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Abstract

This paper presents a framework for overlaying 3D GIS

data information onto a 2D physical urban map. Such data

may be 3D buildings, soil composition or animations, dis-

played in real-time with a moving camera. We propose a

map recognition framework by topological information in

order to recognize the area of the physical map from a whole

map and display its 3D data. The retrieval of the geograph-

ical area described by the physical map is based on a hash-

ing scheme with local combinations of intersection points,

retrieved with a voting procedure from a previously com-

puted index. Specific features are then tracked to allow the

overlay in real-time.

The results show that augmentation of physical maps

based on topological features only is possible, allowing the

use of any physical map without the need for specific mark-

ers, and providing the user with intuitive navigation.

1. Introduction

Geographical Information Systems (GIS) have become

essential tools for local authorities for studying, handling

and planing urban development. GIS can be seen as tools

that superimpose layers (representing homogeneous infor-

mation) that are fused together to generate maps. GIS data

can be updated any time and are thus more up-to-date than

traditional paper maps. They can moreover be adapted in

real time to meet the user’s need.
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Previous works [6, 15] have shown the advantages of us-

ing Augmented Reality techniques to display digital infor-

mation on standard paper maps, because such maps are eas-

ier to manipulate. Moreover, GIS need a shift towards 3D to

be compatible with sustainable development concerns: To

manage increasing complexity of sustainable development

requirements, 3D+t queries have to be handled to compute

new indicators that are now being defined. A thermal com-

fort indicator could be for instance ’walls that have more

than 8 hours sunlight in winter and less than 2 hours in sum-

mer’. Visualizing the results of such a query requires 3D

because sunlight exposure is dependent on building height

and neighboring buildings. 3D virtual environments are not

easy to manipulate for local authorities, that is why we as-

sume that the use of AR maps will facilitate the display of

such results by letting the user manipulate both a paper map

and the viewpoint in a natural way.

In this paper, we propose a framework of map recogni-

tion technique to establish a correspondence between the

image of a real map captured with a camera and a GIS.

Specific features are extracted from the input image, then

matched with the GIS data, as in the problem of Document

image retrieval. We are then able to compute the camera

position with respect to the map, and display more informa-

tion from the GIS. The evaluation of our system will include

AR representation and its computation cost. The compari-

son between related works won’t be included because we

still have some works to a real map.

The rest of the paper is organized as follows: we will

first briefly present related works that can be used to match

images representing the same objects, i.e. compute the ge-

ometric transformation that links the two images. We will

then provide an overview of our system (section 3.1) that
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requires an initialization phase (section 4) that allows a first

camera pose estimation (section 5) and a tracking phase

(section 6). Finally, experimental results will be presented

and discussed in section 7.2.

2. Related works

The problem of finding a match for a query object using

feature points has been addressed in various ways. The fea-

ture points can be described using rich descriptors such as

SIFT [10], PCA-SIFT [8] or SURF [2], that typically use

image patches that are robust in terms of change of illu-

mination, scale and rotation and describe them with high-

dimensions vectors. The search methods have then to deal

with the problems of nearest neighbor search in high di-

mensions with efficient algorithms [1], locality-sensitive-

hashing [4] or a vocabulary tree [13].

Rich descriptors are well suited to the retrieval of images

near-identical to the ones in the database, with few repeti-

tive texture patterns. By contrast, 2D maps can be presented

in different ways, according to the manufacturer, and the re-

trieval method needs then to focus on the geometry of the

urban environment they describe. For this reason, the fea-

ture points need to be specific to urban environments, and

the location of the roads’ intersections are used in this paper.

It is not possible to make a database query using only

the location of a single feature point, so the essential infor-

mation in retrieval is the arrangement of the features points.

Such an arrangement, in our case, must be invariant to the

orientation of the camera relative to the map.

