
Online Multiple View Computation for
Autostereoscopic Display

Vincent Nozick and Hideo Saito

Graduate School of Science and Technology,
Keio University, Japan

{nozick,saito}@ozawa.ics.keio.ac.jp

Abstract. This paper presents a new online Video-Based Rendering
method that creates simultaneously multiple views at every new frame.
Our system is especially designed for communication between mobile
phones using autostereoscopic display and computers. The new views
are computed from 4 webcams connected to a computer and are com-
pressed in order to be transfered to the mobile phone. Thanks to GPU
programming, our method provides up to 16 images of the scene in real-
time. The use of both GPU and CPU makes our method work on only
one consumer grade computer.

Keywords: video-based rendering, autostereoscopic, view interpolation.

1 Introduction

In recent years, steoroscopic technology has advanced from stereoscopic to au-
tostereoscopic displays. This latter family does not involve any glasses or specific
device for the user. Such a screen displays several images of the same scene and
provides to the user an adequate stereoscopic view according to his relative
position from the screen. This ability makes autostereoscopic displays very con-
venient to use, especially for multi-user applications. Autostereoscopic displays
can have various applications like 3D TV, games, 3D teleconference or medical
applications. In this paper, we will focus on the communication between mobile
phones using 3D display and computers using cameras. Indeed, mobile TV is
now a commercial reality and the next mobile phone evolution will include 3D
display.

Autostereoscopic displays require multiple views of the scene at every frame.
Stereoscopic animations or menus can easily be achieved by computer graph-
ics methods. 3D content can also be generated from videos of real-scenes using
several cameras. However this approach is not suited for mobil e phone ap-
plications due to their restricted bandwidth and low capacity to use complex
decompression algorithms. Furthermore, systems using more than 10 cameras
will probably not be attractive for commercial applications. Video-Based Ren-
dering (VBR) methods can provide new views of a scene from a restricted set of
videos and thus decrease the number of required cameras. Nevertheless few VBR
methods provide online rendering and most of these methods are not suited for

D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 399–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 V. Nozick and H. Saito

multiple image rendering. Indeed, autostereoscopic applications require several
new images simultaneously and most of VBR method should compute these new
views independently, decreasing the frame rate.

This article present a new VBR algorithm that can create online multiple new
views simultaneously using GPU programing. This method requires 4 webcams
connected to a consumer grade computer and can provide up to 16 images in
real-time, including compression and network transfer. In the following parts,
we introduce recent autostereoscopic devices and propose a survey of the latest
online VBR methods. Then we explain the plane sweep algorithm and our con-
tribution. Finally, we detail our implementation and we present experimental
results.

2 Autostereoscopic Displays

A stereoscopic display requires at least two views of the same scene to create
depth perception. During more than a century, the three most popular methods
have been anaglyph, polarization and shutter methods [1]. These three tech-
niques involve the use of adapted glasses. Recent research on 3d display tech-
nologies made stereoscopic system advance from stereoscopic to autostereoscopic
displays. This latter category presents tree major advantages. First, users do not
need any special devices like glasses. Second, these displays can provide more
than two views simultaneously. The user receives an adequate pair of stereo-
scopic images according to his position from the screen. Finally, these displays
can support multi-user applications.

Currently, commercial autostereoscopic displays are available from several
famous companies. Spatial multiplex system is a common method to provide
stereoscopic images. A lenticular sheet is laid on the screen such every lens cov-
ers a group of pixels. According to the user’s position, the lens will show the
adequate pixel. The major part of commercial autostereoscopic displays requires
around 10 views. Some recent devices can display up to 60 views. More informa-
tions about autostereoscopic displays can be found on [2].

The main purpose of stereoscopic display is to increase the user’s immersion
sensation. Stereoscopic display applications includes scientific visualization, med-
ical imaging, telepresence or gaming. In this paper, we will focus on mobile phone
applications. Indeed, some companies already propose 3D autostereoscopic dis-
play for mobile phone designed for display 3D menu, images and videos. This
paper especially focuses on communications between a mobile phone and a com-
puter for real scenes. Such situation occurs when someone call his family or
company. The computer side provides multiple images of its environment to the
mobile phone user. Harrold and Woodgate [3] describe such device and present a
method to transfer and render computer graphics stereoscopic animations. How-
ever stereoscopic video of real scenes remains a problem if the display supports
more than 6 or 7 views. Indeed, using one camera per view involves a huge
quantity of data and hence storage and transfer issues.

