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ABSTRACT 

 
Graph cuts have proven to be powerful tools in image 

segmentation. Previous graph cut research has proposed 

methods for cutting across large graphs constructed from 

multiple layered video frames, resulting in an object being 

tracked across multiple frames. However, this research 

focuses on cutting graphs constructed from a prerecorded 

video sequence. In live video scenarios, frames cannot be 

layered to construct 3D volumes, since the contents of the 

subsequent frames are unknown. Instead, new graphs must 

be created and cut for each frame on demand. Resource 

limitations make this unfeasible on high-resolution videos. 

In addition, object tracking requires a method for 

incorporating the previous frame’s object position and shape 

into the current graph. We propose a method for tracking 

and segmenting objects in live video that utilizes regional 

graph cuts and object pixel probability maps. The 

regionalization of the cuts around the tracked object will 

increase the speed of the tracker, and the object pixel 

probability maps will enable more flexible tracking. 

 

Index Terms— Tracking, Image segmentation, Image 

processing, Real time systems 

 

1. INTRODUCTION 

 

Tracking objects across a sequence of images is often 

combined with segmentation in computer vision. Systems 

have been developed that track and segment objects for 3D 

reconstruction (such as visual hulls) [1], as well as systems 

that fit models for pose analysis used in human-computer 

interaction [2]. We plan to show that graph cuts are a 

method to achieve both tracking and segmentation 

simultaneously, and are applicable to live video scenarios 

and real-time conditions. 

 Applying graph cuts to layered frames of a video 

sequence has shown to be a robust method of object tracking 

and object segmentation. In such scenarios, the entire video 

sequence is treated as a single 3-D volume of layered frames, 

and a cut is performed across the entire sequence at once [3]. 

The large size of the graphs causes the performance of the 

cut algorithm to be a concern. To solve this problem, 

advances in the graph cut algorithm have produced dramatic 

performance improvements [4, 5].  

 However, in live video applications, there is no 

prior knowledge of subsequent frames. Techniques that 

build single graph across the entire video [3] become 

impossible in live video situations. Instead, a graph must be 

maintained or created for each new frame. When 

considering live real-time video, using faster cut algorithms 

[4, 5], is not sufficient. The creation of the graph, as well as 

the structures for utilizing the temporal data from previous 

frames must be reconsidered.  

One method is to track only the contours of object, 

using graph cuts to find object boundaries [6]. Yet, objects 

that move or change shape rapidly will be difficult to track 

and segment, since the contours will likely exceed the small 

region being examined by the graph cuts. Approaches also 

exist for background segmentation using Markov Chains in 

live video; however tracking of objects in static and non-

static backgrounds requires new techniques [7].  

 In this paper, we propose an object tracking and 

segmentation system for live video where the graph is 

dynamically adapted to the motion of the object. This paper 

briefly introduces graph cuts and provides a detailed 

explanation of the technique. An analysis of the system 

performance on an indoor and an outdoor scene is presented. 

Finally, the technique and future research are discussed. 

 

2. RELATED RESEARCH 

 

The graph cut method is a technique for reducing energy 

minimization problems to maximum flow problems. Using 

image data, a graph is constructed where each vertex 

corresponds to a pixel, and each vertex is connected to each 

neighboring vertex by a weighted edge. After construction, a 

maximum-flow (minimum-cut) algorithm is used to locate 

the set of edges that can be removed to create two distinct 

components in the graph, at minimal cost. 

Maximum flow algorithms continue to be a popular 

research topic in graph theory and combinatorial 

mathematics, resulting in many polynomial algorithms such 

as Ford-Faulkerson shortest augmenting path algorithms [8], 

and Goldberg-Tarjan push-relabel algorithms [9]. 
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3. LIVE VIDEO GRAPH CUTS 

The proposed solution relies on a five-step system to track 

objects in real-time in live video feeds using regions of   

interest. Then algorithm proceeds as follows: 

3.1. Initialize the system 

The first step in our system is to initialize a standard graph 

over the complete video frame. The graph will be seeded 

with object and background pixels in the same manner as 

other graph cut techniques. Depending on the application, 

this could be done automatically using some other kind of 

object detection algorithm. Once the seeds have been placed, 

the region of interest is initially set to the entire frame. 

