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Abstract

Recently, researches and developments for measuring
and modeling of human body are taking much attention.
Our aim is to capture accurate shape of human foot, using
2D images acquired by multiple cameras, which can cap-
ture dynamic behavior of the object. In this paper, 3D active
shape models is used for accurate reconstruction of surface
shape of human foot. We apply Principal Component Anal-
ysis (PCA) of human shape database, so that we can rep-
resent human’s foot shape by approximately 12 principal
component shapes. Because of the reduction of dimensions
for representing the object shape, we can efficiently recover
the object shape from multi-camera images, even though the
object shape is partially occluded in some of input views. To
demonstrate the proposed method, two kinds of experiments
are presented: high accuracy reconstruction of human foot
in a virtual reality environment with CG multi-camera im-
ages and in real world with eight CCD cameras. In those
experiments, the recovered shape error with our method is
around 2mm, while the error is around 4mm with volume
intersection method.

1. Introduction

In recent years, anthropometry has been widely used
in criminological, medical applications or selective trial of
people[9]. In industry design, anthropometry also acts an
important part, e.g. in the design of shoes, which need to
be fit to the human body very much. For this purpose ac-
curate measuring and modeling of human foot is necessary.
Some 3D foot scanners have been commercially available.
Although almost all this kind of scanners can generate high
accuracy 3D foot model, the motion analysis of foot has
not been solved sufficiently. This is because of the mea-
surement space of these systems is always fixed, and the
position constraint of cameras is strict. Thus the movement

of foot is limited. However, foot is our motor organ, the
measurement of its dynamic behavior is very important for
various purposes. Thus, the goal of our research is acquisi-
tion of dynamic behavior of foot in a relative free space and
high accuracy modeling of foot shape. This goal will be
achieved step by step: firstly, capturing information of foot
surface and modeling the 3D foot model from single image
frame; secondly, extending the method to cope with motion
image sequence and generate a dynamic foot model. In this
paper, we concentrate on the first step.

Three types of object surface measurement techniques
have been widely used: laser scanning, structured light pro-
jection and multiple images-based approaches. The preci-
sion of the measurement has made laser scanning[3][7] and
structured light projection[11][14] the most popular sys-
tems for surface measurement. However, depending on the
size and resolution of the surface to measure, the acquisi-
tion time can range from seconds to half minute. This fact
requires the object human body should be stable without
motion while the measurement, so it is difficult to measure
the foot shape in dynamic situation.

The multiple images-based methods make use of multi-
ple cameras, single moving camera or single camera com-
bined with a rotating platform to acquire a set of images
around object. The images are processed to extract the
silhouettes[13] or find correspondence[2], which are then
combined to result in a 3D model. The system based on
multiple cameras can measure dynamic events, however,
because of difficulties in processing concave surface or find-
ing corresponding points between image pairs, high accu-
racy cannot be achieved easily.

In our research, multiple cameras are also used to acquire
images around the human foot. In order to acquire high ac-
curacy, we applied Active Shape Model (ASM)[4] based
method. In this method, PCA is implemented on human
shape database, so that we can represent human’s foot shape
by approximately 12 variation modes. Because of the re-
duction of dimensions for representing the object shape, we
can efficiently recover the object shape from multi-camera
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Figure 1. The flow chart of proposed method

images.
There are some advantages in using such human

database. First advantage is avoiding occlusion. In captur-
ing multiple view images of foot, we cannot avoid occlusion
because of legs. Such occlusion caused by the legs will also
be a problem even in the case for projecting a structured pat-
tern to the object as [14]. The human database strongly con-
tributes to recover the object shape from multiple view im-
ages with occlusion. The second advantage is reducing the
ambiguities of recovered shape. Since we apply an Active
Shape Models (ASM) based method for recovering the ob-
ject shape, reducing the dimensions of estimated parameters
is very important for stable recovery of object shape. The
third advantage is making the system convenient. For ex-
isting 3D foot scanners, human anatomical landmarks need
to be added for the measurement data to be handled as hu-
man data. The landmarks are generally measured manually.
This is a complicated work and makes error easily. In our
research work, the significant anatomical information is la-
beled by the statistical knowledge of database, in which the
foot examples are aligned by a group of sample points. By
using this sample points, the 3D foot shape will be esti-
mated effectively.

