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Abstract 
This paper proposes a vision-based method for 

detecting the positions of fingertips of a hand playing a 
guitar. We detect the skin color of a guitar player’s hand 
by using on-line adaptation of color probabilities and a 
Bayesian classifier which can cope with considerable 
illumination changes and a dynamic background. The 
results of hand segmentation are used to train an 
artificial neural network. A set of Gabor filters is utilized 
to compute a lower-dimensional representation of the 
image. Then an LLM (Local-Linear-Mapping)-network is 
applied to map and estimate fingertip positions smoothly.  
The system enables us to visually detect the fingertips 
even when the fingertips are in front of skin-colored 
surfaces and/or when the fingers are not fully stretched 
out. Representative experimental results are also 
presented. 
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1. Introduction 

Research about guitars is one of the popular topics 
in the field of computer vision for musical applications. 
We found a number of valuable research papers that 
focus on assisting guitar players with computer vision 
driven applications. 

Cakmakci and Berard [4] developed a system that 
assists beginner level musicians to learn the electric bass 
guitar using augmented reality. This system placed an 
ARToolKit (Augmented Reality Toolkit) marker on the 
bass guitar and another marker on a forefinger of the 
player for tracking the bass guitar position and the 
forefinger position respectively. Then, they computed the 
distance between the target note and the current 
forefinger position for deciding whether to move on to 
the next note or wait on the current note which makes 
this a bass guitar application. 

Maki-Patola et al. [10] proposed a system called 
VAG (Virtual Air Guitar) using computer vision. They 
combined “air guitar playing” and a guitar synthesizer, 
including sound effects, thus creating a virtual 

instrument with sensors that follow the hand movements. 
In this system, a pair of colored gloves was used to track 
the hand positions for controlling the pitch of the sound. 

Liarokapis [8] proposed an augmented reality 
system capable of simulating and superimposing 3D 
audio and 3D visual information using ARToolKit 
marker. The aim of this work is to teach the basics of 
electric guitar by using a prototype augmented reality 
interface toolkit.  

Motokawa and Saito [11] built a system called 
Online Guitar Tracking that supports a guitarist using 
augmented reality. This is done by showing a virtual 
model of the fingers on a real stringed guitar as an aid to 
learning to play the guitar.  

However, we have different goals from most the 
above systems we examined. We propose a system to 
visually detect and recognize fingering gestures of the 
left hand of a guitar player (assuming the guitarist is 
right-handed). Retrieval of guitar player fingering can be 
applied to use in various purposes such as music 
education, music theory, physical modeling and 
automatic music generation. 

More recently, Burns and Wanderley [3] presented a 
real-time prototype system to visually recognize 
fingering gestures for retrieval of guitarist fingering 
using computer vision algorithm. This system affixes the 
camera to the guitar neck, and thereby eliminates the 
motion of the neck caused by ancillary gestures. 
However, a limitation of this system is that it is 
sometimes difficult to fix the camera mount onto the 
guitar neck. Also, in this system, they assume that the 
fingertip shape can be approximated with a semicircular 
shape, and therefore they use the circular Hough 
transform to detect fingertips. However, this assumption 
is sometimes difficult to use because the shapes of 
fingertips in some positions do not resemble semicircular 
shapes. 

In our previous work [6], we proposed a system for 
recognizing chords played on a guitar. This process was 
done in real time by recognizing the patterns of fingers’ 
pushing positions detected from input images. ARTag 
(Augmented Reality Tag) was utilized to detect the 
guitar position and to define world coordinate relative to 
guitar neck for dynamic camera calibration. To calculate 
the positions of fingertips, four colored fingertip markers 
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were placed on the fingertips. By utilizing a triangulation 
method on stereo cameras, the 3D positions of fingertips 
were recognized when a guitar string was pressed. The 
results of the guitar and finger detection were used to 
compute the guitar chord. Applying this system, guitar 
players can automatically identify whether their fingers 
are in the correct position. However, although using the 
markers placed on the fingertips can be easily detected, 
this sometimes makes it unnatural for playing guitar in 
real life.  

