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Abstract. This paper presents a vision-based method for tracking guitar 
fingerings played by guitar players from stereo cameras. We propose a novel 
framework for colored finger markers tracking by integrating a Bayesian 
classifier into particle filters, with the advantages of performing automatic track 
initialization and recovering from tracking failures in a dynamic background. 
ARTag (Augmented Reality Tag) is utilized to calculate the projection matrix 
as an online process which allow guitar to be moved while playing. By using 
online adaptation of color probabilities, it is also able to cope with illumination 
changes.  
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1   Introduction 

Due to the popularity of acoustic guitars, research about guitars is one of the most 
popular topics in the field of computer vision for musical applications.  

Maki-Patola et al. [1] proposed a system called VAG (Virtual Air Guitar) using 
computer vision. Their aim was to create a virtual air guitar which does not require a 
real guitar (e.g., by using only a pair of colored gloves), but can produce music as 
similar as the player is playing the real guitar. Liarokapis [2] proposed an augmented 
reality system for guitar learners. The aim of this work is to show the augmentation 
(e.g., the positions where the learner should place their fingers to play the chord) on 
an electric guitar to guide the player. Motokawa and Saito [3] built a system called 
Online Guitar Tracking that supports a guitarist using augmented reality. This is done 
by showing a virtual model of the fingers on a stringed guitar as an aid to learning 
how to play the guitar. 

In these systems, they do not aim to track the fingering which a player is playing 
(A pair of gloves are tracked in [1], and graphics information is overlaid on captured 
video in [2] [3]). We have different goal from most of these researches. In this paper, 
we propose a new method for tracking the guitar fingerings by using computer vision. 
Our research goal is to accurately determine and track the fingering positions of a 
guitarist which is relative to guitar position in 3D space. 

A challenge for tracking fingers of a guitar player is naturally that the guitar neck 
often moves while the guitar is being played. It is then necessary to identify the 
guitar’s position relative to the camera’s position. Another important issue is recovery 
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when finger tracking fails. Our method for tracking fingers of guitar player can handle 
the mentioned problems. At every frame, we first estimate the projection matrix of 
each camera by utilizing ARTag (Augmented Reality Tag) [4]. ARTag’s marker is 
placed on the guitar neck. Therefore the world coordinate is defined on the guitar 
neck as the guitar coordinate system so the system allows the players to move guitar 
while playing 

We utilize a particle filter [5] to track the finger markers in 3D space. We 
propagate sample particles in 3D space, and project them onto the 2D image planes of 
both cameras to get the probability of each particle to be on finger markers based on 
color in both images. To determine the color probabilities being finger markers color, 
during preprocess we apply a Bayesian classifier that is bootstrapped with a small set 
of training data and refined through an offline iterative training procedure [6] [7]. 
Online adaptation of markers-color probabilities is then used to refine the classifier 
using additional training images. Hence, the classifier is able to deal with illumination 
changes, even when there is a dynamic background. 

In this way, the 3D positions of finger markers can be obtained, so that we can 
recognize if the fingers of player are pressing the strings or not. As a result, our 
system can determine the complete positions of all fingers on the guitar fret. It can be 
used to develop instructive software to aid chord tracking or people learning the 
guitar. One of the possible applications [8] is to identify whether the finger positions 
are correct and in accord with the finger positions required for the piece of music that 
the players are playing. Therefore, guitar players can automatically identify whether 
their fingers are in the correct position. 

2   Related Works  

In this section, related approaches of finger detection and tracking of guitarists will be 
described. Cakmakci and Berard [9] detected the finger position by placing a small 
ARToolKit (Augmented Reality Toolkit) [10]’s marker on a fingertip of the player for 
tracking the forefinger position (only one fingertip). However, when we attempted to 
use the markers to all four fingertips, all markers were not exactly perpendicular when 
captured by the cameras view direction simultaneously in some angles (especially 
while the player was pressing their fingers on the strings). Therefore, it is quite 
difficult to accurately track the positions of four fingers concurrently by using the 
ARToolKit finger markers.  

