
Real-Time Video-Based Rendering
from Multiple Cameras

Vincent Nozick Hideo Saito

Graduate School of Science and Technology,
Keio University, Japan

E-mail: {nozick,saito}@ozawa.ics.keio.ac.jp

Abstract

In recent years, many Image-Based Rendering tech-
niques have advanced from static to dynamic scenes and
thus became Video-Based Rendering (VBR) methods. But
actually, only few of them can render new views in live. We
present a new VBR system that creates new views of a dy-
namic scene in live. This system provides high quality im-
ages and does not require any background extraction. Our
method follows a plane-sweep approach and reaches real-
time rendering using consumer graphic hardware (GPU).
Only one computer is used for both acquisition and render-
ing. The video stream acquisition is performed by at least 3
webcams. We propose an additional video stream manage-
ment that extends the number of webcams to 10 or more.
These considerations make our system low-cost and hence
accessible for everyone.

1 Introduction

Given several video streams of the same scene, Video-
Based Rendering (VBR) methods provide new views of that
scene from new view points. VBR is then an extension of
Image-Based Rendering that can handle dynamic scenes.

In recent years, most of the proposed VBR techniques
focused on the visual quality rather than on the computa-
tion time. To achieve this purpose, they use a large amount
of data and sophisticated algorithms that prevent them from
live rendering. Therefore, the video streams are recorded to
be computed off-line. The rendering step can begin only
when the scene information has been extracted from the
videos. Such three-step approaches (record - compute - ren-
der) are called off-line since the delay between acquisition
and rendering is long in regard to the final video length. On-
line methods are fast enough to extract information from the
input videos, create and display a new view several times
per second. The rendering is then real-time but also live.

In this article, we present a new VBR method that cre-
ates new views of the scene on-line. Our method does not
require any background extraction and therefore is not lim-
ited to render a unique object. This method provides good
quality new views using only one computer. Most of out
tests were computed from 4 or more webcams connected
to a laptop. Hence, this method is low-cost and compatible
with most consumer device configuration.

We also propose an additional video stream management
to increase the number of cameras to 10 or more. Only the
4 most appropriate cameras are used to compute the new
view. This technique extends the range of available virtual
view points and improves the visual result.

2 Previous work

This section surveys previous work on both recent off-
line and on-line Video-Based Rendering techniques.

2.1 Off-line Video-Based Rendering

The first proposed VBR method is the Virtualized Re-
ality presented by Kanade et al. [5]. The video streams
are first recorded from 51 cameras. Then every frame of
every camera is computed to extract a depth map and cre-
ate a reconstruction. Considering the amount of data, this
precomputing step can be long. Finally, the new views are
computed from the reconstruction of the most appropriate
cameras.

Goldlucke et al. [3] and Zitnick et al. [14] follow the
same approach. Goldlucke et al. use 100 cameras and cre-
ate new views of the scene in real-time. Zitnick et al. pro-
vide hight quality images in real-time using 8 cameras. The
depth maps are computed using a segmentation method and
the rendering is performed with a layered image represen-
tation. The Stanford Camera Array presented by Wilburn
et al. [10] computes an optical flow instead of a depth-map
and provides real-time rendering from 100 cameras. Franco

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

17



and Boyer [2] provide new views from 6 cameras with a
Visual Hulls method.

Considering the large amount of data or the time con-
suming algorithms used by these previous methods, they
appear to be hardly adaptable to on-line rendering.

2.2 On-line Video-Based Rendering

Only few VBR methods reach on-line rendering. Pow-
erful algorithms used for off-line methods are not suited
for real-time implementation. Therefore, we can not ex-
pect from on-line methods the same accuracy provided by
off-line methods.