This paper presents a method for retrieval of the 
fingering information from a guitar player without any 
fingertip markers. To segment the hand, colored skin 
objects are detected using a Bayesian classifier that is 
bootstrapped with a small set of training data and refined 
through an off-line iterative training procedure [1, 2]. By 
using an on-line adaptation of skin-color probabilities the 
classifier is able to cope with considerable illumination 
changes, and therefore it is able to track colored skin 
even when there are cluttered and dynamic background 
conditions. Following this, we utilize an artificial neural 
network to locate the positions of the fingertips in the 
image [12]. Gabor filters are used to compute a lower-
dimensional representation of the image. Then, we use 
an LLM (Local-Linear-Mapping)-network [9] to 
generate a smooth mapping for locating the fingertip 
positions. As a result, the system can recognize the 
fingering gestures of a guitar player even when the 
fingertips are in front of the skin area, when the fingers 
are not stretched out separately, and when using in the 
complex background. All these conditions occur when 
playing guitar in a real life. 
 
2. Proposed system 

 
Recently, many methods in computer vision for 

fingertip detection have been proposed (e.g., include 
correlation with predefined templates, model fitting, skin 
color detection with edge merging technique, cylindrical 
model based tracking, image-division-based decision tree 
recognition, fingertip shape analysis, a suitable kinematic 
hand model, etc). 

However, when applying the methods proposed in 
the research cited above, problems usually arise in 
retrieving the guitar fingering. The first reason is that the 
lack of contrast between fingertips and background skin 
adds complication. The next reason is that, while playing 
the guitar, the fingers are not stretched out separately, so 
it is difficult to detect the fingertips correctly. Moreover, 
to detect the fingertips while playing the guitar, the 
background is usually dynamic and non-uniform (e.g., 
guitar neck and natural scene) which makes it difficult to 
locate the fingertip positions. These conditions often 
occur when playing the guitar in a real environment. 

The existing method (used in [3]) for retrieval of 
guitarist fingering is to use the circular Hough transform 
to detect fingertips, whose ends can be approximated 
with a semicircular shape. It takes advantage of the 
quasi-circular shape of the fingers while the rest of the 

hand is roughly straight. An edge image is obtained by 
applying a Canny edge detector on the silhouette images. 
In our system, we attempted to utilize the circular Hough 
transform to detect the fingertips when the players are 
playing the guitar. Unfortunately, our experiments have 
revealed that we could not detect fingertips accurately 
enough - even when carefully changing the radius of a 
circle in the Hough transform step. This is because the 
fingertip shape doesn’t appear as the circular shape in 
some views. For this reason, this assumption is 
sometimes difficult to practically use.  

2.1. System overview 

For this reason, we propose an alternative method 
for detecting the fingertips while playing the guitar. After 
grabbing the image, we firstly apply a Bayesian classifier 
and an on-line adaptation of color probabilities for hand 
segmentation. As the next step in artificial neural 
network, we apply the global processing algorithm and 
then the local processing algorithm for each fingertip 
separately. These steps are schematically shown in Fig.1. 

 

Figure 1: System overview. 

2.2. Hand region segmentation 

We describe in this section a method that detects and 
segments the player’s hand from the input image. To 
retrieve the guitar fingering, it is important to segment 
the hand from the background robustly. We segment the 
hand from the background using a color detection 
algorithm. However, a well known problem associated 
with this is the control of lighting. Changing levels of 
light and limited contrasts disable correct registration, 
especially in the case of a complex background (e.g., 
natural scene) and a dynamic background (e.g., guitar 
neck, etc).  

A survey [13] provides an interesting overview of 
color detection. Several color spaces have been proposed 
including RGB, normalized RGB, HSV, YCrCb, YUV, 
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etc. Once a suitable color space has been selected, one of 
the basically used approaches for defining what 
constitutes color is to employ bounds on the coordinates 
of the selected space. We attempted to use this approach 
(i.e., HSV model) to differentiate the skin-colored region 
from the background by converting the RGB picture into 
the HSV space and finding the proper threshold values. 
However, by using this technique, it is very difficult to 
deal with illumination changes and a cluttered 
background. 

Therefore, we utilize a Bayesian classifier that is 
bootstrapped with a small set of training data and refined 
through an off-line iterative training procedure (proposed 
recently in [1, 2]). During an off-line phase, a small set 
of training input images is selected on which a human 
operator manually delineates skin-colored regions. The 
color representation used in this process is YUV 4:2:2 
[5]. However, the Y-component of this representation is 
not employed for two reasons. First, the Y-component 
corresponds to the illumination of an image pixel and 
therefore, by omitting it, the developed classifier 
becomes less sensitive to illumination changes. Second, 
compared to a 3D color representation (i.e. YUV), a 2D 
one (i.e. UV) is of lower dimensionality and is, therefore, 
less demanding in terms of memory storage and 
processing costs. 