Burns and Wanderley [11] detected the positions of fingertips for retrieval of 
guitarist fingering without markers. They assumed that the fingertip shape can be 
approximated with a semicircular shape while the rest of the hand is roughly straight, 
and use the circular Hough transform to detect fingertips. However, utilizing Hough 
transform to detect the fingertips when playing the guitar is not accurate and robust 
enough. This is because a fingertip shape does not appear as a circular shape in some 
angles. Also, the lack of contrast between fingertips and background skin adds 
complication, which often the case in real-life performance.  

In addition, these two methods [9] [11] used only one camera on 2D image 
processing. The constraint of using one camera is that it is very difficult to classify 
whether fingers are pressing the strings or not. Therefore, stereo cameras are needed 



 Vision-Based Guitarist Fingering Tracking 627 

(3D image processing). At the same time, these methods are sometimes difficult to 
use with stereo cameras because all fingertips may not be perpendicularly captured by 
two cameras simultaneously.  

We propose a method to overcome this problem by utilizing four colored markers 
placed on the four fingertips to determine the positions of the fingertips. However, a 
well-known problem of color detection nowadays is the control of lighting. Changing 
levels of light and limited contrasts prevent correct registration, especially in the case 
of a cluttered background. A survey [12] provides an interesting overview of color 
detection. A major decision towards deriving a model of color relates to the selection 
of the color space to be employed. Once a suitable color space has been selected, one 
of the commonly used approaches for defining what constitutes color is to employ 
bounds on the coordinates of the selected space. However, by using the simple 
threshold, when changing illumination, it is sometimes difficult to accurately classify 
the color.  

Therefore, we use a Bayesian classifier by learning color probabilities from small 
training image set and then learn the color probabilities from online input images 
adaptively (proposed recently in [6] [7]). Applying this method, the first attractive 
property is that it can avoid the burden involved in the process of manually generating 
a lot of training data. From small number of training data, it then adapts the 
probability according to current illumination and converges to a proper value. For this 
reason, the main attractive property of this method is its ability to cope with changing 
illumination because it can adaptively describe distribution of markers color.  

3   System Configuration 

The system configuration is shown in Figure 1. We use two USB cameras and a 
display connected to the PC for the guitar players. The two cameras capture the 
position of the left hand (assuming the guitarist is right-handed) and the guitar neck to 
obtain 3D information. We attach a 4.5cm x 8cm ARTag fiducial marker onto the top 
right corner of guitar neck to compute the position of the guitar (i.e., the poses of 
cameras relative to guitar position). The colored markers (with different color) are 
attached to the fingers of the left hand.  

 

Fig. 1. System configuration 
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4   Method  

Figure 2 shows the schematic of the implementation. After capturing the images, we 
calculate the projection matrix in each frame by utilizing ARTag. We then utilize a 
Bayesian classifier to determine the color probabilities of the finger markers. Finally, 
we apply the particle filters to track the 3D positions of the finger markers.    

 

Fig. 2. Method overview 

4.1   Calculation of Projection Matrix   

Detecting positions of fingers in captured images is the main point of our research, 
and the positions in images can give 3D positions based on stereo configuration of 
this system. Thus, it is necessary to calculate projection matrix (because it will be 
then used for projecting 3D particles to the image planes of both cameras in particle 
filtering step in section 4.3). However, because the guitar neck is not fixed to the 
ground while the cameras are fixed, the projection matrix changed at every frame. 
Thus, we have to define the world coordinate on the guitar neck as a guitar coordinate 
system. In the camera calibration process [13], the relation by projection matrix is 
generally employed as the method of describing the relation between the 3D space 
and the images. The important camera properties, namely the intrinsic parameters that 
must be measured, include the center point of the camera image, the lens distortion 
and the camera focal length. We first estimate intrinsic parameters during the offline 
step. During online process, extrinsic parameters are then estimated every frame by 
utilizing ARTag functions. Therefore we can compute the projection matrix, P, by 
using 
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where A is the intrinsic matrix, ],[ tR  is the extrinsic matrix, 0u  and 0v  are the 

center point of the camera image, θ  is the lens distortion, uα  and vα  represent the 

focal lengths. 