The most popular on-line VBR method is the Visual
Hulls algorithm. This method extracts the silhouette of the
main object of the scene on every input image. The shape
of this object is then approximated by the intersection of
the projected silhouettes. There exist several on-line im-
plementations of the Visual Hulls described in [7]. The
most accurate on-line Visual Hulls method seems to be the
Image-Based Visual Hulls presented by Matusik et al. [8].
This method creates news views in real-time from 4 cam-
eras. Each camera is controlled by one computer and an
additional computer create the new views. The method pro-
posed by Li et al. [6] is probably the easiest to implement.
The main drawback of the Visual Hulls methods is the im-
possibility to handle the background of the scene. Hence,
only one main “object” can be rendered. Furthermore, the
Visual Hulls methods usually require several computers,
which makes their use more difficult.

Another possibility to reach on-line rendering is to use
a distributed Light Field as proposed by Yang et al. [11].
They present a 64-camera device based on a client-server
scheme. The cameras are clustered into groups controlled
by several computers. These computers are connected to a
main server and transfer only the image fragments needed
to compute the new view requested. This method provides
real-time rendering but requires at least 8 computers for 64
cameras and additional hardware.

Finally, some plane-sweep methods reach on-line ren-
dering using graphic hardware (GPU). The plane-sweep al-
gorithm introduced by Collins [1] was adapted to on-line
rendering by Yang et al. [12]. They compute new views in
real-time from 5 cameras using 4 computers. Geys et al. [4]
also use a plane-sweep approach to find out the scene ge-
ometry and render new views in real-time from 3 cameras
and one computer. Since our method belongs to the latter
family, we will expose the basic plane-sweep algorithm and
[12, 4] contribution in the next section. Then we will detail
our method.

Figure 1. Plane-sweep : guiding principle.

3 Plane-Sweep Algorithm

This section expose the basic plane-sweep algorithm and
surveys existing implementations.

3.1 Overview

The plane sweep algorithm provides new views of a
scene from a set of calibrated images. Considering a
scene where objects are exclusively diffuse, the user should
“place” the virtual camera camx around the real video cam-
eras and define a near plane and a far plane such that every
object of the scene lies between these two planes. Then, the
space between near and far planes is divided by parallel
planes Di as depicted in Figure 1.

Consider a visible object of the scene lying on one of
these planes Di at a point p. This point will be seen by ev-
ery input camera with the same color (i.e. the object color).
Consider now another point p′ lying on a plane but not on
the surface of a visible object. This point will probably not
be seen by the input cameras with the same color. Figure 1
illustrates these two configurations. Therefore, the plane
sweep algorithm is based on the following assumption : a
point lying a plane Di whose projection on every input cam-
era provides a similar color potentially corresponds to the
surface of an object.

During the new view creation process, every plane Di is
computed in a back to front order. Each pixel p of a plane
Di is projected onto the input images. Then, a score and a
representative color are computed according to the match-

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

18



Figure 2. Every point of the current plane is
projected on the input images. A score and a
color are computed for these points accord-
ing to the matching of the colors found.

ing of the colors found. A good score corresponds to sim-
ilar colors. This process is illustrated on Figure 2. Then,
the computed scores and colors are projected on the virtual
camera camx. The virtual view is hence updated in a z-
buffer style : the color and score (depth in a z-buffer) of
pixel of this virtual image is updated only if the projected
point p provides a better score than the current score. This
process is depicted on Figure 3. Then the next plane Di+1

is computed. The final image is obtained when every plane
is computed.

3.2 Previous Implementations

Yang et al. [12] propose an implementation of the plane-
sweep algorithm using register combiners. The system
choose a reference camera that is closest to camx. Dur-
ing the process of a plane Di, each point p of this plane is
projected on both the reference image and the other input
images. Then pair by pair, the color found in the reference
image is compared to the color found in the other images
using a SSD (Sum of Squared Difference). The final score
of p is the sum of these SSD.

This method provides real-time and on-line rendering us-
ing 5 cameras and 4 computers, however the input cameras
have to be close to each other and the navigation of the vir-

Figure 3. The computed scores and colors
are projected on the virtual camera.

tual camera should lie between the viewpoints of the input
cameras, otherwise the reference camera may not be repre-
sentative of camx. Lastly, moving the virtual camera may
change the reference camera and induce discontinuities in
the computed video during this change.