Online Multiple View Computation for Autostereoscopic Display 401

The main restriction of our application concerns the bandwidth limitation
during the video stream transfer from the computer to the mobile phone. How-
ever, mobile phone technology can easily support standard online video decom-
pression. Moreover, the bandwidth issue is lessened by the low resolution of the
mobile phone screen. Finally, the system providing the views should work on a
consumer grade computer to be attractive for commercial applications. Using 10
or more webcams can provide enough views for a stereoscopic display but even
with a low resolution, real-time video-stream acquisition is a serious issue with
a single computer.

In the following parts, we propose an online video-based rendering method
that provides multiple images of the same scene from a small set of webcams
using only one consumer grad computer.

3 Online Video-Based Rendering

Given a set a videos taken from video cameras, Video-Based Rendering meth-
ods provides new views of the scene from new viewpoint. Hence these methods
are well suited to reduce the number of input cameras for autostereoscopic dis-
play systems. VBR methods are divided into two families : off-line and online
methods. Off-line methods focus on the visual quality rather than on the com-
putation time. They first calibrate the cameras and record the video streams.
Then they compute these videos to extract scene informations. The rendering
step can start only when the data computation is completed. Most of the off-line
methods provide real-time rendering but are not suited for live rendering. On
the other hand, online method are fast enough to record, compute and render a
new view in real-time however few VBR methods reach online rendering. Finally,
autostereoscopic display applications require not only online VBR methods but
also methods that can create simultaneously several new views of the scene for
every frame.

The most popular online VBR method is the Visual Hulls algorithm. This
method extracts the silhouette of the main object of the scene on every input
image. The shape of this object is then approximated by the intersection of the
projected silhouettes. There exist several online implementations of the Visual
Hulls described in [5]. The most accurate online Visual Hulls method seems to
be the Image-Based Visual Hulls presented by Matusik et al. [6]. This method
creates news views in real-time from 4 cameras. Each camera is controlled by
one computer and an additional computer create the new views. The methods
proposed by Li et al. [7,8] may run on a single computer but the ability to
compute several images simultaneously should be demonstrated. Furthermore,
the visual hulls method is suited for an “all around” camera configuration but
not for a dense aligned camera configuration. Finally, the Visual Hulls algorithm
requires a background extraction, thus only the main “objects” can be rendered.

Another possibility to reach online rendering is to use a distributed Light
Field as proposed by Yang et al. [9]. They present a 64-camera device based on a
client-server scheme. The cameras are clustered into groups controlled by several

402 V. Nozick and H. Saito

computers. These computers are connected to a main server and transfer only
the image fragments needed to compute the new view requested. This method
provides real-time rendering but requires at least 8 computers for 64 cameras
and additional hardware. Thus this method is incompatible with a commercial
use of stereoscopic applications.

Finally, some Plane-Sweep methods reach online rendering using graphic hard-
ware (GPU). The Plane-Sweep algorithm introduced by Collins [10] was adapted
to online rendering by Yang et al. [11]. They compute new views in real-time
from 5 cameras using 4 computers. Geys et al. [12] also use a Plane-Sweep ap-
proach to find out the scene geometry and render new views in real-time from
3 cameras and one computer. The Plane-Sweep algorithm is effective when the
input cameras are close to each other and hence is highly capable with an aligned
camera configuration. Since our method follows a Plane-Sweep approach, we will
expose the basic Plane-Sweep algorithm in the next section. Then we will detail
our method for both single and multiple new views creation.

4 Single View Computation

In this section, we present the Plane-Sweep algorithm and [11,12] contribution.
Then we detail our new scoring method.

4.1 Plane-Sweep Algorithm Overview

The Plane-Sweep algorithm provides new views of a scene from a set of calibrated
images. Considering a scene where objects are exclusively diffuse, the user should
place the virtual camera camx around the real video cameras and define a near
plane and a far plane such that every object of the scene lies between these
two planes. Then, the space between near and far planes is divided by parallel
planes Di as depicted in Figure 1.

Consider a visible object of the scene lying on one of these planes Di at a
point p. This point will be seen by every input camera with the same color
(i.e. the object color). Consider now another point p′ lying on a plane but not
on the surface of a visible object. This point will probably not be seen by the
input cameras with the same color. Figure 1 illustrates these two configurations.
Therefore, the Plane-Sweep algorithm is based on the following assumption : a
point lying a plane Di whose projection on every input camera provides a similar
color potentially corresponds to the surface of an object.