3.2. Build the graph 

Each edge in the graph requires an energy computation, and 

as the size of the image increases, the number of edges 

increases dramatically. For example, an 8-neighborhood 

graph on a 640x480-resolution video has almost 2 million 

edges. This results in poor performance on live video 

because 2 million edges must be recomputed for every 

frame. If we are tracking and segmenting an object that does 

not fill the entire frame, many of the pixels will not need to 

be computed, such as those far from the object, since they 

will not likely change unless the object moves closer. To 

reduce the number of computations required, we restrict the 

graph to a region of interest. 

For the very first cut on the graph, the region of 

interest will cover the entire video frame. However, 

subsequent regions will be smaller, depending on the object 

size. 

3.3. Cut the graph 

The second step is to cut the graph. For this step, we utilize 

a freely available graph cut implementation available online 

[10]. Research has already been done to increase speed of 

the cut [4, 5], so we will not discuss improvements here.  

3.4. Re-seed the graph 

Seeding the graph for the next frame is not a simple matter 

of marking the previous frame’s object pixels as object 

seeds, and all other pixels as background seeds. In 

traditional graph cuts, a pixel seeded as either “background” 

or “foreground” would automatically be segmented into that 

pixel class. In our case, if the object were to move within the 

next frame and the seeds did not, then some pixels may have 

been inappropriately seeded, causing the cut to incorrectly 

label some pixels. Therefore, we need a method that seeds 

probabilities, rather than binary labels. We propose a new 

method for seeding pixels based on probabilities of future 

pixel locations. 

 When examining any two consecutive frames of a 

video sequence, many of the pixels of the object will 

overlap between frames. These will most likely be those 

pixels closer to the center of the object, as the object must 

travel farther before these pixels change from “object” to 

“background.” Thus, a probably distribution can be created 

over the object pixels such that the pixels near the edge will 

have lower probability of remaining object pixels in the next 

video frame, whereas pixels near the center of the object 

have a high probability of remaining object pixels in the 

next video frame. This distribution is called the object pixel 

probability map. 

 To compute the pixel probability map, the binary 

mask of the object segmentation from the previous frame is 

computed. Then a distance transform is applied to the mask 

to obtain the pixel probability map. The distance transform 

computes the distance from a given white pixel to the 

closest black pixel. This gives us a gradient from the center 

of the object (greatest distance) to the cut edge (shortest 

distance). 

 Using the probability map, the t-links of the next 

frame’s graph are computed using a modified version of 

Region Equation R by Boykov [3].  

 

Where Dp is the value of the probability map for 

pixel p divided by the largest D, and thus Dp [0, 1]. The 

technique also requires that Rp [0, 1], make sure that the 

maximum value of the t-link weight is  +1 (labeled as K 

[3]).  

 Finally, a region of interest is constructed around 

the object area of the binary image mask. The region of

interest is then expanded to contain probable future 

locations of the object. Metrics for determining the potential 

Edge Weight (cost) For 

{p,S} min(  +1, ·Rp(“bkg”) + ·Dp) 

0 

p  P, p  O 

p O 

{p,T} min(  +1, ·Rp(“obj”) + ·Dp) 

0 

p  P, p   B 

p  B 

4. Re-seed the Graph 

3. Cut the Graph 

1.Initialize the System 

2. Build the Graph 

Figure 1. Diagram of the proposed system 

Table 1. t-Link Edge Weight Equations
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size of for the region of interest include camera frame rate, 

previous object velocities, and object scaling speeds. 

4. TESTING METHOD 

 

To test our proposed system, we simultaneously used our 

system to track and segment an object on live video and 

recorded the output of the system to the hard disk for later 

comparison. This paper examines the results of two different 

tests performed at different resolutions and of different 

scenes. The first video [9] was at 352x240-resolution of an 

indoor scene with an object that moves and changes shape. 

The second video [10] was a 768x576-resolution outdoor 

traffic scene with low color variation in snowy conditions, 

making edge detection more difficult, and color modeling of 

the object and background more complex. 