Geometric hashing (GH) is such a general model-based

object recognition method [9, 17] widely used in computer

vision as well as in other domains such as bio-informatics

[14]. The introduction of a geometric invariant yields a

computational cost quite important, in O(N5), that is un-

suitable for an augmented reality application. A probabilis-

tic reduction of the number of feature points results in an

accuracy degradation and has led to the introduction of ”lo-

cally likely arrangement hashing” (LLAH), which outper-

forms GH in both processing time and required amount of

memory [11, 7]. In this scheme, neighboring points are con-

sidered for the calculation of an affine invariant used as a

key in a hashing table. A voting technique is employed for

retrieval, insuring efficiency and robustness against erasure

of feature points.

We use a combination of this method and a more tradi-

tional tracking technique to first recognize the area in the

camera filed of view, then overlay 3D buildings in real-

time.

3. Overview

3.1. System

The user is handling a hand-held device equipped with

a camera coupled with a computer, for example a cellular

phone or a see-through HMD. In our experimental setup,

we use a digital camera and a laptop (see in Figure 1(a)).

The physical map can be displayed on a desktop, on

a wall or any flat surface. There are no requirements on

the manufacturer or the map edition, since we focus on the

topological relations between features and not on extrinsic

properties.

For a proper initialization, the camera needs to be in a

position more or less parallel to the map, so that perspective

distortion is not too important . Once the tracking stage

begins, the user can move more freely, he can even position

the camera at important angles (see in Figure 1(b)). Even

though the tracking process is robust, it can fail after a fast

movement or acquiring a small area of the physical map.

After such an event, the system will try to re-initialize and

the user has to resume a proper camera position.

The 3D buildings and the GIS data are displayed in real-

time on the screen of the device, providing the user with

additional information.

(a) Setting (b) Usage
Figure 1. System Overview

3.2. Algorithm

The framework proposed here is based on LLAH as a

map recognition technique by using topological informa-

tion. A top view image of the 2D map is acquired and pro-

cessed, and individual feature points are recognized with

the main LLAH framework as a retrieval process in the ini-

tialization stage (see in Figure 2(a)). If enough points are

correctly recognized, the homography between the image

plane and the camera can be computed (see in Figure 2(b))

and the tracking stage begins (see in Figure 2(c)). LLAH

is not used during the tracking stage because of the com-

putation needs of that method, and its poor accuracy under

strong perspective distortion.

Once the homography is computed, a query is made to

the database to try to identify all points present in the image,
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allowing to select points with few neighbors, that will be

easy to track. Once good points to track are localized, the

next image can be checked from them. If enough of them

are found, they are then used with a RANSAC [5] process to

compute the homography and the 3D data can be overlayed.

The tracking may then repeat itself on the next image.

If the tracking fails, because the camera positions are

too different between two successive images, or not enough

points are present on the image, the initialization process is

repeated.

(a) Initialization (b) Camera Pose Estimation

(c) Tracking
Figure 2. Algorithm Overview

3.3. LLAH

3.3.1 Overview

LLAH [11, 7] describes a method for indexing and retriev-

ing specific feature points in documents based on only local

arrangements, allowing for partial occlusion and a degree of

perspective distortion.

In the off-line stage, LLAH considers specific entities of

an image database called feature points each at a time, ex-

tracts different sets of points from its immediate neighbors

to calculate perspective invariants, then for every set creates

the corresponding entry for that point in a hash table. In the

retrieval stage, the same process is applied to the input im-

age. Since the keys to the hash table are computed from the

invariants, it is possible to access the ID of the point from

that knowledge alone. For each point, there are as many ac-

cesses to the hash table as possible calculation of invariants

for every set of neighboring point, so a voting process casts

a vote for every retrieved ID and minimizes the impact of

registration errors.

3.3.2 Indexing

The off-line stage creates a hash table from the input data.

The first step is the extraction of every feature point, a fea-

ture point being a specific entity of the input image, for ex-

ample word centroids in text documents or SURF features

in an image. For every feature point, we consider some sub-

sets of its closest neighbors. The reason subsets are inter-

esting is that the distance between points may be impacted

by perspective projection, but some subsets will remain the

same for at least a given degree of perspective. A good

affine invariant is the ratio of the area of two triangles drawn

from four points (see in Figure 3). We use subsets of size 5,

so there are five ways to compute the affine invariant. These

five invariants are quantized to reduce the registration er-

rors, then used as parameters in a hashing function in order

to compute a hash key, that is used to store the ID of the con-

sidered feature point, as well as the order and value of the

invariants. The process is repeated for every subset of five

points from the seven closest neighbors to the feature point.