Following this, assuming that image pixels with 
coordinates (x,y) have color values c = c(x,y), training 
data are used to calculate (i) the prior probability P(s) of 
skin color, (ii) the prior probability P(c) of the 
occurrence of each color and (iii) the prior probability 
P(c|s) of a skin being color c. By employing Bayes’ rule, 
the probability P(s|c) of a color c being a skin color can 
be computed as described in Equation (1). 

 
)(/)()|()|( cPsPscPcsP =                 (1) 

                
Equation (1) determines the probability of a certain 

image pixel being skin-colored using a lookup table 
indexed with the pixel’s color. All pixels with probability 
P(s|c)> maxT  are considered as being skin-colored. These 
pixels constitute seeds of potential skin-colored blobs. 
Also, image pixels with probabilities P(s|c)> minT  where 

minT < maxT   that are immediate neighbors of skin-colored 
image pixels are recursively added to each blob. The 
rationale behind this region growing operation is that an 
image pixel with relatively low probability of being skin-
colored should be considered as such in the case that it is 
a neighbor of an image pixel with high probability of 
being skin-colored. Indicative values for the thresholds 

maxT  and minT  are 0.5 and 0.15, respectively. A standard 
connected components labeling algorithm is then 
responsible for assigning different labels to the image 
pixels of different blobs. Size filtering on the derived 
connected components is also performed to eliminate 
small isolated blobs that are attributed to noise and do 
not correspond to interesting skin-colored regions (hand). 

Each of the remaining connected components 
corresponds to a skin-colored blob. 

The success of the skin-color detection depends 
crucially on whether illumination conditions during the 
on-line operation of the detector are similar to those 
during the acquisition of the training data set. Despite the 
fact that the UV color representation model used has 
certain illumination independent characteristics, the skin-
color detector may produce poor results if the 
illumination conditions during on-line operation are 
considerably different compared to the ones represented 
in the training set. Thus, a means for adapting the 
representation of skin-colored image pixels according to 
the recent history of detected colored pixels is required. 
To solve this problem, skin color detection maintains two 
sets of prior probabilities. The first set consists of P(s), 
P(c), P(c|s) that have been computed off-line from the 
training set while the second is made up of )(sPW , 

)(cPW , )|( scPW , corresponding to the evidence that the 
system gathers during the W most recent frames. Clearly, 
the second set better reflects the “recent” appearance of 
skin-colored objects and is therefore better adapted to the 
current illumination conditions. Skin color detection is 
then performed based on the following weighted moving 
average formula: 

)|()1()|()|( csPcsPcsP Wγγ −+=          (2) 
 
where )|( csP  and )|( csPW  are both given by 

Equation (1) but involve prior probabilities that have 
been computed from the whole training set and from the 
detection results in the last W frames, respectively. In 
Equation (2), γ  is a sensitivity parameter that controls 
the influence of the training set in the detection process. 
By using on-line adaptation of skin-color probabilities 
the classifier is able to cope with considerable 
illumination changes effectively, and also it is able to 
segment hand even in the case of a dynamic background 
(e.g., moving guitar neck, etc).  

 

2.3. Detecting fingertips 

In this section, we describe the method we used to 
detect the positions of the fingertips. To enable us to 
locate the fingertips even in areas with low contrast (i.e., 
when the fingertips are in front of the skin colored 
region) and in areas of the non-stretched out fingers, we 
make use of a sequence of 2 neural networks (LLM-
networks), which gradually specialize in finding the 
fingertips [12]. The global network receives a feature-
vector which is computed from the whole image (by use 
of Gabor-filters) and finds a rough approximation for the 
specific fingertip-position. This point becomes the center 
of a smaller sub-image, from which the next feature-
vector is extracted, and a local neural network finds the 
fingertip again with improved accuracy. 
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2.3.1. Global processing In this process, we 
calculate a lower-dimensional representation of the hand 
image (from the preceding step) by a set of Gabor filters, 
and apply an artificial neural network to the resulting 
feature vector. 

 
2.3.1.1. Gabor-feature-vector The input vector of 

76800 pixel intensities of an image (320x240 pixels) is 
too high-dimensional for a direct use as a feature vector. 
To get a low-dimensional representation of the image, 
we apply Gabor filters at five positions in the image 
(arranged like the “Five” on a dice). The 2-D Gabor 
function is a harmonic oscillator, composed of a 
sinusoidal plane wave of a particular frequency and 
orientation, within a Gaussian envelope as represented in 
Equation (3):  

)()
2

exp(),( 002

22

yvxufyxyxg ++−=
σ

      (3) 

 
with f(x) = sin(x) or f(x) = cos(x), where σ  is the 

width of the Gaussian and 0u , 0v  are parameters to 
specify the modulation that has spatial-frequency.  

