 3(f) to Fig 3(e), shadow effect around
the foot in Figure 3(e) is removed in Figure 3(f) because
disparity image is not affected by the shadow.

4.2. Shape from Silhouette

With correspondences between PGS to all camera images,
we perform shape from silhouette using octree data struc-
ture, to reconstruct 3D object shape. In Euclidean space,
perspective projection of a silhouette image generates a
conic volume model. Resultant 3D model is generated by
intersection of all conic 3D models. The equation of shape
from silhouette is shown Equation 3.

VI =
⋂
i∈I

Vi (3)

where, I is denoted as a set of all silhouette images, and
i is a image in the set. Vi is the object model generated
from the ith image.
In general, each voxel in a Euclidean space is tested if it
belongs to the inside of the silhouette by projecting itself
onto all silhouette images. If a voxel is out of silhouette in
an image, the voxel is not a part of model. In contrast, a
voxel inside of silhouette in all silhouette images is a part
of the model.
For applying the Shape from Silhouette method in PGS,
we transform 3D point in PGS to 2D point in image coor-
dinates using lookup table prepared in advance instead of
perspective transform (in Section 3).

4.3. Octree generation

The octree structure is an 8-ary tree structure generated
by a recursive subdivision of the whole 3D space called as
“universal cube” into octants until homogeneous blocks
of voxels are reached. It is shown in Figure 4.
If an octant does not entirely consist of the same type of
voxels, then it is further subdivided until homogeneous
cubes, possibly single voxels, are obtained. Allocating
these cubes, and transforming them into all silhouette im-
ages, we perform the intersections of transformed cube re-
gion with silhouette regions. Then, we describe the detail
of the method as follows.
At first, 8 vertices of “universal cube” are transformed
into all image planes, and search region is decided. Then,
transformed cube constitutes hexagon. However we in-
tend to have fast reconstruction, so we search the mini-
mum rectangle including a hexagon. After decision of the
rectangle, we perform intersection check. Then, we don’t

(a) Octree structure (b) Recursive cube
subdivision

Figure 4: Octree structure and universal space it shows

search all pixels in the rectangle to save execution time.
We show the intersection check in Figure 5.
If the region includes part of silhouette and background,
the cube corresponding to the region is temporarily deter-
mined as “GRAY” which means partly object is included.
And if all the pixels of the search region are inside the sil-
houette, the cube is temporarily decided as “WHITE”. At
the adverse case (all pixels in the region are background),
the type is temporarily determined as “BLACK”. Once
the temporary type is determined as “BLACK”, the con-
clusive cube type is decided as “BLACK” according to
the concept of shape from silhouette. In other cases, in-
tersection check of the cube is continued until all images
are referred. After all images are referred, the conclusive
cube type is determined. If all temporary cube types are
“WHITE”, the cube is eventually determined as “WHITE”.
The other case is determined as “GRAY”. In this case, all
temporary types are stored, and referred to child node to
shorten computation time.
For example, if the temporary parent node types are deter-
mined as “WHITE”,“WHITE”,“GRAY”,“GRAY”, the final
cube type is determined as “GRAY”. In this case, the cube
is subdivided and has children, and the first and second
temporary nodes are certainly determined as “WHITE”. It
shows in Figure 6. To refer stored types, we eliminate
these losses. After the type of the cube is determined,
process flow is branched depending on the cube type. If
the type is “BLACK” or “WHITE”, we don’t subdivide the
cube. It means that the octree node becomes leaf node. If
the type is “GRAY”, the cube is subdivided to 8 cubes. In
short, the octree node newly makes children octree nodes.
After determining the type of current cube, we recursively
iterate the same process to the others. The pseud code is
given as follows.

function makeOctree {
for(i=1;i ≤ cameraNumber;i++){

refer the parent temporary cube type;

if referred type is ‘‘GRAY" then
project 8 vertices into image;

decide search rectangle;

search the rectangle;

decide the temporary cube type;

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

31

(a) the case of
“BLACK”

(b) the case of
“GRAY”

(c) the case of
“WHITE”

Figure 5: three types of intersection check. The white
rectangle is search area.

Figure 6: Reference of temporary parent type

if temporary cube type is ‘‘BLACK" then

store the temporary type as ‘‘BLACK";

exit this loop;

else if current cube type is not ‘‘BLACK"
then

store the temporary type;

else
decide the temporary cube type as ‘‘WHITE";

}
refer the all temporary cube types;

if one of the temporary cube types is ‘‘BLACK”
then

decide the node type as ‘‘BLACK";

else if all temporary cube types are ‘‘WHITE"
then

decide the node type as ‘‘WHITE”;

else
decide the node type as ‘‘GRAY";

make 8 children node;

for (j=1;j ≤ 8;j++) {
makeOctree;

}
}

4.4. Internal voxels removal

After an octree generation, we convert an octree model
to voxel models for display. Each octree node has 23n

voxels, where, n is the octree level. If we display all

Figure 7: Internal voxel removal

Figure 8: Coloring of voxels

these voxels, rendering runs in much time. To avoid this
problem, we remove internal voxels by the concept of 6-
connectedness and display only surface model. Figure 7
shows about it.
A voxel v ∈ INNER is decided if one or more of its
6 connected neighbors are vacant voxels. Otherwise as
v ∈ SURFACE . Note, we denote the sets of all inter-
nal voxels as INNER, and sets of all surface voxels as
SURFACE .
In the next step described in Section 4.5, we use only sur-
face voxels.

