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ABSTRACT

We propose a novel vision-based registration method for
Augmented Reality with merging of arbitrary multiple planes.
In our approach, we require neither artificial markers nor
sensors, and estimate the camera rotation and translation by
an uncalibrated image sequence in which arbitrary multiple
planes in the real world exist. Since the geometrical rela-
tionship of those planes is unknown, for merging of them,
we assign a 3D coordinate system for each plane indepen-
dently and construct projective 3D space defined by projec-
tive geometry of two reference images. By merging with
the projective space, we can use arbitrary multi-planes, and
achieve high-accurate registration for every position in the
input images.

1. INTRODUCTION

Augmented Reality (AR) / Mixed Reality (MR) allow users
to see the real world with virtual objects superimposed onto
the real world. Thus AR can provide the users with more
effective view [1, 2].

One of the most important issues for AR is geometrical
registration between the real and the virtual world. In or-
der to achieve correct registration, accurate measurements
of the camera rotations and translations (corresponding to
the user’s view) are required. For the measurements, some
kind of sensors such as magnetic or gyro sensors may be
used. The registration by such sensors is stable against a
change in light conditions and is especially effective when a
camera moves rapidly. However, the rotations and trans-
lations obtained from sensors are not accurate enough to
achieve perfect geometrical registration. Furthermore, the
use of sensors has some limitations in practice: user’s mov-
able area, perturbation caused by the environment, and so
on.

On the other hand, vision-based registration does not
require any special devices except cameras. Therefore an
AR system can be constructed easily. This kind of regis-

tration relies on the identification of features in the input
images. Kutulakos et al. has proposed one of the earli-
est works of vision-based registration for real-time AR sys-
tem without camera calibration [3] in which they used ar-
tificial markers and an affine camera model for simplifi-
cation. Recent works extend this method to a perspective
camera model and also use known-3D model and / or natu-
ral features for registration. Related works based on natural
features have used various features: feature points [4, 5],
edges [6] or curves [7]. However, it is also true that few
features are available for registration in the real world. As
a result, the augmentation becomes unstable and generates
tracking jitters. For reducing such instability more effective
and stronger constraints should be employed.

Registration using planes [8, 9, 10, 11] has attracted at-
tention recently. Using planar structures of a scene gives ef-
fectively restricted conditions, because a lot of planes exist
in doors or urban environment. Simon et al. have proposed
related AR systems using multiple planes such as a room’s
floor and walls or the wall surfaces of buildings [9, 10]. In
[9], they estimated the projection matrix by multiple planes
which are perpendicular to the reference plane, using an un-
calibrated camera. In [10], they estimated the projection
matrix using a calibrated camera from multiple planes of ar-
bitrary position and pose. In their method, the geometrical
relationship between these planes and motion of the cam-
era are calculated by bundle adjustment which is carried out
over all frames.

In this paper, we propose a registration method with ar-
bitrary multiple planes, which does not require any infor-
mation on the physical relationship of the planes and can
estimate the camera motion frame by frame. Fig.1 describes
an overview of the proposed method. The input image se-
quence is taken with an uncalibrated handy video camera.
The main contribution of our method is “constructing pro-
jective space” with two reference images for estimation of
geometrical relationship among the planes and a camera.
The constructed projective space provides the geometrical
relationship of the planes even if they are not perpendicular
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Fig. 1. Overview of the proposed method.

to each other and the intrinsic parameters of a camera are
unknown.

2. REGISTRATION METHOD

2.1. Assign 3D coordinate systems

We first assign a 3D coordinate system for each plane in the
3D real world independently because the geometrical rela-
tionship among the planes is unknown. These coordinate
systems will be merged by the projective space which is
constructed with two reference images. As shown in fig.2,
each coordinate system is defined by setting each plane to
Z = 0. This is for computing a homography and a projec-
tion matrix from each plane. The detail of the computation
is described in the next section.

Fig. 2. Example of assigning 3D coordinate systems.

2.2. Calculate projection matrix
(estimate intrinsic / extrinsic parameters)

Natural feature points are tracked using the KLT-feature-
tracker [12] for the input image sequence in which n planes
exist. We assume that the extracted feature points are seg-
mented into areas of planes. (In this paper, we do not focus
on the method for the segmentation, so we segment them

manually.) Using the features on each real world plane,
n homographies among the real planes and the input im-
age plane are computed independently. Next, n projection
matrices that relate the 3D coordinate systems on the real
planes to the image are computed by extending the homo-
graphies from 2 dimensions to 3 dimensions via the follow-
ing method.

When each real plane’s Z coordinate is set to 0, the re-
lationship between the real plane and the image plane is
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The 3×3 matrix (called P̂ ), which is the deleted third col-
umn vector of P , is equivalent to a planar homography H .
Thus, when the homography is calculated, we can compute
the projection matrix from it.

P is also represented by the intrinsic and extrinsic pa-
rameters

P =A [R | t]=A [r1 r2 r3 t] , P̂ =H =A [r1 r2 t]

∴ A−1H =[r1 r2 t] (2)

By fixing the skew to 0, the aspect ratio to 1 and the princi-
pal point to the center of the image, the intrinsic parameters
can be defined as in eq.(3). According to property of rota-
tion matrix R, the inner product of r1 and r2 is equal to 0.
We can calculate the focal length f as eq.(4).
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(cx, cy) : principal point
f : focal length (3)

f2=
(h11−cxh31)(h12−cxh32)+(h21−cyh31)(h22−cxh32)

−h31h32

(4)
The extrinsic parameters of a camera consist of a ro-

tation matrix R and a translation vector t. Since r1, r2

(the first and second column vectors of R) and t are already
known, we only need to estimate r3. According to the prop-
erty of R, we can compute r3 from the cross product of r1

and r2 . Therefore, R is

R = [r1 r2 (r1 × r2)] (5)

The extrinsic parameters are optimized by the steepest de-
scent method.