During the new view creation process, every plane Di is computed in a back
to front order. Each pixel p of a plane Di is projected onto the input images.
Then, a score and a representative color are computed according to the matching
of the colors found. A good score corresponds to similar colors. This process is
illustrated on Figure 2. Then, the computed scores and colors are projected on
the virtual camera camx. The virtual view is hence updated in a z-buffer style :
the color and score (depth in a z-buffer) of a pixel of this virtual image is updated
only if the projected point p provides a better score than the current score. This

Online Multiple View Computation for Autostereoscopic Display 403

Fig. 1. Plane-Sweep : guiding principle

process is depicted on Figure 2. Then the next plane Di+1 is computed. The
final image is obtained when every plane is computed.

4.2 Scoring Stage

Yang et al. [11] propose an implementation of the Plane-Sweep algorithm using
register combiners. The system chooses a reference camera that is closest to
camx. During the process of a plane Di, each point p of this plane is projected
on both the reference image and the other input images. Then, pair by pair, the
color found in the reference image is compared to the color found in the other
images using a SSD (Sum of Squared Difference). The final score of p is the sum
of these SSD.

This method provides real-time and online rendering using 5 cameras and
4 computers, however the input cameras have to be close to each other and the
navigation of the virtual camera should lie between the viewpoints of the input
cameras, otherwise the reference camera may not be representative of camx.
Lastly, moving the virtual camera may change the reference camera and induce
discontinuities in the computed video during this change.

Geys et al.’s method [12] begins with a background extraction. The back-
ground geometry is supposed to be static. This assumption restricts the applica-
tion of the Plane-Sweep algorithm to the foreground part. The scoring method
used is similar to the method proposed by Yang et al. but they only compute

404 V. Nozick and H. Saito

Fig. 2. Left : Every point of the current plane is projected on the input images. A
score and a color are computed for these points according to the matching of the colors
found. Right : The computed scores and colors are projected on the virtual camera.

a depth map. Then, an energy minimization method based on a graph cut al-
gorithm cleans up the depth map. A triangle mesh is extracted from the new
depth map and view dependent texture mapping is used to create the new view.
This method provides real-time and online rendering using 3 cameras and only
one computer. However, the background geometry must be static.

Our main contribution to the Plane-Sweep algorithm concerns the score com-
putation. Indeed, this operation is a crucial step since both visual results and time
computation depend on it. Previous methods computes scores by comparing in-
put images with the reference image. We propose a method that avoids the use of
such reference image image that may not be representative of the virtual view. Our
method also use every input image together rather than to compute images bypair.

Since the scoring stage is performed by the graphic hardware, only simple
instructions are supported. Thus a suitable solution is to use variance and aver-
age tools. During the process of a plane Di, each point p of Di is projected on
every input image. The projection of p on each input image j provides a color
cj . The score of p is then set as the variance of the cj . Thus similar colors cj

will provide a small variance which corresponds to a high score. On the contrary,
mismatching colors will provide a high variance corresponding to a low score.
In our method, the final color of p is set as the average color of the cj . Indeed,
the average of similar colors is very representative of the colors set. The average
color computed from mismatching colors will not be a valid color for our method
however, since these colors also provide a low score, this average color will very
likely not be selected for the virtual image computation.

Online Multiple View Computation for Autostereoscopic Display 405

This plane sweep implementation can be summarized as follows :

◦ reset the scores of the virtual camera
◦ for each plane Di from far to near

• for each point (fragment) p of Di

→ project p on the n input images.
cj is the color obtained from this projection on the jth input image

→ compute the color of p :
colorp = 1

n

∑
j=1...n cj

→ compute the score of p :
scorep =

∑
j=1...n(cj − color)2

• project all the Di’s scores and colors on the virtual camera
• for each pixel q of the virtual camera

→ if the projected score is better than the current one
then update the score and the color of q

◦ display the computed image

This method does not require any reference image and all input images are
used together to compute the new view. The visual quality of the computed
image is then noticeably increased. Moreover, this method avoids discontinu-
ities that could appear in the virtual video when the virtual camera moves and
changes its reference camera. Finally, this method is not limited to foreground
objects.

5 Multiple View Computation

A basic approach to render multiple views would be to compute every virtual
view independently. However most of online VBR methods already fully use the
available computer capability to reach real-time rendering, thus we can hardly
expect real-time rendering for multiple views without any optimization.