4.2   Finger Markers Color Learning    

This section will explain the method we used for calculating the color probabilities 
being finger markers color which will be then used in the particle filtering step 
(section 4.3).  

The learning process is composed of two phases. In the first phase, the color 
probability is learned from a small number of training images during an offline 
preprocess. In the second phase, we gradually update the probability from the 
additional training data images automatically and adaptively. The adapting process 
can be disabled as soon as the achieved training is deemed sufficient.  

Therefore, this method will allow us to get accurate color probabilities being finger 
markers from only a small set of manually prepared training images because the 
additional marker regions do not need to be segmented manually. Also, due to 
adaptive learning, it can be used robustly with changing illumination during the online 
operation. 

4.2.1   Learning from Training Data Set    
During an offline phase, a small set of training input images (20 images) is selected 
on which a human operator manually segments markers-colored regions. The color 
representation used in this process is YUV 4:2:2 [14]. However, the Y-component of 
this representation is not employed for two reasons. Firstly, the Y-component 
corresponds to the illumination of an image pixel. By omitting this component, the 
developed classifier becomes less sensitive to illumination changes. Second, 
compared to a 3D color representation (YUV), a 2D color representation (UV) is 
lower in dimensions and, therefore, less demanding in terms of memory storage and 
processing costs. 

Assuming that image pixels with coordinates (x,y) have color values c = c(x,y), 
training data are used to calculate:  

(i) The prior probability P(m) of having marker m color in an image. This is the 
ratio of the marker-colored pixels in the training set to the total number of pixels 
of whole training images. 

(ii) The prior probability P(c) of the occurrence of each color in an image. This is 
computed as the ratio of the number of occurrences of each color c to the total 
number of image points in the training set.  

(iii) The conditional probability P(c|m) of a marker being color c. This is defined as 
the ratio of the number of occurrences of a color c within the marker-colored 
areas to the number of marker-colored image points in the training set.  

By employing Bayes’ rule, the probability P(m|c) of a color c being a marker 
color can be computed by using 

        
)(

)()|(
)|(

cP

mPmcP
cmP =                                                 (2) 
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This equation determines the probability of a certain image pixel being marker-
colored using a lookup table indexed with the pixel’s color. The resultant probability 
map thresholds are then set to be max T  and minT , where all pixels with probability 

max  c)|P(m T>  are considered as being marker-colored—these pixels constitute seeds 

of potential marker-colored blobs—and image pixels with probabilities min  c)|P(m T>  

where maxmin TT <  are the neighbors of marker-colored image pixels being recursively 

added to each color blob. The rationale behind this region growing operation is that an 
image pixel with relatively low probability of being marker-colored should be 
considered as a neighbor of an image pixel with high probability of being marker-
colored. Indicative values for the thresholds max T  and minT  are 0.5 and 0.15, 

respectively. A standard connected component labeling algorithm (i.e., depth-first 
search) is then responsible for assigning different labels to the image pixels of 
different blobs. Size filtering on the derived connected components is also performed 
to eliminate small isolated blobs that are attributed to noise and do not correspond to 
interesting marker-colored regions. Each of the remaining connected components 
corresponds to a marker-colored blob.  

4.2.2   Adaptive Learning    
The success of the marker-color detection depends crucially on whether or not the 
illumination conditions during the online operation of the detector are similar to those 
during the acquisition of the training data set. Despite the fact that the UV color 
representation model used has certain illumination independent characteristics, the 
marker-color detector may produce poor results if the illumination conditions during 
online operation are considerably different compared to those in the training set. 
Thus, a means for adapting the representation of marker-colored image pixels 
according to the recent history of detected colored pixels is required. To solve this 
problem, marker color detection maintains two sets of prior probabilities. The first set 
consists of P(m), P(c), P(c|m) that have been computed offline from the training set 
while the second is made up of )(mPW , )(cPW , )|( mcPW  corresponding to the 

evidence that the system gathers during the W most recent frames. In other 
words, )(mPW , )(cPW and )|( mcPW refer to P(m), P(c) and P(c|m) during the W 

most recent frames respectively. Obviously, the second set better reflects the “recent” 
appearance of marker-colored objects and is therefore better adapted to the current 
illumination conditions. Marker color detection is then performed based on the 
following weighted moving average formula: 

