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Abstract

This paper presents calibration software “D-Calib” for

multiple cameras, which can calibrate all cameras at the

same time with easy operation. Our calibration method

consists of two steps: initialization of camera parameters

using planar marker pattern, optimization of initial param-

eters by tracking two markers attached to a wand. By

weak calibration and multi-stereo reconstruction by mul-

tiple cameras, the initial parameters can be optimized in

spite of few markers. Even if the cameras are placed in a

large space, the calibration can be achieved by swinging the

wand around the space. This method is completed as com-

mercial software which achieves 0.27 % of average errors

against the marker pattern size.

1 Introduction

Estimation process of camera’s unique parameters (such

as focal length and skew parameters) is called as “camera

calibration” [4]. This calibration process is very important

issue for 3D reconstruction, 3D motion capture, and virtu-

alized environment, etc. [3, 5].

DLT (Direct Linear Transformation) method is com-

monly used as the typical calibration method [2]. In DLT

method, multiple markers whose 3D coordinates are already

known are captured with a camera. Using the pairs of 2D

coordinates in the captured images and known 3D coordi-

nates of the markers, twelve camera parameters (DOF is

eleven) are computed by least-square-method.

For using DLT method in large space, it is necessary to

place the markers to cover the overall space. Increasing the

number of markers is also necessary to improve the accu-

racy of the calibration. However, setting up the markers

whose 3D coordinates is known in the large space takes

amount of time and effort. Using a lot of cameras, there is

also a big problem to place the markers so that all of them

can be captured in field of view of the camera and they do

not occlude each other.

Moreover, it often happens that a user has to click the

display to assign 2D coordinates of markers. Therefore it

involves a lot of effort and time when increasing the number

of markers and cameras.

Zhang proposed a easy calibration system based on a

moving plane where checker pattern is drawn [8]. This

calibration method does not need 3D calibration objects

with known 3D coordinates. However, since the calibra-

tion plane is not visible in all cameras, the user has to move

the plane in front of each camera. Moreover the system can

calibrate only part of the space. Therefore this system is not

suite for using multiple cameras.

Svoboda et al. proposed a calibration method for multi-

ple cameras using one bright point like a laser pointer [7].

The point in the captured images are detected and verified

by a robust RANSAC. The structures of the projected points

are reconstructed by factorization. These computations can

be automatically done. Since one point is used as a calibra-

tion object, however, only re-projection errors are evaluated

in their method.

In this paper, we introduce calibration software “D-

Calib” designed for multiple cameras using in a large space

[1]. In this software, we can estimate the camera parame-

ters of all cameras at the same time by using a square pat-

tern with six spheral markers and a wand with two spheral

markers. After capturing one frame of the square pattern,

the wand swinging in the whole of space is captured for a

few hundreds of frames. Therefore we do not have to set up

a lot of markers around the space. The spheral markers are

made by retroreflective materials so that they can be suc-

cessfully detected from the captured images. Since all the

processes are automatically performed by image processing

technique without manual operations, the user’s task is ex-

tremely reduced.

In our method, initial parameters computed from the

square pattern are optimized by using the two markers at-

tached to the wand. Since the distance between the markers

is known, we can also optimize 3D reconstruction errors in

addition to 2D re-projection errors which are only accuracy

evaluation in Svoboda’s method.

14th International Conference on Image Analysis and Processing (ICIAP 2007)
0-7695-2877-5/07 $25.00  © 2007



Binarization & Labeling

Detect markers

Calc homography

Estimate init params.

Track & Identify 
Markers

Calc 2D errors

Binarization & Labeling

Calc 3D errors

Optimization

p11, p12 , …, p34

Input images

Cam 1 Cam 2 Cam n…
Cam 1 Cam 2 Cam n

p'11, p'12 , …, p'34

Input images

Estimation of 
initial parameters

Optimization of 
initial parameters

Figure 1. Flowchart of calibration process.

2 Camera Calibration

The relationship between the 3D real world (X, Y, Z)
and the 2D image (x, y) is represented as a following equa-

tion.
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This 3 × 4 matrix P is called as a projection matrix,

and the twelve elements of the matrix are called as camera

parameters. Estimation of these camera parameters corre-

sponds to camera calibration.