The Plane-Sweep algorithm is well suited for such optimization thanks to the
space decompostion using planes. Indeed, scores and colors computed on every
plane represent local information of the scene. This score and color computation,
which are a central task in the Plane-Sweep algorithm, can be shared among
every virtual view and hence provide a consequent gain of computation time.

Therefore, our single view Plane-Sweep method can be modified in a k + 1
passes algorithm, where k is the number of virtual cameras. For every plane
Di, the score and color of every point is computed in a first pass. This pass is
absolutely independent of the number of virtual views to create. The information
computed during this pass is then projected on every virtual view in k passes.
During these last k passes, color and score information is updated on every
successive virtual camera. The k + 1 passes are repeated until every plane Di is
computed. Hence our previous method can be modified as follows :

◦ reset the scores and colors of the virtual cameras’ memory Vj (j ∈ {1, ..., k})
◦ for each plane Di from far to near

406 V. Nozick and H. Saito

• for each point (fragment) p of Di

→ compute a score color and a color score
→ store color and score in an array T (p) = (color, score)

• for each virtual camera camj

→ for each point (fragment) p of Di

· find the projection qj,p of p on camj . Vj(qj,p) contains previous
color and score information on camj at the position qj,p

· if the score on T (p) is better than the score stored on Vj(qj,p)
then Vj(qj,p) = T (p)

◦ convert each Vj into images

Like in the single view method, the score and color are computed only once for
every point of each plan. Since the projection of these informations on every vir-
tual view differs, the final views will be different. These information projections
are very fast compared to the score and color computation. Hence sharing the
score and color computation speeds up the application and avoids redundancy
process without any loss of visual quality.

6 Implementation

Since our webcams have a fixed focal length, we can compute accurately their
internal parameters using Zhang calibration [14]. Then we can freely move them
for our experimentations and only a single view of a calibration chessboard is
required to perform a full calibration. Color calibration can be performed by the
method proposed by Magnor [5, page 23]. This method is effective only for small
corrections.

We usually set the far plane as the calibration marker plane. The user should
then determine the depth of the scene to define the near plane. These two
planes can also be set automatically using a precise stereo method as described
in Geys et al. [12]. We use OpenGL for the rendering part. For each new view,
we perform a first off-screen pass for every input image to correct the radial
distortion and the color using Frame Buffer Objects. Implementation indications
can be found on [16].

During the score and color computation, each plane Di is drawn as a textured
GL QUADS. The scoring stage is performed thanks to fragment shaders. First, Di’s
points (fragments) are projected onto the input images using projective texture
mapping. The texture coordinates are computed from the projection matrices of
each input camera. Multi-texturing provides an access to every texture simulta-
neously during the scoring stage. Then, this fragment program computes each
score and color using the algorithm described in section 4.

For the single view method, the scores are stored in the gl FragDepth and
the colors in the gl FragColor. Then we let OpenGL select the best scores with
the z-test and update the color in the frame buffer.

The use of the the z-test for the multiple view method would imply that
every new view is rendered on the screen. Thus the screen resolution would limit

Online Multiple View Computation for Autostereoscopic Display 407

the number of new view that can be computed. We propose a method where
every process is done off-screen using Frame Buffer Object. RGBA textures are
assigned to every virtual view and an additional texture is used for the color and
score computation. The color is stored in the RGB component and the score
in the alpha component. The virtual camera’s texture will replace the frame
buffer used on the single view method. As illustrated on Figure 3 (a), the score
and color computation of a plane does not differ from the single view method
except that the rendering is performed on a texture. Naturally the rendering
has to be associated to a projection matrix. We select the central virtual camera
as a reference camera for this projection (Figure 3 (b)). Then, every virtual
camera involves an additional rendering pass. During a pass, the score and color
texture is projected on the curent plane using the reference camera projection
matrix (Figure 3 (c)). The textured plane is then projected on the virtual camera
(Figure 3 (d)) using fragment shaders. The texture associated to the curent
virtual camera is used for both rendering and reading the last selected scores
and colors. The fragment program decides to update a fragment information
or to keep the current texture value according to the last selected scores as
described in section 5. After the last plane computation, the virtual camera’s
texture can be extracted as images of the virtual views.

The computation time linearly depends on the number of planes used, on the
number of virtual cameras and on the output images resolution. The number
of input cameras has both a repercussion on the image transfer from the main
memory to the GPU and on the score computation performances. Most of the
computation is done by the graphic card, hence the CPU is free for the video
stream acquisition, virtual views compression and transfer.