          )|()1()|()|( cmPcmPcmP WA γγ −+=                   (3) 

where γ  is a sensitivity parameter that controls the influence of the training set in the 

detection process, )|( cmPA  represents the adapted probability of a color c being a 

marker color, )|( cmP  and )|( cmPW  are both given by Equation (2) but involve 

prior probabilities that have been computed from the whole training set [for 
)|( cmP ] and from the detection results in the last W frames [for )|( cmPW ]. In our 

implementation, we set γ = 0.8 and W = 5.  



 Vision-Based Guitarist Fingering Tracking 631 

Thus, the finger markers-color probabilities can be determined adaptively. By 
using online adaptation of finger markers-color probabilities, the classifier is able to 
cope with considerable illumination changes and also a dynamic background (e.g., 
moving guitar neck).  

4.3   3D Finger Markers Tracking  

Particle filtering [5] is a useful tool to track objects in clutter, with the advantages of 
performing automatic track initialization and recovering from tracking failures. In this 
paper, we apply particle filters to compute and track the 3D position of finger markers 
in the guitar coordinate system (The 3D information is used to help for determining 
whether fingers are pressing a guitar string or not). The finger markers can then be 
automatically tracked initially, and the tracking can be recovered from failures. We 
use the color probability of each pixel which obtained from the section 4.2 as the 
observation model    

The particle filtering (system) uniformly distributes particles all over the area in 3D 
space, and then projects the particles from 3D space onto the 2D image planes of the 
two cameras to obtain the probability of each particle to be finger markers. As new 
information arrives, these particles are continuously re-allocated to update the 
position estimate. Furthermore, when the overall probability of particles to be finger 
markers is lower than the threshold we set, the new sample particles will be uniformly 
distributed all over the area in 3D space. Then the particles will converge to the areas 
of finger markers. For this reason, the system is able to recover the tracking. (The 
calculation is based on the following analysis.) 

Given that the process at each time-step is an iteration of factored sampling, the 
output of an iteration will be a weighted, time-stamped sample-set, denoted by 

},...,1,{ )( Nns n
t =  with weights )(n

tπ , representing approximately the probability-

density function )( tXp  at time t: where N is the size of sample sets, )(n
ts  is defined 

as the position of the thn  particle at time t, 
tX  represents the position in 3D of finger 

marker at time t, )( tXp  is the probability that a finger marker is at 3D position X = 

(x,y,z) T at time t. The number of particles used is 900 particles. The iterative process 
can be divided into three main stages: (i) Selection stage; (ii) Predictive state; (iii) 
Measurement stage. 

In the first stage (the selection stage), a sample )(' n
ts  is chosen from the sample-set 
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t cs −−− π with probabilities )(
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t−π , where )(
1

n
tc −  is the cumulative weight. This is 

done by generating a uniformly distributed random number ∈r [0, 1]. We find the 
smallest j for which rc j

t ≥−
)(
1  using binary search, and then )(' n

ts  can be set as 

follows: )(
1

)(' j
t

n
t ss −= . 

Each element chosen from the new set is now subjected to the second stage (the 
predictive step). We propagate each sample from the set 1' −ts  by a propagation 

function, )'( )(n
tsg , using 

noisesgs n
t

n
t += )'( )()(                                                   (4) 
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where noise is given as a Gaussian distribution with its mean = (0,0,0)T. The accuracy 
of the particle filter depends on this propagation function. We have tried different 
propagation functions (e.g., constant velocity motion model and acceleration motion 
model), but our experimental results have revealed that using only noise information 
gives the best result. A possible reason is that the motions of finger markers are 
usually quite fast and constantly changing directions while playing the guitar. 
Therefore the calculated velocities or accelerations in previous frame do not give 
accurate prediction of the next frame. In this way, we use only the noise information 
by defining xxg =)(  in Equation (4).  