4.5. Coloring of voxels

Generated 3D surface voxel model is not colored. In this
step, voxel color is assigned. In our method, we dynam-
ically blend the voxel color from two pixels of real cam-
era images selected depending on virtual view position. It
shows in Figure 8 and Equation 4.

c(p) =
φ

θ + φ
c1(p1) +

θ

θ + φ
c2(p2) (4)

Where, θ and φ are horizontal angle between ith camera
and virtual view, i + 1th camera and virtual view respec-
tively. The blending weight is determined by these angles.
When a 3D point P is determined, p1 and p2 are trans-
formed by the lookup table discribed in Section 3. Given
two pixels p1 and p2 from correspondences, a virtual view

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

32

Figure 9: The timing diagram for pipeline processing

(a) camera 1 (b) camera 2 (c) camera 3 (d) camera 4

Figure 10: Multiple view images for generating arbitrary view image

Figure 11: arbitrary view images

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

33

(a) view 1 (b) view 2 (c) view 3 (d) top view

Figure 12: Reconstructed shape represented by surface polygon model that is converted from voxel model using MC
method

(a) Two people of almost
the same height (camera 1)

(b) Two people of almost
the same height (camera 2)

(c) Two people of almost
the same height (camera 3)

(d) Two people of almost
the same height (camera 4)

(e) Reconstructed models
by previous method

(f) Reconstructed models by
our method

Figure 13: Difference of skewness

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

34

pixel color c(p) is calculated by these colors c(p1) and
c(p2) according to Equation 4. After coloring of voxels,
we render the model as arbitrary view images. With a vir-
tual point of view, we compute the projection matrix and
render the resulting model. To render faster, we use “Mi-
crosoft DirectX”[13], which carry out most of the render-
ing computations on the hardware, such as depth-buffer
composite, projection transform and so on.

5. EXPERIMENT

5.1. Settings

We experiment our system with the following settings:

• the number of voxels: 256 x 256 x 256

• maximum octree level: 8

• image resolution: 320 x 240 pixels

• color depth: 24bit

• disparity depth: 8bit

Note that, our method cannot know the size of voxel in
real world because we build virtual space using only cor-
respondences in images.

5.2. Result

The timing diagram for the pipeline processing is given
in Figure 9. “Display” in Figure 9 includes the time of
convert from the octree model to the voxel model and the
coloring of voxels. “Image transfer” is the time of JPEG
compression and the transfer of color images and silhou-
ette images from the capture PC to the host PC. The time
of “3D shape reconstruction” is 120msec because we use
improved octree generation algorithm, i.e., our implemen-
tation of Shape from Silhouette not using octree algorithm
takes 5200msec.
Figure 10 shows multiple real images, and the virtual views
are shown in Figure 11.The ratio under the line is the
blending weights between two pixels. The reconstructed
shape is shown in Figure 12. In this figure, the shape is
represented by surface polygon model that is converted
from the voxel model using MC method[14] to see it clearly.
In spite of the reconstruction in Projective Grid Space, our
method can reconstruct the model which looks like in Eu-
clidean space model.
The comparison between Figure 13(e) and (f) demonstrates
the reduction of the skew effect of the reconstruction in
the proposed Projective Grid Space defined by the extra
base cameras. The shape shown in Figure 13(e) is recon-
structed from the four images shown in Figure (a),(b),(c),
(d), in the PGS defined by the camera 1 and camera 4. On

Figure 14: A communication application in shared virtual
space

the other hand, the extra base cameras are introduced for
definition of the PGS, in which the shape shown in Fig-
ure 13(f) is reconstructed.
Because of the skew effect by the camera 1 and camera 4,
the shape shown in Figure 13(e) is distorted. Although the
two people are almost same height, the reconstructed size
of each girl is different. The height of the model A is 178
voxels while the height of the model B is 158 voxels.
Contrary to this, since the epipolar lines from the extra
base cameras are almost parallel, the shapes of the two
people have almost the same size in the reconstructed model
shown in Figure 13(f). The height of the model A’ is about
209 voxels and the height of the model B’ is 201 voxels.
The line in Figure 13(e) represents a section of the p-r
plane in PGS. One of the lines on the p-r plane is shown
as the epipolar lines in Figure 13(b), (c), (d) and a point in
Figure 13(a). The model A stands on the p-r plane while
the foot of the model B is under the plane. On the other
hand, a section of the p-r plane in our PGS defined by the
extra base cameras is indicated as the line in Figure 13(f).
Both A’ and B’ are standing on the same p-r plane in our
PGS.
The reason why the heads of the models in Figure 13(f)
are skew is not as same as PGS skewness. It causes the
errors of intersections of two epipolar lines. We survey 2D
points in base camera image. They capture narrow area
because the focuses of the cameras are infinite, so when
the point is far from the center of base camera image, the
epipolar line is misaligned from correct position. In fact,
3D-2D correspondences are incorrect.