2.3. Merge projection matrices

Each projection matrix is reliable around its corresponding
plane. However, as the position of a virtual object moves
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away from each plane, the accuracy becomes lower. There-
fore, we merge the projection matrices in order to compute
one accurate matrix over the whole image and reduce regis-
tration errors.

Two reference images are chosen from the input image
sequence (usually the first image and last image) or taken
in advance to construct a 3D projective space. The pro-
jective space defined by the reference images is a common
3D coordinate system for the whole input image sequence.
Eq.6and fig.3 show the relationship of the real world, the
projective space and the image coordinate systems.

T PI

k
= PkT WP

k

−1 (6)

Fig. 3. Relationship among 3 coordinate sysmtes.

2.3.1. Construct projective space

We construct projective space by “projective reconstruction”
as shown in fig.4. By epipolar geometry between the refer-
ence images (cameras), the relationship between the projec-
tive space and the reference images is given by

PA =[I |0] , PB =[MeB] , M =−
[eB]

×
FAB

‖eB‖2
(7)

where FAB is a fundamental matrix of image A to B,
and eB is an epipole on the image B. Consider Cp as a
point in the projective space, CA(uA, vA) as on the image
A, CB(uB, vB) as on the image B, we can write
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pi is the i th column vector of P . Then, we obtain Cp '

[p, q , r , 1]
> by the singular value decomposition of K.

2.3.2. Calculate T WP

k

Consider CW as a point on the kth plane in the real world,
and CP as a point in the projective space, the relationship of
between the two coordinate systems is

CP ' T WP

k
CW (9)

Fig. 4. Projective space by projective reconstruction.

Since T WP

k
is 4×4 matrix, we can compute this matrix by 5

(or more) corresponding points, in which any combination
of 3 points must not be colinear and 4 points must not also
be coplanar.

2.3.3. Calculate T PI

k

When T WP

k
is known, we can compute T PI

k
by eq.(6), so

T PI

1
∼ T PI

n
are computed for each plane as fig.3. These

matrices should be the same, if every measurement is com-
pletely accurate. However, they are slightly different from
each other because of inaccuracy errors in previous proce-
dures, such as tracking feature points. Therefore the merg-
ing of these matrices will provide a more accurate projection
matrix between the projective space and the image plane.
We assume that by merging them we can approximately
provide the merged matrix, because they are almost the same.

In the merging computation, we take weights w1 ∼ wn,
which are determined according to the distance from the po-
sition of the virtual object to 3D coordinate origin of each
plane.

T PI =
1

n

[

w1 · · · wn

] [

T PI

1
, . . . , T PI

n

]> (10)

Such merging of the matrices can be regarded as merging of
the tracked planes.

3. EXPERIMETAL RESULTS

We implement the Augmented Reality system based on our
method using only a PC (OS:Windows 2000, CPU:Intel Pen-
tium IV 3.20GHz) and a CCD camera (SONY DCR-TRV900).
The image’s resolution in all the experiments is 720 × 480
pixels, and graphical views of a virtual object are rendered
using OpenGL.

The overlaid result images produced by the augmenta-
tion are shown in fig.5. The 3 planes (a mouse pad, a book,
and a tissue box) are used and a virtual object is overlaid
on the notebook PC. As shown in the figure, our approach
can superimpose a virtual object onto the image sequence
successfully.

Next, in order to evaluate the registration accuracy in
our method, we perform the same implementation for the
synthesized image sequence rendered with OpenGL. Since
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(a) Frame0 (b) Frame33 (c) Frame74 (d) Frame99

Fig. 5. Overlaid image sequence of a virtual object.

Fig. 6. Comparison of x-y coordinates between 1 plane and
8 planes with theoretical values.

we have to know the exact position and pose of a camera
to evaluate accuracy, we use the synthesized images. Fig.6
shows that the result by 8 planes has less registration errors
and jitters than using only 1 plane, in spite of no informa-
tion about the relationship of the planes. This suggests that
increasing the number of planar structures in the scene can
improve the registration accuracy.

We also evaluate the proposed method by comparing
with a related work by Simon [9], in which multiple planes
need to be perpendicular to the reference plane. For the
comparison, we apply the image sequence, which has 3 or-
thogonal planes, to Simon’s method and our method, and
evaluate the registration accuracy. The result of the evalua-
tion is shown in fig.7. Even though our method does not re-
quire any geometrical information of the plane, our method
achieves almost the same accuracy as Simon’s method, in
which the planes need to be perpendicular to the reference
plane.

4. CONCLUSION

A geometrical registration method for Augmented Reality
with uncalibrated camera based on multiple planes has been
proposed in this paper. The planes do not need to be per-
pendicular to each other. This means that any planes at an

Fig. 7. Comparison of x-y coordinates between related
method and our method with theoretical values.

arbitrary position and pose can be used for registration. Fur-
thermore the registration can be performed frame by frame
without using all the frames in input image sequence. Thus
we can construct the AR system easily, and overlay a virtual
object onto the image sequence correctly.
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