In our software, the twelve camera parameters are com-

puted for each camera. Since we focus on computing ac-

curate extrinsic parameters of multiple cameras, we assume

that intrinsic parameters of the cameras are previously given

by using other method. If using uncalibrated cameras, the

intrinsic parameters are approximated by simple form with-

out skew and distortion parameters as described in Sec. A.1.

3 Our Calibration Method

Fig. 1 shows the flowchart of the calibration method in

our software. This method consists of two steps: (1) esti-

mation of initial parameters, (2) optimization of initial pa-

rameters.

In the estimation of initial parameters, a square pattern

with six spheral markers is placed on the floor and is cap-

tured by multiple cameras as shown in Fig. 2(a). The real

positions of the spheral markers on the square pattern are

previously known. Using the relationship between the 2D

positions of the markers in captured images and the 3D po-

sitions on the markers, camera parameters are computed for

each camera as initial parameters. These camera parameters

represent twelve elements of a projection matrix P as de-

scribed in Sec. 2. Actually, the extrinsic parameters of each

camera are computed from the square pattern and combined

with the intrinsic parameters obtained in advance into the

camera parameters.

Since the initial parameters are computed from the

square planar pattern, the accuracy against perpendicular

direction to the plane is relatively small compared with the

other directions. Moreover, high calibration accuracy can

be obtained only in the area close to the square pattern.

Therefore the initial parameters of every camera should be

improved by the optimization at the same time in the next

P
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square pattern

(a) Capturing images for estimation of initial parameters.

P'
1

P'
2
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3

wand

(b) Capturing images for optimization of initial parameters.

Figure 2. System environments in our soft-
ware.
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step.

In the optimization step, we collect a hundreds of frames

captured in the multiple cameras as shown in Fig. 2(b),

while a wand that has two spheral markers is swung in

the entire object space. The positions of the two spheral

markers are detected and tracked from the captured image

sequences of every camera. Since all the spheral mark-

ers are made by retroreflective materials, they can be eas-

ily detected from the captured images. By evaluating the

estimated extrinsic parameters with epipolar constraints of

tracked markers and the 3D distance between the two mark-

ers on the wand, the parameters are optimized.

3.1 Estimation of Initial Parameters

A square pattern with six spheral markers is placed on

the floor. Then images of the square markers are cap-

tured by multiple cameras. From each captured image,

the six markers’ 2D coordinates are detected as (x1, y1) ∼
(x6, y6). We assume that the plane of the square pattern is

X-Y plane in the 3D coordinate. Then we define 3D co-

ordinates of the six markers as (X1, Y1, 0) ∼ (X6, Y6, 0).
Based on this definition, the relationship between the 2D

and 3D coordinates of the markers can be represented by

using a 3 × 3 planar transformation matrix (Homography)

H as following equation. (1 ≤ i ≤ 6)
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This equation is equivalent to eq. (1) in Sec. 2, when

Z = 0 in eq. (1). This means that H provides the first,

second, and fourth column vectors of the projection matrix

P . H is a matrix which transfers points between the planes,

and is easily computed by more than four corresponding

points on both of the planes.

Accordingly, we compute H between the 3D plane (X-

Y plane) and the 2D plane (x-y plane) from six correspond-

ing points which are the spheral markers of the square pat-

tern. Then the twelve camera parameters of each camera

X Y

Z

H

x

y

Figure 3. Corresponding of planes by homog-

raphy.

are computed from H . The detail of the computing process

will be described in Sec. A.

3.2 Optimization of Initial Parameters

In this process, we define an error function consisting of

2D re-projection errors and 3D reconstruction errors, which

is used for optimizing the initial parameters by minimizing

the function.

As shown in Fig. 2(b), the images of the swinging wand

with two spherical markers are captured for a hundreds

frames by the multiple cameras. By detecting and tracking

the two spheral markers from the captured image sequences,

we can obtain a set of 2D-2D corresponding points between

the cameras, which provides epipolar relationship among

the cameras.

Using this data set, we can compute 2D re-projection er-

rors of the initial camera parameters, which are evaluated

by the distance between the point of the marker in the im-

age and the re-projected epipolar line onto the other cam-

eras. Since the 3D distance between the two markers on the

wand are known, we also evaluate the accuracy of the initial

camera parameters by comparing the 3D distance between

two marker positions recovered from the input images with

the real distance between them.

3.2.1 Tracking of Markers

After binarization and labeling are performed to the cap-

tured image sequence from each camera, two spheral mark-

ers’ regions are detected from each image. For tracking the

two markers, each marker must be identified through the

image sequence.