These values, five and seven, have been estimated in [11] as

the best trade-off between robustness to perspective projec-

tion and computation requirements. Once the process has

been completed, the hash table contains numerous entries

of points’ IDs and the corresponding lists of invariants.

Figure 3. Affine Invariant

3.3.3 Retrieval

The retrieval process aims at correctly identifying individ-

ual feature points from an input image. For this, the exact

same process as in the indexing stage is carried out for each

extracted feature point, up until the point when the hash

key is computed. When the hash key has been computed

from invariants, the corresponding bin in the hash table is

retrieved and the exact order of the invariants that have been
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stored there is checked. This removes the collision issues

and ensures that the match is correct. If the orders are iden-

tical, a vote is cast for the stored ID. Once every subset of

five points from the seven closest neighbors has been used

to cast a vote, the ID with the most votes is mapped to the

extracted feature point. In this way, it does not matter if

there are registration errors as long we can assume that they

follow a gaussian distribution: after the hashing process, the

votes cast for false ID will be evenly distributed and only

the correct ID will receive a significantly higher number of

votes. This process performs very well even for very large

databases (10000 documents in (reference)), but the recog-

nition accuracy fares poorly under strong perspective, as the

affine invariance assumption is no longer valid.

3.4. Database creation and segmentation

Real GIS data of a large French city is used. GDMS [3]

is used to process the data in two ways:

• with a simple query, all intersections are extracted

from the road network to build the features points that

are used in the method.

• following Neubauer and Zipf’s idea [12], we have

built an XML style file that describes how the GIS

database will be rendered in the virtual environment,

i.e. whether a polygon layer should be rendered with

flat surfaces or extruded polygons, and additional in-

formations such as the color to use. We have thus

built a VRML builder above GDMS that transforms

GIS data according to the XML file and generates a

VRML file.

The area described by the data can in theory be very

large, and must be sub-divided in sub-areas that correspond

to the size of the physical maps used as queries. These sub-

areas are defined by a specific ID that is stored alongside

the ID of the feature points in the database.

The registration step of the LLAH algorithm can then be

applied, resulting in the creation of the hash table.

4. Initialization

4.1. Point Extraction

The feature points extraction is the process applied to the

input image that extracts the road intersections of the map.

Ultimately, the extraction will be done automatically, but as

a proof of principle, the feature points are tagged manually

on the physical map with color dots (see in Figure 4(a)).

The acquired image is converted from RGB to HSL space,

then thresholded to retain only the specific color used (see

in Figure 4(b)).

(a) Input (b) Color Extraction
Figure 4. Point Extraction

4.1.1 ID retrieval by LLAH

The algorithm of locally likely arrangement hashing is ap-

plied on the points extracted from the input image. As the

process is sensitive to perspective distortion, the input im-

age needs to be close to a top-view image for optimal ac-

curacy. The stronger the skew of the camera relative to the

physical map, the less points are correctly recognized.

The area described by the map can be recognized by a

voting on the origin area of the recognized points (see in

Figure 5).

As described in 3.3, one point is recognized from sev-

eral neighbors. Since it is necessary to have more than four

points for calculating a homographpy, many points should

be captured in the image (in Figure 5, more than 50 points).

Figure 5. ID retrieval by LLAH

4.1.2 LLAH Selection

During the LLAH process, the extracted points are set to an

ID that corresponds to the ID collecting the most votes from

accesses to the hash table. In this paper, we present a rough

method for estimating the confidence with which these pair-

ings are set. By accessing the voting table like Table 1, we

can sort the points according to the number of votes that

were cast in the best bins. A point that is attributed an ID

with a high number of votes is more likely to be correctly

recognized than a point with a low number of votes. For this

reason, we only keep a given number of pairs N, that are the

N pairs with the most votes on the ID they were attributed

(in our case, N=10). Points in Figure 6 are selected from

Figure 5.