While ASM is a powerful method in many image pro-
cessing applications, some weakness is also discovered.
Firstly, the surface of initial model is only allowed to adjust
along the perpendicular directions. Secondly, the ASM uses
only few part of the image information (mostly the edge

Object

Figure 2. Multi-camera system, the IEEE1394
CCD cameras are synchronized together and
connected to PC, which digitizes the images.

profiles). Moreover, the 3D version ASM[5] is always im-
plemented with a volumetric data of the object. However it
is difficult in many practical cases without particular instru-
ments (e.g. X-ray or MRI).

In this work, we used 3D ASM to search the fitting sur-
face of human foot from its multi-camera images and re-
construct the 3D model. In order to improve the reliability
of our method, we modified the 3D ASM in some points.
Firstly, we used more information of the multi-camera im-
ages, e.g. intensity comparability, edge feature and silhou-
ette information. Furthermore, the establishing of volumet-
ric data is avoided. The fitness of the 3D model is only
verified by the multi-camera images. We combine the 3D
model and 2D multi-camera images by projecting the 3D
model to image plane, so that the complicate process of es-
tablishing volumetric data can be skipped. The outline of
the proposed method is shown in Fig.1.

2. Method

2.1. Multi-camera System

In this work, the term “multi-camera images” refers to
images acquired from different positions in the space de-
scribing the same scene(Fig.2).

For our later processing, all the cameras involved in the
acquisition system should be calibrated. To calibrate the
camera system, various methods can be used. In this work a
convenient self-calibration method is adopted. This method
only requires the cameras to observe a planar pattern shown
at a few different orientations and a cubic reference object.
Then tracking a light maker in the calibration space from
each viewing point synchronously[6]. The procedure is as
follows:
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• Estimating the intrinsic parameters by Zhengyou
Zhang’s flexible calibration method[15].

• Computing the initial estimate of the extrinsic parame-
ters with Direct Linear Transform method[1] by using
a cubic reference object.

• Tracking a distinct marker simultaneously from all the
viewing points.

• By using the epipolar constraint provided by the
marker positions in all the input views. The initial es-
timation of the extrinsic parameters is refined with the
down-hill simplex optimization algorithm.

Since describing this method is not the primary purpose
of this paper, for more details see the references.

2.2. Implementation of Active Shape Models

In this section we explain the ASM-based 3D foot shape
modeling method.

ASM makes use of a prior model of what is expected in
the images. The model is described by pose parameters and
shape parameters. The pose parameters include scale, rota-
tion and translate. On the other hand, the shape parameters
are derived by combining statistical knowledge of object
shape and shape variation from a training set of instances of
the object by PCA. We aim at adjusting the pose and shape
parameters to refine the model from its current location to
the new location that as close to the object surface as it can
be.

2.2.1 Initial Model

Our method starts from an initial model. The initial model
is refined to fit the surface of object. The initial model can
be generated from a human foot database (training set) in-
cluding m foot models.

The training set is usually aligned manually when it was
established. Each foot model is composed of l polygons
with n sample points. The sample points of each foot model
describe the corresponding characteristic positions of foot.
Thus, we can establish a standard foot model v̄ by comput-
ing the average position of each sample point (Eq.(1)).

v̄i = 1/m

m∑
j=1

vj (i = 1 · · ·n) (1)

where vi is the coordinate vector of sample point. i is the
index of sample points, j is the index of foot models. Then
standard model is also composed of l polygons and n sam-
ple points. In our research we use the standard model as
initial model.

2.2.2 Pose Matching of the Model and Object

In ASM the position and orientation of the initial model
should be registered with image data.

The pose of 3D model is described by scale matrix
A = diag(s, s, s), rotation matrix R by θ = (θx, θy, θz)
and translate vector T = (Tx, Ty, Tz)T . The initial model
is refined to fit the object in position and orientation with
optimal pose parameters.

The silhouette images of multi-camera images are used
to evaluate pose parameters. Because all of the camera pa-
rameters have been estimated by thorough calibration (sec-
tion 2.1), the projection matrix P can be established. Then
the sample points of 3D model can be projected onto the sil-
houette images i.e., the world coordinates of sample points
are transformed to 2D coordinate system of image plane.

In this way the 3D model and 2D multi-camera images
are related. Because the intensity Kij of foot image is al-
ways higher than the background in binary silhouette image,
updating the pose parameters to maximize the cost function
Epose (Eq.(2)) can make the 3D model approach to object.