The identification of each marker is performed by com-

puting the distance of the positions between the previous

frame and the next frame. The marker with the closest posi-

tion to the position in the previous frame is identified as the

same marker. Even though the two markers are occluded

each other or are not detected in some frames, each marker

can be continuously tracked by using direction of marker’s

movement. Therefore the cameras do not have to see all

the markers through the captured images. Only the frames

which are captured when the markers are visible in all cam-

eras are automatically selected as a data set of 2D-2D cor-

respondences.

3.2.2 Optimization

Using the 2D coordinates of the tracked markers, two kinds

of errors are computed; (a) 2D re-projection errors ε1, (b)

3D reconstruction errors ε2. Error function is defined as

eq. (3) and minimized by Down-hill simplex method to

optimize the six extrinsic parameters included in the initial
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camera parameters; rotation (3 DOF: θ, φ, ψ), translation (3

DOF: tx, ty, tz).

If all cameras have the same intrinsic parameters, it is

possible to optimize seven parameters including the focal

length f . This is because 2D re-projection errors are not

absolute but relative values among the cameras.

{

cost(θ, φ, ψ, tx, ty, tz) = (ε1 + ε2)

cost(θ, φ, ψ, tx, ty, tz, f) = (ε1 + ε2)
(3)

2D re-projection errors ε1

When a set of 2D-2D correspondences between two cam-

eras is known, a point in the image captured by the camera

1 is projected onto the image captured by the camera 2 as

a line and should exist anywhere on the line. This is called

as “epipolar constraints” and the line is called as “epipolar

line”.

The marker in the image of the camera 1 is projected

onto the image of the camera 2 as a line (epipolar line)

by the initial camera parameters as shown in Fig. 4(a).

The epipolar line should be projected on the position of

the marker which is captured by the camera 2, however, it

might be projected away from the marker because of the
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(a) Errors from epipolar constraints.

Cam 1  (base camera)

Cam 2
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Cam 4

Cam 1  (base camera)

Cam 2
Cam 3

Cam 4

(b) Relationship of projection between cameras.

Figure 4. Computation of 2D re-projection er-
rors.

errors included in the initial parameters. Therefore the dis-

tance between the epipolar line and the marker in the image

of camera 2 is defined as a 2D re-projection error from the

camera 1 to the camera 2.

In the same way, 2D re-projection errors are computed

mutually among all the cameras, and then the sum of them

becomes ε1. Here, the 2D re-projection errors are computed

using epipolar constraints which represent relative geome-

try between the cameras. Therefore we define one camera

as an absolute basis and do not compute the re-projection

errors to the base camera as shown in Fig. 4(b).

3D reconstruction errors ε2

When camera parameters of two cameras are known, 3D

coordinates of an object which is captured by the cameras

can be reconstructed by using triangulation from 2D coordi-

nates in the images. In our method, 3D reconstruction errors

ε2 are computed by multi-stereo reconstruction of multiple

cameras.

When the two markers are captured by each camera as

shown in Fig. 5, 3D coordinates of the markers can be ob-

tained by triangulation from the 2D coordinates in each im-

age (see Sec. B).

Computing the 3D coordinates of the markers from all

the cameras, 3D distance D between the markers can be

computed. Since the real distance s is known, the differ-

ence between D and s becomes a 3D reconstruction error at

every frame, and then the sum of them becomes ε2.

ε2 =

frame
∑

(D − s)2 (4)

After computing ε1 and ε2, the initial parameters are

optimized by minimizing the error function of eq. (3) by

Down-hill simplex method.

4 Experimental Results

In this section, we will show two experimental results

of our calibration software; four cameras configuration and
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Figure 5. Computation of 3D reconstruction
errors.
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(a) Square pattern of mark-

ers

(b) Wand

Figure 6. Markers used in our software.

Figure 7. 3D coordinate system defined by
initial parameters.

Figure 8. Tracking results of two markers of
wand.

six cameras configuration. In both of the experiments, the

square pattern with six markers is captured at one frame by

each camera to estimate initial camera parameters as shown

in Fig. 6(a). Next, the wand swinging in the space is cap-

tured for 200 frames by each camera as shown in Fig. 6(b).

The size of the space where the wand is swinging is about

2m×2m×2m. In both of the experiments, the size of square

pattern marker is 500×500 [mm], the distance between the

two markers on the wand is 250 [mm]. The resolution of

the captured image is 640 × 480.