  
 

 
 
 

Figure 2: Filter kernels of a cosine-filter, a 
sine-Gabor filter and an isotropic Gaussian. 

 
To compute the feature-vector, we perform a cross-

correlation of the filter with the image. At five points in 
each image, we apply a Gaborjet consisting of Cosine- 
and Sine-Gabor filters of 3 different orientations each 
(0 , 60  and 120  respectively) plus an additional 
isotropic Gaussian as shown in Fig. 2. The central point 
is placed on the centroid of the hand pixels. The 
frequencies as well as the width σ  of the Gaussian are 
adjusted to the size of the image, so that the filters cover 
the area of the hand. In this way, a 35-dimensional 
feature vector can be computed in each image. 

 
2.3.1.2. Local-Linear-Mapping-network An LLM-

network is a useful tool for the learning of non-linear 
mappings, which is related to the self-organizing maps 
[7]. The basic concept of the LLM-network is to perform 
a vector quantization of the input space combined with 
an adaptive, locally valid, piecewise linear 
approximation of the output values. We utilize the LLM-
network to generate a smooth mapping from the input 
variables (a 35 dimensional feature vector 35ℜ∈ ) onto 
the output variables (2D position 2ℜ∈ in the image).  

An LLM-network has a fixed number n of nodes, 
each of which consists of a reference vector Lin

i ℜ∈ω  
in the input space and an associated reference vector 

Mout
i ℜ∈ω  in the output space (i = 1, …, n) together 

with a matrix iA  defining a local linear mapping from 
Lℜ  to Mℜ . The task of the matrices iA  is to 

approximate the mapping linearly in the vicinity of the 
prototype vectors in

iω . 
In the training process, the neural network gets new 

examples each of which consists of a feature vector 
Lx ℜ∈ and the associated output vector My ℜ∈ . By 

comparison of x  and the reference vectors of the input 
space, the reference vector in

sω with the smallest 
Euclidean distance sd  is determined as shown in 
Equation (4). 

in
iis xd ω−= min        (4) 

 
The smallest unit s determines the answer nety  in 

the output space for an input feature Lx ℜ∈  as 
represented in Equation (5). 

 

)( in
ss

out
s

net xAy ωω −+=        (5) 
 

At the end of each training step, an adaptation of the 
reference vectors in

sω , out
sω  and the matrix sA  is 

performed in the Equation (6), (7) and (8) respectively: 
 

)(1
in

s
in

s x ωεω −=∆        (6) 

in
ss

netout
s Ayy ωεω ∆+−=∆ )(2        (7) 

))(()( 12
3

in
s

net
ss xyydA ωε −−=∆ −        (8) 

 
where the learning step sizes 321 ,, εεε  decrease 

gradually from 0.8. The update of in
sω  leads to a change 

of the network output nety  via the linear interpolation 
term. This must be compensated in the update of  out

sω∆  

by the additional term in
ssA ω∆+ . 

 
2.3.2. Local processing The rough fingertip position 

estimates from the global processing stage are now used 
to define smaller ROI (Regions Of Interest)’s for the 
subsequent local processing stage. Each ROI is centered 
at one of the estimated fingertip positions and is a sample 
with the original, full pixel resolution. Again, we first 
compute a 35-dimensional feature vector from which 
then a second artificial neural network (one for each 
ROI) computes a correction to the initial position 
estimate. As a result, we can locate the positions of 
fingertips with improved accuracy even where the 
contrast is low. 
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3. Results 

Fig. 3 provides some results of the experiment. The 
‘cam’ window (left window) depicts the input images 
which are captured from USB camera with resolution 
320x240. This USB camera captures the scene that a 
guitar player uses our system. The ‘detect hand’ window 
(right window) represents the output results (i.e., the 
hand segmentation result and the fingertip detection 
result) by using our method. The four color numbers in 
each fingertip depict four 2D detecting results of 
fingertips (i.e., little finger [red], ring finger [green], 
middle finger [blue] and forefinger [yellow]).  

