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Abstract. We propose a dynamic visual learning method that aims to identify 
people by using sparsely distributed multiple surveillance cameras. In the pro-
posed method, virtual viewpoint images are synthesized by interpolating the 
sparsely distributed images with a simple 3D shape model of the human head, so 
that virtual densely distributed multiple images can be obtained. The multiple 
images generate an initial eigenspace in the initial learning step. In the following 
additional learning step, other distributed cameras capture additional images that 
update the eigenspace to improve the recognition performance. The discernment 
capability for personal identification of the proposed method is demonstrated 
experimentally. 

1   Introduction 

The recent deterioration of public safety is causing serious concern. Biometrics is one 
of the most promising technologies for alleviating this anxiety [1][2]. We are currently 
researching a form of biometrics that uses surveillance cameras set up in an actual 
space like a hospital or a railway station. For instance, we assume the hospital shown in 
Fig. 1. It is hoped that we obtain more appearance information at the entrance because 
at that point a suspicious person's invasion is obstructed.  
    Generally, because there is a broad field of view at the entrance, the images from 
different directions can be captured by using multiple cameras. If the monitoring sys-
tem confirms that enough learning of an object’s appearance has been performed, the 
automatic door opens and entry to the hospital is permitted. While the object is walking 
along the passage from the entrance to the sickroom, new images are captured with a 
surveillance camera arranged at each chosen position. The appearance information on 
the object is then updated by using the new images. When the object tries to enter the 
sickroom, another image of the object is captured by the surveillance camera set up in 
front of the sickroom. The personal identification processing is then performed by 
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using captured images, and when the result corresponds with the sickroom’s authori-
zation list, the automatic door opens and entry to the sickroom is permitted. A person's 
action history is generated with the processing of additional learning and identification. 
It is considered that different lighting conditions at each location has a strong influence 
on the accuracy of individual identification, though we assume to be able to control the 
lighting conditions almost constantly in indoor environments such as hospitals. 

 

Fig. 1. Surveillance cameras in hospital 

In this paper, we show a proposed method for dynamic visual learning based on a 
parametric eigenspace using sparsely distributed multiple cameras. We also describe 
some experiments to demonstrate the effectiveness of the proposed method. 

2   Related Works 

As people generally utilize facial appearances to identify individuals, the human face 
has potential for use as the most important type of information for biometric technol-
ogy, making face recognition is one of the most important reasons for installing sur-
veillance video sensors [3][4]. Most of these sensors demand a frontal or near-frontal 
facial view as the input appearance, and extract points of interest for the identification 
process (e.g., eyes, brows, nose and mouth). However, it is not always possible to 
capture the desired appearance with practical surveillance cameras. Therefore, in order 
to achieve a high recognition rate, the systems have to severely restrict people’s ac-
tivities, as in a portrait studio. 

Parametric eigenspace is a well-known method for identifying objects with various 
appearances from images [5]. In order to generate a parametric eigenspace that 
achieves accurate identification, a number of different appearances, which can be 
collected by densely distributed multiple cameras, are generally required. However, it 
is not practical to set up a dense network of surveillance cameras around objects in the 
real world; general-purpose surveillance cameras are sparsely distributed, because the 
primary objective of the cameras is to monitor the widest area possible. 



132 H. Tanaka et al. 

 

The objective of this paper is to realize a dynamic visual learning method based on 
parametric eigenspace to identify people captured with sparsely distributed multiple 
surveillance cameras. If we simply generate an eigenspace with a small number of 
sparsely distributed images, it is not possible to identify people from various viewing 
angles because the eigenspace cannot effectively learn the variety of appearances. 
Murase et al. attempted to fill the gap between the multiple images with a spline in-
terpolation technique in a roughly generated eigenspace [6]. In our case, however, the 
gap is much larger than the one they dealt with in their research. The reason why spline 
interpolation does not work well with sparsely distributed images is that changes in the 
captured object’s appearance are not considered in the interpolation process. The Vir-
tualized Reality popularized by Kanade synthesizes a novel view with a 3D shape re-
constructed from images captured with multiple cameras [7]. This technique makes it 
possible to interpolate multiple images by considering changes in appearance. In our 
proposed method, we mainly employ this technique to virtually capture multiple im-
ages and to generate an initial eigenspace. However, we need to modify this technique 
by simply using a 3D face model provided by the Galatea project [8], rather than re-
covering the 3D shape of the object from the captured multiple images, because it is 
still difficult to recover the 3D shape of the object from sparsely distributed multiple 
surveillance cameras. 