Fig. 7 shows the results of X-Y -Z coordinate systems

Table 1. Evaluation results from optimized
parameters.

numbers of cameras 4 6

Minimum error [mm] 0.001 0.069

Maximum error [mm] 4.613 2.008

Average error [mm] 1.345 0.992

Standard deviation 0.895 0.379

Size of X [mm] 789.251 620.695

calibrated Y [mm] 1368.694 755.244

space Z [mm] 735.965 323.614

Table 2. Comparison of results between initial
and optimized parameters.

initial optimized

Minimum error [mm] 2.816 0.069

Maximum error [mm] 5.965 2.008

Average error [mm] 4.671 0.992

Standard deviation 0.564 0.379

defined by initial parameters estimated by four cameras.

Fig. 8 shows the tracking results of two markers which

are attached to the wand by the four cameras. We can see

that the two markers are successfully detected and tracked

through the captured image sequence without confusing the

markers by our tracking method.

Table 1 shows the evaluation results of errors obtained

by optimization of the initial parameters using the tracked

markers. These errors represent 3D reconstruction errors,

which are computed using optimized camera parameters in-

stead of the initial parameters, in the same way described in

Sec. 3.2.2. The error is computed at every frame in the cap-

tured image sequence, and then minimum, maximum and

average values and standard deviation of the computed er-

rors are listed in Table 1. Table 2 shows each error com-

puted by using the initial and the optimized parameters.

From Tab. 1, we can find that the minimum errors are

less than 0.1 [mm] and the maximum error is also about

4.6 [mm]. These results can be considered small enough

compared to the size of the space. The errors included in

the initial parameters can be reduced by our optimization

method as shown in Tab. 2. Moreover, the standard devi-

ation shows that the space can be impartially calibrated by

swinging the wand around the space.

5 Conclusions

In this paper we proposed calibration software for multi-

ple cameras. The camera parameters of all the cameras can
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be estimated at the same time. Since all the processing of

this software can be automatically performed without user’s

manual operations like a assigning the marker’s positions

by clicking the display, the user can easily use this soft-

ware. This software can calibrate a lot of cameras which are

placed in large space without placing many markers around

the space in advance. Therefore it is well suited for the task

which needs large space like 3D motion capture.

A Calculation P from H

A projection matrix consists of intrinsic and extrinsic pa-

rameters. Therefore we obtain a projection matrix by com-

puting the intrinsic and the extrinsic parameters from the

homography and combining them [6].

We define intrinsic parameters, a rotation matrix and a

translation vector of extrinsic parameters as A，R and t.

Then a projection matrix P will be

P = A [R | t] = A [r1 r2 r3 t] (5)

A =





f 0 cx

0 f cy

0 0 1



 (6)

r1, r2, r3 are column vectors of the rotation matrix R,

f is the focal length, (cx, cy) is a center of the image. From

eq. (2),

P = A [r1 r2 t] = H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 (7)

A−1H = [r1 r2 t] (8)

Using the homography H computed from six correspond-

ing points of spheral markers, the intrinsic and extrinsic pa-

rameters are computed from eq. (8). When both the in-

trinsic and extrinsic parameters are obtained, the projection

matrix P is obtained by (5).

A.1 Computation of Intrinsic Parameters

When using uncalibrated cameras, intrinsic parameters

of the cameras have to be computed. Since we define A as

eq. (6), we only have to obtain a focal length f . Using the

property of the rotation matrix R that inner product of r1

and r2 is 0, f is obtained by developing eq. (8) as follows.

f2 =
(h11−cxh31)(h12−cxh32)

−h31h32

+
(h21−cyh31)(h22−cxh32)

−h31h32

(9)

A.2 Computation of Extrinsic Parameters

The first and second column vectors r1，r2 of the rota-

tion matrix R and the translation vector t are already ob-

tained when H is computed from eq. (8). Therefore we

only have to compute the third column vector r3 of R. Also

using the property of R that the cross product of r1 and r2

becomes r3, we obtain it as follows.

R = [r1 r2 r3] = [r1 r2 (r1×r2)] (10)

B Multi-Stereo Reconstruction

When camera parameters of multiple cameras are

known, a 3D coordinate of a point (X,Y, Z) can be com-

puted from following equation using 2D coordinates of the

corresponding points (xi, yi) in each camera.
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