Geys et al.’s method [4] begins with a background ex-
traction. The background geometry is supposed to be static.
This assumption restricts the application of the plane-sweep
algorithm to the foreground part. The scoring method used
is similar to the method proposed by Yang et al. but they
only compute a depth map. Then, an energy minimization
method based on a graph cut algorithm (CPU) cleans up the
depth map. A triangle mesh is extracted from the new depth
map and view dependent texture mapping is used to create
the new view. This method provides real-time and on-line
rendering using 3 cameras and only one computer. How-
ever, the background geometry must be static.

4 Our Scoring Method

Our main contribution to the plane sweep algorithm con-
cerns the score computation. Indeed, this operation is a cru-
cial step since both visual results and speedy computation
depend on it. Previous methods computes scores by com-
paring input images with the reference image. We propose
a method that avoids the use of such reference image that

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

19



may not be representative of the virtual view. Our method
also use every input image together rather than to compute
images by pair.

Since the scoring stage is performed by the graphic hard-
ware, only simple instructions are supported. Thus a suit-
able solution is to use variance and average tools. During
the process of a plane Di, each point p of Di is projected
on every input image. The projection of p on each input
image j provides a color cj . The score of p is then set as
the variance of the cj . Thus similar colors cj will provide
a small variance which corresponds to a high score. On the
contrary, mismatching colors will provide a high variance
corresponding to a low score. In our method, the final color
of p is set as the average color of the cj . Indeed, the av-
erage of similar colors is very representative of the colors
set. The average color computed from mismatching col-
ors will not be a valid color for our method however, since
these colors also provide a low score, this average color will
very likely not be selected for the virtual image computa-
tion. This plane sweep implementation can be summarized
as follows :

◦ reset the scores of the virtual camera

◦ for each plane Di from far to near

• for each point (fragment) p of Di

→ project p on the n input images.
cj is the color obtained from this projection
on the jth input image

→ compute the color of p :
colorp = 1

n

∑
j=1...n cj

→ compute the score of p :
scorep =

∑
j=1...n(cj − color)2

• project all the Di’s scores and colors on the vir-
tual camera

• for each pixel q of the virtual camera

→ if the projected score is better than the cur-
rent one
then update the score and the color of q

◦ display the computed image

This method does not require any reference image and
all input images are used together to compute the new view.
The visual quality of the computed image is then notice-
ably increased. Moreover, this method avoids discontinu-
ities that could appear in the virtual video when the virtual
camera moves and changes its reference camera. Finally,
this method is not limited to foreground objects.

Figure 4. 10 webcams connected to a laptop
via a usb hub.

5 Camera Array

A limitation of the plane-sweep method is the location
of the input cameras : they need to be close to each other
to provide engaging new virtual views. In fact, the closer
they are, the better the final result is. The problem is then
how to extend the range of available virtual view points
without any loss of visual quality. Real-time plane-sweep
method is limited in the number of input images used since
the score computation time linearly depends on the number
of input images. Furthermore, real-time video streams con-
trol requires special devices when the number of cameras
increases too much.

We propose a webcam management to handle up to 10
or more usb cameras from a single computer (Figure 4).
Considering the position of the virtual camera, the system
selects the 4 most appropriate cameras. Only these cam-
eras are used to compute the new view. The video streams
from non-selected cameras are disabled. Then, for the next
view, if the virtual camera moves, the set of selected in-
put cameras is updated. Concerning the cameras configura-
tion, every disposition is acceptable since the cameras are
no too far from each other and are placed facing the scene.
In such configurations, the most appropriate cameras to se-
lect for the new view computation are the nearest ones from
the virtual camera. This method does not decrease the video
stream acquisition frame rate since no more than 4 webcams
are working at the same time.

This method can be used to extend the range of available
virtual view points or just to increase the visual quality of
the new views by using a dense cameras disposition. In a
circle arc configuration, using 8 webcams rather than 4 will

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

20



cover 60◦ instead of 30◦. If the user prefers to place the
additional cameras in the 30◦ area, then the visual quality
of the created views will highly increase.