3  Proposed Method for People Identification with Sparse Multiple 
   Cameras 

As illustrated in Fig. 2, the proposed method consists of two phases. We call the first 
phase the “initial learning phase,” and the second one the “additional learning phase.”  

 

Fig. 2. Parametric eigenspace method with sparsely distributed multiple cameras 

Initial Learning: In this phase, a view interpolation technique is used to generate an 
initial eigenspace. The surrounding sparsely distributed multiple cameras capture the 
target object at the same time. The 3D visual hull of the object is then reconstructed by 
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merging the multiple images using the shape from a silhouette method [9]. A simple 3D 
face model is fitted to the visual hull to mask the face region, and as a result, a 3D shape 
model is estimated. This method virtually captures multiple images by interpolating the 
appearance information of sparsely distributed images with the 3D shape model, and 
generates an initial eigenspace. 
 
Additional Learning: To improve the method’s ability to identify individuals in the 
eigenspace, the additional learning phase dynamically updates the eigenspace gener-
ated in the first phase. The extrinsic parameter of the additional capturing cameras is 
estimated as a relative pose with respect to the object. Then, the captured image is 
projected onto the 3D shape model with the parameter as texture information to im-
prove the appearance of the interpolated images. By regenerating the eigenspace of the 
updated image data set, the discernment capability for personal identification of the 
eigenspace is improved. 

4   Initial Learning Phase 

4.1   Extraction of Head Region 

As illustrated in Fig. 3, we set up a camera that looks down from the ceiling of the target 
space. Koyama et al. estimated 3D positions (X, Y, Z) from the 2D coordinates in an 
overhead image (u,v) while assuming that all target objects are at a constant height Y 
[10]. Under this assumption, a homographic transformation H is calculated that projects 
2D coordinates in the overhead image onto a 3D plane. Eq. (1) is the equation of the 
projection. However, this assumption imposes a limitation on detecting the objects. 

[ ] [ ]ΤΤ = 11 vuZX Hλ  (1) 

 

Fig. 3. Extraction of the head region 

We improve this plane-based object-tracking method to detect the object’s 3D po-
sition with arbitrary height information [11]. In this method, two base-planes are placed  
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in 3D space, one on the ground (height=0) and the other at height Yh, after which the 
homographic transformations H0 and H1 are calculated. If the height of a new plane is 
given as Yn, the homographic transformation Hn is estimated by interpolating H0 and 
H1, as in Eq. (2). 

hnnhn YYYY /))()(( 10 HHH −= −  (2) 

The segmented foreground region is projected onto the 3D plane-n by changing the 
height Yn from 0 to Yh. If the target object stands vertically like a human, the projected 
foreground region always includes a certain point (X,Z) on plane-n where the actual 3D 
object exists. By merging all of the n-planes (e.g., by an AND operation), the 3D po-
sition of the target object is estimated. 

 

         

     Fig. 4. A simple 3D face model                         Fig. 5. 3D model estimation 

4.2   3D Shape Model Estimation and View Interpolation 

The accuracy of the estimated 3D shape seriously affects the quality of the interpolating 
images. To solve this problem, we employ a simple 3D face model provided by the 
Galatea project and fit the model to the visual hull to mask the face region. Fig. 4 shows 
the wire frame model of the 3D face model. 

As illustrated in Fig. 5, we set a horizontal plane p(y) and project all of the fore-
ground regions in all of the multiple images that have been calibrated in advance. The 
sliced 3D shape of the object is estimated as the overlapped region of all the projected 
regions [12]. We calculate the size and position of the captured head as the radius r(y) 
and the center of the circle c(y)=(X,Y,Z) by fitting a circle to the estimated shape on the 
plane, and execute the same process while shifting the horizontal plane along with the 
vertical axis to cover the head region. The head height l is estimated by searching for 
the minimum nonzero radius and the highest position of the head. As the right-hand 
side of Fig. 5 shows, we scale the 3D face model up/down with respect to head height 
and put the 3D model at the center of the head region. With this scaling process, we can 
reflect individual differences in head size. 
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The input multiple images are texture-mapped onto the estimated 3D face model 
using Projective Texture Mapping [13]. We render interpolation images while rotating 
a virtual camera around the 3D model in 1º increments. The blending parameter of 
each image (texture) is then calculated using the distance from the input multiple 
cameras to the viewpoint currently being interpolated. 