Epose(A, θ, T) =
f∑

i=1

n∑
j=1

Kij (2)

where, i is the index of binary silhouette multi-camera im-
ages, j is the index of sample points.

2.2.3 Principal Component Analysis Based Shape Pa-
rameters

PCA is an effective approach to describe the statistical re-
lationship within a training set of objects. It can reduce the
dimensionality of the data to something more manageable.

In the training set, each foot example is represented in a
3n dimensional space. Every example in this space gives a
set of sample points whose shape is broadly similar to that
of those in the training set. Thus by moving about the sam-
ple points we can generate new shapes in a systematic way.
However the n is more the cost of computation will go up
distinctly. So we are anxious a good efficiency approach in
low dimensional space. In order to achieve this goal, we
apply PCA to the training set. For each shape in the train-
ing set we calculate its deviation from the standard model v̄
(Eq.(1)) as:

dvi = vi − v̄ (3)

Then the 3n× 3n covariance matrix S of database is calcu-
lated by

S = 1/m

m∑
i

dvidvT
i (4)
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The principal components give the modes of variation of
the shape, are described by pk (k=1, · · ·, 3n), which the
eigenvectors of covariance matrix S such that

Spk = λkpk (5)

where λk is the corresponding eigenvalue of pk, λk >
λk+1. It can be shown that the eigenvectors of the covari-
ance matrix corresponding the largest eigenvalues describe
the most significant modes of variations. Then the varia-
tions can be explained by a small number of modes, q. This
means that the 3n dimensional space is approximated by a
q dimensional space, where q is chosen so that the smallest
number of the modes such that the sum of their variances
explains a sufficiently large proportion of the total variance
of all the variables.

Any samples of object can be reached by adding a linear
combination of the eigenvectors to the standard model v̄

v = v̄ + PB (6)

where P = (p1, p2, · · · pq) is the matrix of the first q eigen-
vectors, and B = (b1, b2, · · · , bq) is a vector of weights. Be-
cause the foot shape is controlled by the weights vector, B
is so called shape parameters.

2.2.4 Using the Method for Search Images

Optimal pose parameters and shape parameters are esti-
mated with an iterative scheme. While these parameters
are updated one by one during the iterative process, if the
difference of translate is too big, the refinement of other
parameters will be invalid. Consequently, we assume the
optimization of rotation, scale parameter and shape param-
eters is started when the superposition area of the sample
points’ projection and silhouettes in multi-camera images is
more than 80%. Then the iterative will stop until the update
ratio of the sample points between the last iterative and the
current iterative is under a threshold. In our experiment, the
threshold is always set less than 1%

As described in section 2.2.2, the optimal pose parame-
ters were searched by maximizing the cost function Eq.(2).
Thus we also need a cost function for estimating the optimal
shape parameters. We define the cost function as:

Eshape(B) =
f∑

i=1

n∑
j=1

(wij

∣∣Iij − Īj

∣∣ + w
′
ijDij) (7)

where i is the index of camera, j is the index of sample
points. Iij is the intensity of the projection pixel of sample
point, Dij is the distance between the sample point whose
projection on the contour of the projection area of all the
sample points (we call them “contour sample points”) and
the closest edge of foot in multi-camera images. wij and

w
′
ij are weight factors. Īj =

1
f

f∑
i=1

Iij is the average of

Iij . Thus, while the first term of the cost function is getting
smaller, the sample point’s position is more credible. How-
ever, this constraint will lead the projection of sample points
to fall into the background field, in some extreme case. Con-
sequently, we set a distinctive condition to the cost function:
the euclidean distance between the contour sample points
and the edge of object in the multi-camera images. By min-
imizing the cost function, we can obtain the optimal ap-
proach of the object surface. The optimization of the cost
function is implemented with “Rosenbrock” algorithm[10].
We will explain how to seek the contour sample points in
the next section.

2.3. Occlusion

Because the intensity of sample points’ projection on
multi-camera images is used to evaluate the parameters of
ASM, we must think over the problem of occlusion.