In the last stage (the measurement stage), we project these sample particles from 
3D space to two 2D image planes of cameras using the projection matrix results from 
Equation (1). We then determine the probability whether the particle is on finger 
marker. In this way, we generate weights from the probability-density function 

)( tXp  to obtain the sample-set representation )},{( )()( n
t

n
ts π  of the state-density for 

time t  using 

10
)()( )|()|()( CameraACameraA

n
tt

n
t cmPcmPsXp ===π             (5)  

where )( )(n
tt sXp =  is the probability that a finger marker is at position )(n

ts .  

We assign the weights to be the product of )|( cmPA  of two cameras which can 

be obtained by Equation (3) from the finger markers color learning step (the adapted 

probability 0)|( CameraA cmP  and 1)|( CameraA cmP  represent a color c being a 

marker color in camera 0 and camera 1, respectively). Following this, we normalize 
the total weights using the condition 

      1)( =Σ n
tnπ                                                                  (6) 

Next, we update the cumulative probability, which can be calculated from 
normalized weights using 

  0)0( =tc , Total
n

t
n

t
n

t cc )()1()( π+= −        ),...,1( Nn =             (7) 

where Total
n

t
)(π  is the total weight. 

Once the N samples have been constructed, we estimate moments of the tracked 
position at time-step t as using       

)()(
1)]([ n

t
n

t
N
nt sXf πε =Σ=                                             (8) 

where )]([ tXfε  represents the centroid of each finger marker. The four finger 

markers can then be tracked in 3D space, enabling us to perform automatic track 
initialization and track recovering even in dynamic background. The positions of four 
finger markers in the guitar coordinate system can be obtained.  
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5   Results 

In this section, representative results from our experiment are shown. Figure 3 
provides a few representative snapshots of the experiment. The reported experiment is 
based on a sequence that has been acquired. Two USB cameras with resolution 
320x240 have been used. 

The camera 0 and camera 1 windows depict the input images which are captured 
from two cameras. These cameras capture the player’s fingers in the left hand 
positioning and the guitar neck from two different views. For visualization purposes, 
the 2D tracked result of each finger marker is also shown in camera 0 and camera 1 
windows. The four colored numbers depict four 2D tracking results from the finger 
markers (forefinger [number0 - light blue], middle finger [number1 - yellow], ring 
finger [number2 - violet] and little finger [number3 - pink]).  

The 3D reconstruction window, which is drawn using OpenGL, represents both the 
tracked 3D positions of the four finger markers in guitar coordinate system. In this 3D 
space, we show the virtual guitar board to make it clearly understand that this is the 
guitar coordinate system. The four-color 3D small cubes show each 3D tracked result 
of the finger markers (these four 3D cubes correspond to the 2D four colored numbers 
in the camera 0 and the camera 1 windows). 

In the initial stage (frame 10), when the experiment starts, there are no guitar and 
no fingers in the scene. The tracker attempts to find the color which is similar to the 
markers-colored region. For example, because the color of player’s shirt (light 
yellow) is similar to a middle finger marker’s color (yellow), the 2D tracking result of 
middle finger marker (number1) in the camera 0 window detects wrongly as if the 
player’s shirt is the middle finger marker. 

However, later during the playing stage (frame 50), the left hand of a player and 
the guitar enter the fields of cameras’ views. The player is playing the guitar, and then 
the system can closely determine the accurate 3D fingering positions which 
correspond to the 2D colored numbers in the camera 0 and the camera 1 windows. In 
this way, this implies that the system can perform automatic track initialization 
because of using particle filtering. 

Next, the player changes to hold to the next fingering positions in frame 80. The 
system can continue to correctly track and recognize the 3D fingering positions which 
correspond nearly to the positions of 2D colored numbers in the camera 0 and the 
camera 1 windows. Following this, the player moves the guitar position (from the old 
position in frame 80) to the new position in frame 110, but still holding the same 
fingering positions on the guitar fret. It can be observed that the detected 3D positions 
of the four finger markers from different guitar positions (i.e., but the same input 
fingering on the guitar fret) are almost the same positions. This is because ARTag 
marker is used to track the guitar position.    