Finally, we believe that even with 5 or 10 additional we-
bcams, this system remains low-cost since the price of a we-
bcam is much lower than the price of additional computers
required by others methods.

6 Implementation

Since our webcams have a fixed focal length, we com-
pute accurately their internal parameters using Zhang cali-
bration [13]. Then we can freely move them for our exper-
imentations and only a single view of a calibration chess-
board is required to perform a full calibration. If every we-
bcam is of the same model, it is possible to assign to them
the average internal parameter matrix. Even if we do not
recommend that procedure, it can be very useful if the user
needs to unplug and replug the webcams. In that case, the
system cannot identify the webcams and attribute them the
right internal parameter matrix. Color calibration can be
performed by the method proposed by Magnor [7, page 23].
This method is effective only for small corrections.

We usually set the far plane as the calibration chess-
board plane. The user should then determine the depth of
the scene to define the near plane. These two planes can
also be set automatically using a precise stereo method as
described in Geys et al. [4].

We use OpenGL for the rendering part. For each new
view, we propose a first optional off-screen pass for every
input image to correct the radial distortion and the color us-
ing Frame Buffer Objects. Implementation indications can
be found on [9]. This pass is optional since some webcams
already correct the radial distortion. Color correction is re-
quired only if auto-brightness can be disabled.

Each plane Di is drawn as textured GL QUADS. The
scoring stage is performed thanks to fragment shaders.
First, Di’s points (fragments) are projected onto the in-
put images using projective texture mapping. The tex-
ture coordinates are computed from the projection matri-
ces of each input camera. Multitexturing provides an ac-
cess to every texture simultaneously during the scoring
stage. Then, this fragment program computes each score
and color using the algorithm described in section 4. The
scores are stored in the gl FragDepth and the colors
in the gl FragColor. Then we let OpenGL select the
best scores with the z-test and update the color in the frame
buffer. To compute a depth-map rather than a new view,
we just set the gl FragColor to the gl FragCoord.z
value. Most of the computation is done by the graphic card,
hence the CPU is free for the video stream acquisition and
the virtual camera control.

7 Results

We tested our method on a laptop core duo 1.6 GHz with
a nVidia GeForce 7400 TC. The video acquisition is per-
formed with usb Logitech fusion webcams connected to the
computer via an usb hub. With a 320×240 resolution, 4
webcams streaming simultaneously provide 15 frames per
second.

The computation time to create a new view is linearly
dependent of the number of planes used, of the number of
input images and of the resolution of the virtual view. The
number of planes required depends on the scene. During
our tests, we noticed that under 10 planes, the visual re-
sults became unsatisfactory and more than 60 planes did
not improve the visual quality. Hence, in our experimenta-
tions, we used 60 planes to ensure an optimal visual qual-
ity. We set the virtual image resolution (output image) to
320×240. With such configuration, the number of input
cameras is limited to 4 due to the GPU time computation.
Our method reaches 15 frames per second. Figure 5 shows
a real-view take exactly between two adjacent cameras, the
corresponding created image and the difference. This dif-
ference is small enough to ensure good quality result.

Figure 5. Left : real view. Center : computed
view. The virtual camera is placed between
two adjacent input cameras . Right : differ-
ence between real and computed view.

As shown in Figure 6, using 10 webcams provides a large
range of available virtual view points. Thanks to our web-
cam management method. Hence, the range of available
virtual view points can be extended without any visual qual-
ity loss. The user can prefer to decrease the base-line be-
tween the cameras. The Figure 7 shows two images created
from 4 webcams. In the first case, the distance between two
adjacent cameras is 10 cm, in the second case, 5 cm. We can
see that reducing the base-line hugely improves the visual
result.

In this system, the video acquisition is performed by the
CPU and the new view computation by the GPU, hence
these two process are independent.