4.3   Parametric Eigenspace Generation 

4.3.1   Normalization 
Normalization consists of two steps: scale normalization and brightness normalization. 
In scale normalization, the extracted head region is resized to a square region (e.g., 
128×128 pixels) with its center at the top of the head. In brightness normalization (Eq. 
(3)), each image ix̂ is transformed to a normalized image ix . In this normalizing proc-
ess, our method has an advantage in that it is possible to completely control the condi-
tions while generating the input image set, because they are synthesized images. 

iii xxx /ˆ=  (3) 

4.3.2   Creating the Initial Eigenspace 
To compute the eigenspace, we first subtract the average c of all images in the image set 
from each image in the set as shown in Eq. (4), where N is the total number of images in 
the image set. Then, to compute the eigenvectors of the image set, we define the co-
variance matrix Q also given in Eq. (4). The eigenvectors ie and the corresponding 
eigenvalues iλ of Q are to be computed by solving the eigenvector decomposition 
problem using Eq. (5). All of the eigenvectors of Q constitute a complete eigenspace. 
However, only a small number of eigenvectors is generally sufficient for capturing the 
primary appearance characteristics of objects. These k eigenvectors correspond to the 
largest k eigenvalues of Q and constitute the eigenspace. The number k of eigenvectors 
to be computed is selected based on recognition ability.  

Τ= XXQ , [ ]cxcxcxX −−−= N,,, 21 !  (4) 

iii Qee =λ  (5) 

   Each image ix is projected onto the eigenspace. This is done by subtracting the av-
erage image c from ix , and then finding the dot product of the result with each of the k 
eigenvectors, or dimensions, of the eigenspace as in Eq. (6), where i indicates the pose 
parameter. The result is a single point in the eigenspace, and by projecting all of the 
image sets, we obtain a set of discrete points. Pose variation between any two con-
secutive images is small; as a result, their projections in eigenspace are close to one 
another. Such a sampling creates a continuous loop in the eigenspace.  

[ ] ( )cxeee −= Τ
ikig ,,, 21 !  (6) 
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5   Additional Learning Phase 

5.1   Global Search 

A surveillance camera captures a person who has already registered his/her appearance 
information in the initial learning phase. We extract the normalized head region from a 
captured image

jy with the above-described method, and project the region onto the 
calculated eigenspace. Concretely, the average c of the entire image set used to com-
pute the eigenspace is subtracted from the input image

jy . The resulting image is 
projected onto eigenspace to obtain a point

jz . The equation for this the projection is 
Eq. (7). In order to search for the interpolated image most similar to the input image, we 
calculate the Euclidean distance of each eigenvector in the eigenspace between the 
input image

jz and the view-interpolated images
ig . The parameter of the interpolated 

image that has the most similar eigenvector to the input image’s vector is estimated as 
the rough relative observing orientation. 

[ ] ( )cyeee −= Τ
jkjz ,,, 21 !  (7) 

5.2   Local Search 

Since the activity of the captured people is not controlled, their poses might be different 
from the poses in the initial learning phase. Thus, the estimated observing orientation 
contains a measure of error. In this section we describe a method for correcting the 
estimation error. 

5.2.1   Generating a Synthetic View 
Once a 3D model has been generated, it is possible to render synthetic views of the 
modeled  face with  various  rotation and  translation parameters of the cameras. We 
assume the 3D model to be fixed, and the camera moves relative to it. In order to render 
images that have a slight difference in appearance with the matched image in the global 
search, synthetic view generation is repeated for a range of rotations around the x, y and 
z axes (the x axis is through the neck, the y axis is through the head, and the z axis is 
perpendicular to the x and y axes). Typically we use plus or minus 30º, plus or  minus 
5º, and plus or minus 10º around the x, y and z axis, respectively, quantized in 5º in-
tervals, for a total of 195 synthetic views. Fig. 6 shows some sample generated images. 

 

Fig. 6. Synthetic views that have slight differences in appearancefrom the matched image in a 
global search 
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5.2.2   Matching Against Synthetic Views 
To find the best match, we compare the input image with each of the synthetic views. 
Consider the input image I that is being matched against a synthetic image S. The 
goodness of the match M between the two is found by computing Eq. (8), where I(I,j), 
S(i,j) are the image intensity at pixel (i,j) in the input and synthetic images, respectively. 
This is the well-known SAD method. The best-matching synthetic view is the one that 
minimizes this score. 