Later on, in the occlusion stage (frame 150), the finger markers are totally occluded 
by the white paper. Therefore, the system is again back to find the similar colors of 
each marker (backing to the initial stage again). 
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However, following this in the recovering stage (frame 180), the occlusion of white 
paper is moved out, and then the cameras are capturing the fingers and guitar neck 
again. It can be seen that the tracker can return to track the correct fingerings (backing 
to the playing stage again). In other words, the system is able to recover from tracking 
failure due to using particle filtering. 

 

 
Initial stage: frame 10 (no guitar and no fingers in the scene) 

 

 
Playing stage: frame 50 

 

 
Playing stage: frame 80 

 
Fig. 3. Representative snapshots from the online tracking experiment 
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Playing stage: frame 110 

 

 
Occlusion stage (tracking fails – back to initial stage): frame 150 

 

  
Recovering stage (playing stage again): frame 180 

Fig. 3. (continued) 

The reader is also encouraged to observe illumination difference between camera 0 
and camera 1 windows. Our experimental room composes of two main light sources 
which are located oppositely. We turned on the first light source of the room which is 
located near to use for capturing images in camera 0, while we turned off the second 
light source (opposite to the first source) of the room which is located near for 
capturing images in camera 1. Hence, the lighting used to test in each camera is  
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Fig. 4. Speed used for recovering from tracking failures 

different. However, it can be observed that the 2D tracked result of finger markers can 
be still determined without effects of different light sources in both camera 0 and 
camera 1 windows in each representative frame. This is because a Bayesian classifier 
and online adaptation of color probabilities are utilized to deal with this. 

We also evaluate the recovering speed whenever tracking the finger markers fails. 
Figure 4 shows the speeds used for recovering from lost tracks. In this graph, the 
recovering speeds are counted from initial frame where certainty of tracking is lower 
than threshold. At the initial frame, the particles will be uniformly distributed all over 
the 3D space as described in the section 4.3. Before normalized weights in particle 
filtering step, we determine the certainty of tracking from the sum of the weight 
probability of each distributed particle to be marker. Therefore, if the sum of weight 
probability is lower than the threshold, we assume that tracker is failing. On the other 
hand, if the sum of weight probability is higher than threshold, we imply that tracking 
has been recovered. Thus, the last counted frame will be decided at this frame (the 
particles have been already converged to the areas of finger markers). The mean 
recovering speed and the standard derivation are also shown in the table in Figure 4, 
in frames (the speed of fingering tracking is approximately 6 fps). We believe this 
recovering speed is fast enough for recovering of tracking in real-life guitar 
performance. 

 

Fig. 5. Accuracy of 3D finger detection results 
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Then, we evaluate accuracy of our system by using 100 samples data sets for 
testing. Figure 5 shows the accuracy of our experimental results when detecting 
fingering positions. All errors are measured in millimetre. With respect to the 
manually measured ground truth positions, the mean distance error and standard 
derivation error in each axis are shown in the table in Figure 5. 

Finally, we will note about a limitation of the proposed system. The constraint of 
our system is that, although a background we used can be cluttered, the background 
should not be composed of large objects which are the same color as the colors of 
finger markers. For instance, if the players wear their clothes which are very similar 
color to the markers’ colors, the system cannot sometimes determine the output 
correctly.    

6   Conclusions 

In this paper, we have developed a system that measures and tracks the positions of 
the fingertips of a guitar player accurately in the guitar’s coordinate system. A 
framework for colored finger markers tracking has been proposed based on a 
Bayesian classifier and particle filters in 3D space. ARTag has also been utilized to 
calculate the projection matrix.  

Although we believe that we can successfully produce a system output, the current 
system has the limitation about the background color and the markers’ colors. 
Because four finger markers composed of four different colors, it is sometimes not 
convenient for users to select their background. As future work, we intend to make 
technical improvements to further refine the problem of the finger markers by 
removing these markers which may result in even greater user friendliness. 
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