This culling of the number of recognized points prevents
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false match from entering the RANSAC algorithm during

the camera pose retrieval process.

Table 1. Voting Result

1231 341 43 499 86

40 20 6 6 3

Figure 6. LLAH selection

5. Camera Pose Estimation

5.1. Homography Calculation by RANSAC

As mentioned in 4.1.2, N points with a high number

of votes are selected. Whilst a good indicator of the con-

fidence with which a point is matched, a high number of

votes may nevertheless occur with a false match, because

there exist similar distributions of intersections in a map.

For this reason, the calculation of the homography is based

on the RANSAC algorithm, for its ability to cope with false

matches without compromising the accuracy of the homog-

raphy.

The process begins by a random selection of 4 points out

of the N best matches, which is the minimum number of

points required for the calculation of the homography. If

N = 4, the RANSAC process can’t work and is terminated,

a new initialization taking place afterwards.

A first homography between the camera plane and the

map is computed from the randomly sampled 4 points. To

evaluate the homography accuracy, all N points extracted

from the map are re-projected onto the image plane to com-

pute reprojection errors. The number of points for which the

reprojection error is less than a threshold (in our case, 3 pix-

els) are counted and stored. The random sampling and its

evaluation are repeated several times (in our case, 50 times),

then the four points for which the computed homography

had the smallest reprojection error are selected. Figure 7(a)

shows an example of selected points by RANSAC from Fig-

ure 6.

The number of points for calculating the homography is

less than N as shown in Figure 7(a). To get more matched

points for calculating the accurate homography, the data

points from the GIS are re-projected onto the image plane.

If the re-projection error is less than a threshold (in our case,

3 pixels), the point will be a matched point. Compared with

Figure 7(a), there are more points in Figure 7(b) and the

homography is re-calculated by using these points.

Since a homography includes components of camera po-

sition and orientation, a projection matrix is calculated for

the overlaying of GIS data [16].

(a) ID selection by RANSAC

(b) Re-projected Points
Figure 7. Homography Calculation by RANSAC

5.2. Tracking Selection

After the homography calculation has been successfully

done, good points to track are selected for the tracking

phase. Since the color of all intersections is identical, tem-

plate matching methods are not appropriate for matching

points from different views. For this matching phase, we

use the assumption that the change in viewpoint between

successive frames is small, an assumption commonly made

in AR applications.

Fig. 8 shows the extracted feature points in the image at

t − 1(circle) and in the image at t (square). The points ex-

tracted in the image at t are matched to the nearest points ex-

tracted in the image at t−1. For example, circle c is matched

to square f and circle b is matched to square e. However,

the matching between circle b and square e is false, as it

should be matched to square d. This shows that if the dis-

tance between points is adopted as the criteria for matching,

false matchings happen when several neighbor points exist.

In order to prevent false matchings, we select points that

are not too close to the image borders nor to their neighbors.

If a point is close to an image border, there is a possibil-

ity that it will be out of sight in the next frame. If a point

is close to its neighbors, a wrong matching may occur as
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Figure 8. Matching Points

mentioned above. By defining thus good points to track, the

tracking process is more robust and accurate.

For each point in Figure 7(b), the distances between the

nearest neighbor and the map borders are calculated and

sorted. Afterwards, the N points that have the longest dis-

tances are selected as good points to track (Figure 9).

Figure 9. Tracking Selection

6. Tracking

In the tracking phase, extraction of features from an

image is done in the same way as during the initializa-

tion phase. As mentioned in 5.2, selected good points

to track in the previous image are matched to the nearest

point extracted in current image. Even if the point selection

was done in 5.2, wrong matchings may occur due to some

closely-spaced points. In this case, camera pose estimation

by RANSAC will be done again.

7. Experimental Results

7.1. Settings

As mentioned in 3.4, we use real GIS data of the city of

Nantes, France. In the database, 3760 intersections are in-

cluded and processed to create indexes of point’s IDs and

their corresponding invariants as a pre-processing. As a

query, a part of the map which includes 59 intersections is

adopted. The number of buildings in the map is 4080.