∑ ++−= |),(),(|),( tjsiSjiItsM  (8) 

    We are not, however, aiming to obtain the best-matched image but to get the camera 
parameters. To do this we use a downhill simplex method [14], which is a 
multi-dimensional optimization method, to estimate the camera parameters in order to 
minimize Eq. (8). To avoid a local minimum solution, we start from random values, and 
then pick the solution corresponding to the lowest minimum value. 

5.3   Updating the Eigenspace 

By projecting the input image with the estimated camera parameters, the texture in-
formation of the captured object’s 3D shape model is updated. Then, as in the proc-
essing in Section 4.2, the interpolating images are regenerated while rotating a virtual 
camera around the 3D model. We thus again calculate an eigenspace with the updated 
image data set. If the appearance information of the 3D model becomes more accurate 
with additional texture mapping, the discernment capability for personal identification 
of the eigenspace improves further. We demonstrate the effectiveness of the proposed 
method in the next section. 

6   Experiments 

In these experiments, all images are captured by Sony network cameras (SNC-Z20) with 
a 640x480-pixel image size. All eigenspace figures in this section show only three of the 
most significant dimensions of the eigenspace since it is difficult to display and visualize 
higher-dimensional spaces. In other processes, the number of eigenspace dimensions 
used is 25, and in this case the accumulation-contributing ratio exceeds 95%. 

  
(a) Interpolation using the cubic spline function  (b) Interpolation using our method 

Fig. 7. Comparison between the two types of interpolation methods 
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6.1   Interpolation Method Results 

To evaluate the effect of the viewpoint interpolation in the proposed method, we 
compared the locus of the proposed method with the locus interpolated using a cubic 
spline function. In this experiment, the real images captured at intervals of about 22.5º 
were assumed to be the standard. Fig. 7(a) illustrates the result of the real images that 
are regarded as the standard and the result of interpolation using the cubic spline 
function. In this figure, to improve the visibility of the loop features, we have inter-
polated the real images with the cubic spline function that is generally used to inter-
polate eigenspace. Fig. 7(b) represents the result of the real images that are regarded as 
the standard and the result of interpolation using a 3D model. Comparing Fig. 7(a) with 
Fig. 7(b), we see that interpolation using a 3D model is more complex than that using 
the cubic spline function for the real images. From this result, when we have only 
sparsely input images, it can be said that interpolation using a 3D model can create a 
higher discernment capability eigenspace than interpolation using the cubic spline 
function. 

6.2   Additional Learning Results 

Next, we examine how the additional learning process updates the initial interpolation 
images. The upper  row in  Fig. 8  shows interpolated  images from the four initially 
captured images. With our proposed additional learning method, the encircled regions 
are updated by newly captured images. On the bottom row of Fig. 8 we can see that the 
realism of the interpolated images is improved by the replacements provided by addi-
tional learning. 

            

Fig. 8. Result of additional learning phases 

6.3   Results of Discernment Capability 

We have already experienced how the discernment capability among four persons 
varies as replacement is performed. In this experiment, first, one person from a group of 
four is chosen as the identification object, and interpolation images of the person are 
subsequently generated with a 3D model. Then, 50 face images of all four people are 
projected to the eigenspace generated by using the interpolation images, and we cal-
culate the distance in the eigenspace among the interpolation images and the projection 
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point. The distance (threshold) is obtained by comparing the projection point of the 50 
face images of the four persons with the projection point of another 50 face images of 
the same four persons. Fig. 9 shows how the discernment capability among the four 
persons varies as replacement is performed. We can see that the discernment rate im-
proves as additional learning progresses, and that discernment capability has improved. 
However, the discernment rate decreased when the number of additional images be-
came four from three. We think this loss of performance occurs due to the gap in the 
texture mapping and errors in extraction. 

7   Conclusions 

We proposed a learning method for parametric eigenspace using sparsely distributed 
multiple cameras. We have demonstrated that the discernment capability of the initial 
eigenspace is improved by repeating the updating process, and that interpolation using 
a 3D model more closely resembles the real image than interpolation using the cubic 
spline function. Future work will include reducing errors in extraction and a method to 
put together various pieces of information for personal identification. This research was 
supported in part by the National Institute of Information and Communications 
Technology. 

 

Fig. 9. Number of updates vs. Discernment capability results 
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