6. APPLICATION

Using our PGS generation method, we build a commu-
nication application in shared virtual space. Figure 14

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

35

Figure 15: A screen capture of our system which is run-
ning

shows the concept.
This application captures multiple view image sequences
at remote two sites and composes two reconstructed mod-
els using the images and CG object prepared in advance.
Capture PCs capture the targets at each site and gener-
ate silhouette images using color image and disparity im-
age. Color and silhouette image sequences are then sent to
the host computer through Gigabit Ethernet and used for
model reconstruction. At host computer, the model is re-
constructed by the set of four silhouette images captured at
each remote point and colored depending on virtual view-
point. In addition, CG object, which is polygon model
with textures, is prepared. Figure 15 shows the screen cap-
ture of the system which is running. The window drawn at
upper left in the Figure 15 shows the shared virtual space.
Other windows in the Figure 15 show the current camera
images.
In the future, when baud rate will be improved, people at
any points can play each other anytime and anywhere.

7. CONCLUSION AND FUTURE WORK

We proposed a fast 3D shape reconstructing system from
multiple view images using Octree and Shape from Sil-
houette without camera calibration, and show the result
image. Our system consists of 4 cameras connected to
four PCs individually and a host PC for reconstruction.
Each camera captures color and disparity images and gen-
erate silhouette image using both color and disparity im-
age. Host PC collects these silhouette images sent from
local PCs and reconstruct 3D shape with octree data struc-
ture. Reconstructed model is converted to voxel surface
model and displayed in arbitrary view. Two base cameras
build non-skew Projective Grid Space. Moreover, these

two cameras enable none camera calibration.
The problem of our system is that the region of few er-
rors of intersections is limited because the FOV (Field
Of View) of two base cameras is a part of the FOV of
cameras for model reconstruction. The more 3D point
in PGS separates from the center of base camera’s FOV,
the more epipolar lines, which becomes PGS coordinates,
shifts from correct position because 2D points in base cam-
era images used for computing fundamental matrices are
surveyed in a narrow range. When the error of epipolar
line becomes large, the errors of intersections between two
epipolar lines become large. To avoid this problem, we
set two base cameras far from space of interest and fit it in
field angle of the cameras.
Total time of generating an arbitrary view image is about
5 frames per seconds in our current system configuration.
However, real time arbitrary view generation systems ex-
ist in the world, for example IBHV[8]. By lowering voxel
resolution, we can shorten reconstruction time in exchange
for quality of arbitrary view image. However, it is impor-
tant to shorten run-time and improve result image quality
together. It is very difficult problems but we try to solve
them.

8. REFERENCES

[1] http://www.whatisthematrix.com/, “The matrix”,
1999.

[2] A. Laurentini, “How many 2D silhouetts does it
takes to reconstruct a 3D object ?”, Computer Vi-
sion and Image Understanding, vol. 67, pp. 81–87,
1997.

[3] H. Baker, “Three-dimensional modelling”, 1977,
pp. 649–655.

[4] W. N. Martin and J. K. Aggarwal, “Volumetric de-
scriptions of objects from multiple views”, IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-5, vol. 2,
pp. 150–158, 1983.

[5] M. Potmesil, “Generating octree models of 3D ob-
jects from their silhouettes in a sequence of images”,
Computer Vision, Graphics, and Image Processing,
vol. 40, pp. 1–29, 1987.

[6] T. Kanade, P. W. Rander, S. Vedula, and H. Saito,
“Virtualized Reality: Digitizing a 3D time-varying
event as is and in real time”, International Sympo-
sium on Mixed Reality(ISMR99), pp. 41–57, 1999.

[7] G. K. M. Cheung, T. Kanade, J. Y. Bouguet, and
M. Holler, “A real time system for robust 3D voxel
reconstruction of human motions”, CVPR 2000.

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

36

IEEE Comput. Soc, Los Alamitos, CA, USA, vol. 2,
pp. 714–729, 2000.

[8] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan, “Image Based Visual Hulls”, in SIG-
GRAPH 2000, 2001.

[9] http://www.ptgrey.com/products/digiclops/index.htm,
“Color digiclops”, .

[10] R. Szeliski, “Rapid octree construction from image
sequences”, CVGIP: Image Understanding, vol. 58,
pp. 23–32, 1993.

[11] H. Saito and T. Kanade, “Shape reconstruction in
Projective Grid Space from a large number of im-
ages”, Proc. CVPR, 1999.

[12] Z. Zhang, “Determining the epipolar geometry and
its uncertainty:a review”, Research Report 2927, IN-
RIA Sophia-Antipolis, France, July 1996.

[13] http://www.microsoft.com/directx/, “Microsoft Di-
rectX”, .

[14] W. E. Lorensen and H. E. Cline, “Marching cubes: A
high resolution 3d surface construction algorithm”,
in SIGGRAPH 1987, 1987, vol. 21, pp. 163–169.

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 10-11 2003

37