In order to solve the occlusion issue, we investigate the
spatial relationships of sample points’ projection with poly-
gons’ projection in image plane. The relationships are ar-
ranged in two classes: Inside and Outside (Fig.3).

polygon sample point

(a) inside           (b) outside          (c) border     (d) superposition

 inside                outside

Figure 3. relationships of sample points with
polygons

For “Outside” sample point will not be occluded by poly-
gon obviously, but for “Inside”, the problem is complex. In
Fig.4, the projection of occluded sample point F is inside
a polygon’s projection. On the other hand, although D’s
projection is also inside a polygon’s projection, D is not
occluded. Thus, we should do further investigation. For in-
stance, in order to estimate if W is occluded by �XY Z,
the world coordinates of W and the vertices of �XY Z
are transformed to camera coordinate, as W ′, �X ′Y ′Z ′

respectively. Then we can compute the signed distance d
between W ′ and �X ′Y ′Z ′.

Because in our experiments the object is always set near
the center of the space, the sign of distance are considered
to be the criterion of occlusion. If d is positive the sample
point is between camera and a polygon, the sample point is
not occluded, otherwise the sample point is considered to
be occlusion.
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Figure 4. The solid line triangles represent
the polygons that faces the camera O, broken
line triangles represent the polygons on the
reverse surface to the camera. The polygons
on the reverse surface are invisible.

For attentively, if the sample points’ projections are on
the contour of all the sample points’ projection area, its pro-
jection may inside no polygon’S projection. We call this
kind of sample points “contour sample points” (CSP). In
Fig.4 sample points A, B, and C are so-called CSP.

In order to reflect the occlusion’s effect on the process,
we redefine the shape parameters cost function as

Eshape(B) =
m∑

i=1

n∑
j=1

(cijwij

∣∣Iij − Īj

∣∣ + c
′
ijw

′
ijDij) (8)

where cij =
{

0 occlusion
1 otherwise

c
′
ij =

{
1 CSP
0 otherwise

3. Experiments

3.1. Computer Graphics Data

We apply the proposed method in a computer simulative
experiment firstly. Multi-camera system includes 32 virtual
cameras is created by Povray[8]. Multi-camera images of a
premade foot model with random pattern texture were taken
by this system. Some examples of the multi-camera images
are shown in Fig.5. The resolution is 640 × 480 pixels.

The shape parameters are derived from PCA of a training
set. In this experiment a human foot database that is com-
posed of 397 adults’ right foot is adopted. Table 1 shows

Figure 5. CG multi-camera images of foot
model

the distribution of size in the database. Each foot model is
composed of 740 polygons with 372 sample points.

Table 1. Human foot database
Size (U.S. size) 5 6 7 8 9 10

Male - 17 56 68 48 23
Female 11 20 78 42 24 10

The cumulative contribution ratio cumi =
i∑

j=1

cj is

computed for deciding shape parameters. Where ci =
λi/λT is called contribution ratio of covariance matrix’s

eigenvector λi, and λT =
∑
i=1

λi. According to the cumu-

lative contribution ratio, more than 90% of the variance is
explained by the first 12 modes of variation. On the other
hand, from the 13th mode the contribution ratios are less
than 0.5%, thus the influence of them can be ignored. The
weights of the first 12 modes are considered to be the shape
parameters in our experiments.

The result of our proposed method is shown in Fig.6.
The points group in the images is the projection of sample
points. For display the result distinctly, the sample points
are projected to the silhouette images that are extracted by
background subtraction. It is obviously that during the iter-
ative (from left to right) the projections of sample points are
getting fitted the foot image well. Fig.7 is the foot model
displayed in 3-dimensional.

Since volume intersection is a very popular surface re-
construction technique, we are very interested in the com-
parison with it. Fig.8 is the result of volume intersection
in 3-dimensional. According to this comparison, volume
intersection’s result gives a little incondite impress, particu-
larly in the concave part of the surface. On the other hand,
our proposed method’s result is smoother and more similar
to the real human foot than volume intersection.

Because the CG foot model is known previously, the eu-
clidean distance between the sample points and the surface
of CG foot model would be a reasonable criterion. The root
mean square error of the proposed method is 2.21mm, and
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Figure 6. Silhouette images of CG foot model with the projection of sample points superimposed,
during iterative process (from left to right)

Figure 7. Reconstructed 3D model of CG foot
model by proposed method

Figure 8. Reconstructed 3D model of CG foot
model by volume intersection

the error of volume intersection is 4.44mm. According to
this comparison, we can say our proposed method provides
more precise result than volume intersection.

Moreover, in our previous research, the 3D Active Con-
tour Models (ACM) is used for reconstruction of foot
model[12]. More than 3000 control points are aligned on
the surface. While smooth foot model can be reconstructed,
the shape features of foot are not sufficient. This is occurred
by the smooth effect of ACM is difficult to be controlled.
Particularly, the root mean square error is about 3.50mm
that is inferior to our proposed method.