In our development environment, the laptop has Intel

Core 2 Duo 2.2GHz and 3GB RAM. The lens distortion

parameters and the focal length are calibrated beforehand.

The camera by Point Grey Research has 640× 480 size and

is connected by Firewire.

7.2. Tracking Selection Result

In 5.2, the method for selecting good points to track was

described. The good points are updated at every frame in

order to adjust to the change of viewpoint.

Figure 10 illustrates when a point is replaced with an-

other better point to track in two continuous time-series

images. In Figure 10(a), a point (ID:6) located near right

image border was selected as a good point to track, but it

wasn’t any more in Figure 10(b). Since the distance be-

tween the point (ID:6) and the image lower border became

too short in Figure.10(b), a new point (ID:811) located on

left upper area was selected.

The good points are selected depending on the change of

viewpoints. For this reason, continuous tracking is success-

fuly done.

(a) t frame

(b) t+1 frame
Figure 10. Tracking Selection Result

7.3. Re-projection Error of Roads

In this section, we represent the accuracy of the esti-

mated homography in the tracking phase. In Figure 11, the

first column shows matched points that are generated for

calculating a more accurate homography in 5.1. The sec-

ond colum shows re-projection of roads in GIS data.

In the first row, the input was captured from a posi-

tion near to top view. The re-projection of roads is com-

pletely registered in the map of roads since the distribution

of matched points was uniformly widespread in the image.

In the second row, perspective distortion occurred and the

matched points were dominated in the middle part of the im-

age. For this reason, a slight re-projection error occurred in

the upper part of the image. In the last row, there were only
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six matched points. Since many points should be included

in the image during the initialization phase, the initializa-

tion could not be done in this case. On the other hand, our

tracking method works when the number of tracked points

is more than five and tracking was successfully done in this

case. The re-projection of roads was perfectly matched on

the printed map’s roads.

(a) Matched Points (b) Reprojection
Figure 11. Re-projection Error of Roads

7.4. AR Representation and its Computation Cost

After initialization of the camera pose, the camera can be

moved to an arbitrary viewpoint. This section presents the

AR representation of 3D GIS on the images captured from

several viewpoints in Figure 12.

For achieving an AR representation system, we should

take the computation time into account. Table 2 represents

each computation time of all processing. Every computa-

tion time was calculated by averaging 100 images’ results.

The latest processing is the overlaying of 3D GIS on the

image depending on the viewpoint.

LLAH + LLAH Selection’s cost is a hundred times the

Tracking Selection’s one. The main difference between the

initialization phase and the tracking phase is the number of

points that should be included in an image. Since the Track-

ing Selection needs more than five points and the number of

tracked points is always less than ten in our case, the com-

putation cost is much lower than that of LLAH + LLAH

Selection.

Table 2. Computation Costs

Process Time (msec)

Point Extraction 42

LLAH + LLAH Selection 12

Homography by RANSAC 16

Tracking Selection 0.1

Image Capturing 19

8. Conclusion

In this paper, we have presented an AR representation

system for 3D GIS that is based on the augmentation of a

physical map including intersections. It provides a natural

device for 3D GIS information representation and manipu-

lation.

Our approach can be divided into two main processing

steps. In the initialization step, LLAH-based intersection

recognition was applied by using a top view image. After

the initialization was done, point tracking with less than ten

points was applied in order to track the camera pose even

if the camera was close to the physical map. Experimental

results show that overlaid 2D/3D GIS information could be

seen naturally and our computation times were compatible

with an AR representation system.

Our future work will be centered around three main top-

ics. First, we will be using a real physical map, easier to

manipulate, but requiring more image processing to recover

the features needed in the initialization phase. Second, a

map contains more information than just intersections, and

this could be used to extract other features such as connec-

tivity. Vectorization of roads from a satellite image will be

helpful to extract roads and their connectivities from a phys-

ical map. Last, research works about data representation

will be necessary to address both technical issues, for ex-

ample the data size, 3D label placement, interaction in AR,

and geographical issues like information semiology in 3D

AR application and map generalization.
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