7 Compression and Images Transfert

Since 3d display and 3d video broadcasting services became feasible, 3d video
data compression has been an active research field. Indeed, without any compres-
sion, the transmission bandwidth linearly increases with the number of views and
becomes a severe limitation for the display frame-rate. Nevertheless, stereoscopic
views represent the same scene and contain a huge amount of redundancies. Thus
the basic concept of 3d video compression is to remove these redundancies among
the views. There exist several stereoscopic compression methods. For more in-
formations, the reader can refer to Kalva et al. [17].

Since we want our system to be used with mobile phones, the problem is a
bit different. The screen resolution is lower than for standard 3d displays but
the available bandwidth is also restricted by the mobile phone communication
system. Furthermore, the compression part achieved by the computer should be
fast and should not require too many CPU capabilities. In our tests, we chose
a MPEG2 compression. Indeed, the views to be transfered consist of the input
images and the virtual images. These views can be sorted by position (from left
to right for example) such they become suited to be compressed with a standard
video compression method. Such compression is performed by the CPU and

408 V. Nozick and H. Saito

Fig. 3. (a) : The points of the current plane are projected on every input camera to
read the corresponding color. (b) : The colors found are used to compute a score and a
color during a rendering process on the reference camera . (c) and (d) : For every virtual
camera, the scores and colors are projected on the current plane using the reference
camera projection matrix (c). The scores and colors are projected from the current
plane to the virtual camera (d).

hence is compatible for real-time computation with our VBR method which
mainly uses the GPU. In addition, MPEG2 decompression is not a problem
with mobile phone hardware.

Online Multiple View Computation for Autostereoscopic Display 409

Fig. 4. Cameras configuration

The compressed images are then transfered to the user. Since we consider that
the data transfer should be done by the mobile phone operator, we just tested
our compressed video transfer with an UDP network protocol with another PC.
There exist more powerful tools for such video streaming but this is not the main
purpose of our article.

8 Results

We have implemented our system on a PC Intel core duo 1.86 GHz with a
nVidia GeForce 7900 GTX. The video acquisition is performed by 4 usb Logitech
fusion webcams connected to the computer via an usb hub. With a 320×240
resolution, the acquisition frame rate reaches 15 frames per second. Our camera
configuration is depicted on Figure 4.

As explained in part 6, the computation times depends among others, on the
number of planes, on the number of virtual cameras and on the virtual view
resolution. In our tests, we set the output image resolution to 320×240. Since
our system is designed for stereoscopic display, the base-line between extreme
camera is restricted. In such condition, our tests shown that under 10 planes,
the visual results becomes unsatisfactory and using more that 60 planes does
not improve the visual result. Hence, we used 60 planes in our experimentation
to ensure an optimal visual quality.

The number of virtual views depends on the application. In our case, we tested
our system with 6, 9, 12, 15 and 18 virtual cameras set between adjacent input
cameras. The speed results obtains with such configuration are shown on table 1.
This computation includes compression and transfer of both virtual views and
input images. Table 1 also includes the frame rate of the classic method witch
computes independently every virtual view.

410 V. Nozick and H. Saito

Our tests indicate that our method provides especially good results for a large
number of virtual views. Compared to the classic method, our method is at least
more than twice faster for 6 virtual views and is four time faster for 18 virtual
views without any loss of quality.

Figure 5 depicts a sample result for a 12 virtual views configuration. Input
images are displayed on the diagonal. The visual quality of a virtual view varies
with its distance from input cameras and decreases for a virtual view located
exactly between two input cameras. However, autostereoscopic display provides
2 views per user (right and left eyes) and the fusion of the two images decreases
the imperfection impact. As shown on Figure 5, stereoscopic pairs (parallel-eyed
viewing) are very comfortable. In addition, the base-line between the extreme
right and left views are perfectly suited to autostereoscopic display application.

In our tests, we compressed and send the images to a client computer. The
compression is done by a MPEG2 method and reaches a 1:41 compression rate.
Thus the transfered data is highly compressed and well suited to be decompressed
by mobile phones.

Fig. 5. Sample result of 16 views : 12 virtual views and 4 input images on the diagonal.
These images have been computed using 60 planes at 8.7 frames per second. Parallel-
eyed viewing provides stereoscopic images.