In our experiment, we used various kinds of 
background to test our system. Fig. 3(a) represents some 
example results when the guitar player is playing the 
guitar. It can be seen that the system can successfully 
segment the hand region and, at the same time, the 
fingertip positions can be located. Furthermore, we tested 
our system while the fingers of the hand are not 
obviously stretched out. It can be demonstrated in Fig. 
3(b) that the system is able to detect the fingertips even 
in area of the non-stretched out fingers which is difficult 
to locate correctly. Moreover, in the case that the 
fingertip is in front of other skin and the fingers are not 
clearly stretched out, the system is also able to locate the 
fingertip positions correctly. Fig. 3(c) depicts some 
example results of this case which the fingertip of little 
finger is in front of the skin colored area, but the 
fingertip position of little finger can be located correctly.  

3.1. Accuracy 

Then, we evaluate accuracy of our system by using 
100 samples images for testing (use 400 images for 
LLM-network training) in different poses. Fig. 4 shows 
the accuracy of our experimental results when detecting 
fingertip positions. All errors are measured in pixels 
(320x240 image size). With respect to the manually 
measured ground truth positions, the mean Euclidean 
distance error and standard derivation error are shown in 
the table in Fig. 4. The networks for ring finger and 
middle finger achieve better results, whereas the position 
of the little finger and forefinger seem to be more 
difficult to ascertain. A possible reason may be that the 
fingertips of little finger and forefinger are usually in 
front of the skin area (area with low contrast) while 
playing the guitar, and therefore this may effect in the 
feature vector than the other fingers. 

3.2. Speed 

The reported experiment was acquired and 
processed on a Pentium M laptop computer running MS 
Windows at 1.6 GHz with 1 GB RAM. The speed of skin 
colored detection (hand segmentation) is approximately 
9 fps, while the current speed of fingertips detection is 
about 1 fps which is not real time. However, the system 
should achieve higher speed if we decrease the input 
image size. 

3.3. Discussion 

In this section, a limitation of the proposed system 
will be discussed. The accuracy of the fingertips 
detection depends critically on whether conditions during 
the on-line operation of the detector are similar to those 
during the acquisition of the training data set in LLM-
network process. Though the use of LLM-network has 
been shown as a useful tool for the learning of non-linear 
mappings, the constraint of this method is that the 
training data set should be nearly similar to the testing 
data set. If not, the system can not detect the fingertip 
positions of the guitar player correctly. Fig. 5 depicts an 
example result of wrong detection because the training 
data set in LLM-network does not cover enough 
similarly to this testing data set. Therefore, the system 
detects the fingertip position of little finger incorrectly. 
However, the system will probably obtain more accuracy 
on increasing the number of training data sets. 

4. Conclusion  

In this paper, a method to detect the fingertips of 
guitar player without any fingertip markers has been 
presented. We segment the skin colored hand region of 
guitar player by using on-line adaptation of color 
probabilities and a Bayesian classifier which can deal 
with considerable illumination changes and a dynamic 
background. Then, we use the results of the hand 
segmentation to detect the fingertips by utilizing an 
artificial neural network. 

By applying the proposed method, one of the 
possible applications (proposed in our previous work [6] 
by using fingertip markers) is to identify whether the 
finger positions are correct and in accord with the finger 
positions required for the piece of music that the players 
are playing. Although the current speed and accuracy are 
not enough to make this a guitar application without 
fingertip markers, we intend to make technical 
improvements to our system which should result in it 
becoming a guitar application. 

References 

[1] A. A. Argyros and M. I. A. Lourakis. Tracking Skin-
colored Objects in Real-time. Invited Contribution to the 
“Cutting Edge Robotics Book”, ISBN 3-86611-038-3, 
Advanced Robotic Systems International, 2005. 

[2] A. A. Argyros and M. I. A. Lourakis. Tracking Multiple 
Colored Blobs with a Moving Camera. In Proceeding of 
IEEE Computer Vision and Pattern Recognition 
Conference (CVPR 05), Vol.2, No.2, 1178, 2005. 

[3] A. M. Burns and M. M. Wanderley. Visual Methods for 
the Retrieval of Guitarist Fingering. In Proceeding of 
International Conference on New Interfaces for Musical 
Expression, 196-199, 2006. 

[4] O. Cakmakci and F. Berard. An Augmented Reality Based 
Learning Assistant for Electric Bass Guitar. In Proceeding 
of 10th International Conference on Human-Computer 
Interaction (HCI 03), 2003. 

[5] K. Jack. Video Demystified. Elsevier Science, 2004. 

Computer Graphics, Imaging and Visualisation (CGIV 2007)
0-7695-2928-3/07 $25.00  © 2007



 
Figure 3: Example results in various poses. 

 

 
 

Figure 4: Accuracy of fingertip detection. 
 
 

 

Figure 5: Example of wrong detection result. 
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