In our tests, the bottle neck is the webcam acquisition
frame-rate. This could be avoided by using other webcams,
then the frame rate would be limited by the plane-sweep
method, and especially by the virtual view resolution.

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

21



Figure 6. Each new view is computed on-line with a laptop using 4 cameras selected between 10.
The scene was discretized with 60 planes and this method reaches 15 fps.

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

22



Figure 7. Left : 10 cm base-line. Right : 5 cm
base-line

8 Conclusion

This paper presents an on-line Video-Based Rendering
application using a plane-sweep algorithm that can be im-
plemented on every consumer graphic hardware that sup-
ports fragment shaders. Our tests showed that this method
combines low-cost hardware with high performances.

The proposed scoring method enhances the visual qual-
ity of the new views by using all input images together
where other methods compute images by pair. We also
present a video stream management that extends the num-
ber of potential webcams used to create a new view. This
technique involves a better flexibility on the cameras’ po-
sition and increases the visual result. Compared to others
on-line VBR techniques, this method can handle the scene
background, does not require more than one computer and
provides high quality images.

As a future work, we intend to achieve an optimization
on Di planes repartition in order to increase the visual qual-
ity without adding any further planes.

Acknowledgment

This work has been supported by ”Foundation of Tech-
nology Supporting the Creation of Digital Media Contents”
project (CREST, JST), Japan.

References

[1] R. T. Collins. A space-sweep approach to true multi-image.
In proc. Computer Vision and Pattern Recognition Conf.,
pages 358–363, 1996.

[2] J.-S. Franco and E. Boyer. Fusion of multi-view silhou-
ette cues using a space occupancy grid. In proc. of Inter-
national Conference on Computer Vision ICCV’05, pages
1747–1753, 2005.

[3] B. Goldlucke, M. A. Magnor, and B. Wilburn. Hardware ac-
celerated dynamic light field rendering. In proc. of Modeling
and Visualization VMV 2002, pages 455–462, 2002.

[4] S. D. R. I. Geys and L. Gool. The augmented audito-
rium : Fast interpolated and augmented view generation. in
proc, of European Conference on Visual Media Production,
CVMP’05, pages 92–101, 2005.

[5] T. Kanade, P. J. Narayanan, and P. Rander. Virtualized real-
ity : concepts and early results. In proc. of the IEEE Work-
shop on Representation of Visual Scenes, page 69, 1995. In
proc. of the IEEE Workshop on Representation of Visual
Scenes.

[6] H.-P. S. M. Li, M. Magnor. Hardware-accelerated visual hull
reconstruction and rendering. In proc. of Graphics Interface
(GI’03), pages 65–71, 2003.

[7] M. A. Magnor. Video-Based Rendering. ISBN :
1568812442, a k peters ltd edition, 2005.

[8] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. in proc ACM SIG-
GRAPH 2000, pages 369–374, 2000.

[9] M. Pharr and R. Fernando. GPU Gems 2: Programming
Techniques For High-Performance Graphics And General-
Purpose Computation. ISBN-10: 0321335597, addison-
wesley professional edition, 2005.

[10] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,
A. Barth, A. Adams, M. Horowitz, and M. Levoy. High
performance imaging using large camera arrays. In proc. of
ACM SIGGRAPH 2005, 14:765–776, 2005.

[11] J. C. Yang, M. Everett, C. Buehler, and L. McMillan. A
real-time distributed light field camera. In proc. of the 13th
Eurographics workshop on Rendering, pages 77–86, 2002.

[12] R. Yang, G. Welch, and G. Bishop. Real-time consensus-
based scene reconstruction using commodity graphics hard-
ware. In proc. of Pacific Graphics, pages 225–234, 2002.

[13] Z. Zhang. A flexible new technique for camera calibration.
In proc. of IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22:1330–1334, 2000.

[14] C. L. Zitnick, S. B. Kang, Matthew, and R. Szeliski. High-
quality video view interpolation. In proc. ACM SIGGRAPH
2004, pages 600–608,, 2004.

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing, Tokyo, Nov., 2007 MM-O-03

23