Online Multiple View Computation for Autostereoscopic Display 411

Table 1. frame rate and number of virtual views

number of number of frame rate classic method
virtual views total views (frames per second) (frames per second)

6 10 11.2 3.8
9 13 10 2.9
12 16 8.7 2.4
15 19 7.6 1.9
18 22 7 1.6

9 Conclusion

This article presents a live video-based rendering method that provides simulta-
neous multiple views of a scene from a small set of webcams. We propose a new
scoring method that provides good visual quality images in real-time thanks to
fragment shaders. Our multiple view method shares the 3D data computation
for every virtual view and speeds up the computation time more than four times
compared to the single view method for the same number of new views. The
rendering is online and provides high quality stereoscopic views.

This method is especially designed for autostereoscopic display on mobile
phones communicating with a computer. The use of only one computer and few
webcams makes this system low cost and well suited for commercial applications,
particularly for the latest mobile phone autostereoscopic displays that require
more that 15 images per frame. According to our knowledge, there does not exist
other VBR method that provides equivalent result with such configuration.

Concerning other extensions of this method, we believe that our multiple-
view system can be easily adapted for multi-users stereoscopic teleconference
applications. The system would work as a server that provides stereoscopic views
for several clients from desired viewpoints.

Acknowledgment

This work has been supported by “Foundation of Technology Supporting the
Creation of Digital Media Contents” project (CREST, JST), Japan.

References

1. Okoshi, T.: Three-Dimensional Imaging Techniques. Academic Press, San Diego
(1977)

2. Dodgson, N.A.: Autostereoscopic 3D Displays. Computer 38(8), 31–36 (2005)
3. Harrold, J., Woodgate, G.: Autostereoscopic display technology for mobile 3DTV

applications. In: Proc. of the SPIE, vol. 6490 (2007)
4. Goldlucke, B., Magnor, M.A., Wilburn, B.: Hardware accelerated Dynamic Light

Field Rendering. Modelling and Visualization VMV 2002, Germany, 455–462
(2002)

412 V. Nozick and H. Saito

5. Magnor, M.A.: Video-Based Rendering. A K Peters Ltd (2005)
6. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-Based

Visual Hulls. ACM SIGGRAPH 2000, 369–374 (2000)
7. Li, M., Magnor, M.A., Seidel, H.P.: Online Accelerated Rendering of Visual Hulls in

Real Scenes. In: International Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (WSCG 2003), pp. 290–297 (2003)

8. Li, M., Magnor, M.A., Seidel, H.P.: Hardware-Accelerated Visual Hull Reconstruc-
tion and Rendering. Graphics Interface GI 2003, Canada, 65–71 (2003)

9. Yang, J.C., Everett, M., Buehler, C., McMillan, L.: A real-time distributed light
field camera. In: 13th Eurographics workshop on Rendering, Italy, pp. 77–86 (2002)

10. Collins, R.T.: A Space-Sweep Approach to True Multi-Image. Computer Vision
and Pattern Recognition Conf., 358–363 (1996)

11. Yang, R., Welch, G., Bishop, G.: Real-Time Consensus-Based Scene Reconstruction
using Commodity Graphics Hardware. Pacific Graphics, 225–234 (2002)

12. Geys, I., De Roeck, S., Van Gool, L.: The Augmented Auditorium: Fast Interpo-
lated and Augmented View Generation. In: European Conference on Visual Media
Production, CVMP 2005, pp. 92–101 (2005)

13. Billinghurst, M., Campbell, S., Chinthammit, W., Hendrickson, D., Poupyrev, I.,
Takahashi, K., Kato, H.: Magic book: Exploring transitions in collaborative ar
interfaces. SIGGRAPH 2000 (2000)

14. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)

15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn.
Cambridge University Press, Cambridge, UK (2004)

16. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques For High-
Performance Graphics And General-Purpose Computation. Addison-Wesley Pro-
fessional, Reading (2005)

17. Kalva, H., Christodoulou, L., Mayron, L., Marques, O., Furht, B.: Challenges and
opportunities in video coding for 3D TV. In: IEEE International Conference on
Multimedia & Expo (ICME), Canada, pp. 1689–1692 (2006)

	Online Multiple View Computation for Autostereoscopic Display
	Introduction
	Autostereoscopic Displays
	Online Video-Based Rendering
	Single View Computation
	Plane-Sweep Algorithm Overview
	Scoring Stage

	Multiple View Computation
	Implementation
	Compression and Images Transfert
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