3.2. Real Data

The proposed method is also implemented in real data
experiments. The multi-camera system includes 8 CCD
cameras whose frame rate is 7.5fps. The resolution is also
640 × 480 pixels (Fig.9(a)(b)). For making the surface tex-

a b

dc

Figure 9. Multi-camera images of real hu-
man foot((a),(b)), and their silhouette im-
ages((c),(d)), in which the broken circles show
the “leg occlusion"

ture strong, the object puts on socks. The silhouette im-
ages are shown in Fig.9(c)(d). In CG experiment, silhouette
images are obtained by background subtraction. For real
human foot, we not only take the background subtraction,
but also remove the unwanted parts e.g. the leg, manually.
Although the manual “leg remove” work is unefficient, be-
cause there are only 8 multi-camera images, the workload
is still acceptable. However, in our future work, we will
exploit automatic “leg remove” processing.

Fig.10 shows the result in 2-dimensional. The 3-
dimensional result is shown in Fig.11. We also compared
the result with volume intersection (Fig.12). However, in
this case volume intersection’s result is too rough to under-
stand its shape. This principally happened by “leg occlu-
sion” phenomenon, which is occurred because part of foot
in images is occluded by leg. The volume intersection back-
projects the voxels to multi-camera silhouette image in a
cone space, then intersects all the cones to be the approach
of the object. Consequently, if there are big gaps on the sil-
houette images, the reconstructed surface must be affected
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Figure 10. Multi-camera images of real human foot with the projection of sample points superimposed,
during iterative process (from left to right)

Figure 11. Reconstructed 3D model of real hu-
man foot by proposed method

Figure 12. Reconstructed 3D model of real hu-
man foot by volume intersection

largely. In the proposed method foot database is adopted to
establish an intact foot model as the initial model and sta-
tistical knowledge of human foot is applied to amend the
missing data, hence the effect of leg occlusion can be cov-
ered. According to Fig.11 the same problem of volume in-
tersection has not been occurred. Therefore, the proposed
method is attested to be robust.

For real camera data, we don’t know the answer pre-
viously. Thus, how to evaluate the result is becoming a
difficult issue. In this work, an experiment of a plastic
foot model whose position information was measured pre-
viously, was done. The multi-camera images are shown
in Fig.13. The result of our iterative method is shown in
Fig.14. Then the similar evaluation of CG data is carried
out. The root mean square error is about 2.46mm. The er-
ror is in the same level to the CG experiment.

Since there is no effect like “leg occlusion” for plas-
tic foot model, the result of volume intersection method

Figure 13. Multi-camera images of a plastic
foot model

(Fig.15) is not as bad as Fig.12. However, 8 cameras are
too less for volume intersection algorithm, the reconstructed
3D model is still too rough to be considered an acceptable
approach of foot. On the other hand, under the same con-
dition (using 8 CCD cameras) a very satisfied 3D model is
obtained by our proposed method (Fig.16).

4. Conclusions

In this paper we proposed a foot surface modeling
method. The images of foot surface are acquired by multi-
camera system in a free space. Because PCA of human
shape database reduced the dimensions for representing the
object shape, we can efficiently recover the object shape
from multi-camera images by more effective and general
parameters. The stable object shape can be obtained, even
though the object shape is partially occluded in some of in-
put views. However, there are still some remained issues.
Firstly, the sole of foot cannot be recovered by our multi-
camera system. Although we use the sole of the standard
foot shape from database as substitute, the accuracy was af-
fected. Secondly, because in our experiment we put on sock
to add texture of foot, the reliability was also decreased.
These disadvantages will be improved in our future work.
Moreover, in our future work, the proposed method of this
paper should be extended to cope with motion data. We as-
sume the foot is in still condition on floor in the first frame
of image sequence. The initial foot model is refined to fit
the first frame of images sequence by our proposed method.
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Figure 14. Multi-camera images of plastic foot with the projection of sample points superimposed,
during the iterative process (from left to right)

Figure 15. Reconstructed 3D model of plastic
foot model by volume intersection

Figure 16. Reconstructed 3D model of plastic
foot model by proposed method

The sample points of foot model are tracked in rest frames
to generate a dynamic 3D foot model.
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