We ran the regionalized graph cuts along with the 

full image graph cuts and analyzed the frame rate, false 

positive pixels (uncut non-object pixels), and false negative 

pixels (cut object pixels). In the following section, we first 

present the findings for the indoor scene, followed by the 

outdoor scene. All tests were performed on a 2.4 GHz Intel 

Core notebook with 2 GB of RAM in a Mac OS X 

environment. 

5. RESULTS & ANALYSIS 

 

The indoor scene and the outdoor scenes exhibited dramatic 

performance improvements using regionalized cuts. The 

tracking ability of the graph cuts seeded with the object 

pixel probabilities proved to be very robust and accurate. 

5.1. Indoor scene 

 

Figure 2 shows a frame from the operation of the algorithm 

on the input video sequence. Figure 4 shows the regional cut 

outperformed the full image cut by 1.5x or more in speed. In 

addition, the performance of the regional cut is proportional 

to the size of the region of interest, as is expected. From 

frame 35 to frame 75, the frame rate decreases as the region 

of interest expands. On the other hand, the frame rate for the 

full image cut remains constant across the entire test, as 

expected, since the properties of the graph remain largely 

unchanged. 

 We also compared the balance of processing time 

spent on different portions of the system. Figure 5 shows the 

break down of time spent on each task for a graph cut on a 

single frame. By regionalizing the cuts to areas of interest, 

we have reduced graph construction and maintenance from 

requiring a majority of the processing time, to less than one 

fifth of the time. By consequence of the smaller graphs, the 

cut time was also reduced. 

  

5.2. Outdoor scene 

 

The outdoor scene displayed even more dramatic 

improvements than the indoor scene. While the full image 

cut on the 768x576-resolution image averaged 2 fps, the 

regional cut attained 18 fps on average, almost a 9x speed 

increase. This is attributed to the object size being smaller in 

comparison to the indoor scene. It is important to note that 

Figure 2. Indoor Scene: (a) region of interest (red) and pixel 
probability (green) overlaid on input image, (b) result of cut

 (a) (b) 

Figure 3. Outdoor Scene: (a) original scene (b) (top) cut result, 

(bottom) region-of-interest (red) and pixel probability (green) 

overlaid on input image 

(a) (b) 

Figure 5. Comparison of graph cut performance based on size 

Figure 4. Frame Rates of experiment 1 (full frame), and 
experiment 2 (regionalized cuts) 
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even due to the small size of the object and region of interest, 

the object was never lost during tracking, even though the 

wire mesh in the window partially occluded the object being 

tracked. In Figure 4, the efficiency increase of the 

regionalized cut is apparent. The object to be tracked is 

much smaller than the video frame, making graph cuts over 

the entire image inefficient.  

 

5.2. Accuracy 

 

A mask of the ground truth object was manually created for 

every other frame of the video segment. The number of 

object pixels that were cut (false negatives) and the number 

of background pixels that were not cut (false positives) were 

divided by the input image size to obtain the accuracy of the 

regional cut. Table 2 and Table 3 have the average and 

worst results for the both scenes. Even though many of the 

edges in the indoor scene were not clearly defined, the pixel 

probability map has performed extremely well in seeding 

the graphs and tracking the face in the video.  

In addition, despite the smaller size of the graph, 

accuracy of image tracking and segmentation remains very 

high. As the entire object remains contained within the 

region of interest, the graph cut built using the pixel 

probability map correctly segments object in the image. 

 

6. DISCUSSION AND FUTURE WORK 

 

We have introduced a new graph seeding method and a 

region of interest based graph-minimizing technique as a 

system capable of tracking and segmenting objects using 

graphs cuts in live video sequences. Empirical analysis has 

shown the system to be capable of performing within real-

time constraints on commonly available hardware.  

While this method requires the user to initially seed 

the image with object and background locations, this 

method could easily be combined with other techniques to 

automate the initial seeding task, such as finding skin color 

to track human faces. Many other applications exist, such as 

traffic monitoring on highways, since the cars are usually 

small compared to the size of the image. 

Further research in incorporating multiple-object 

tracking into the system is being considered. Possible 

techniques include using a single graph cut with multiple 

pixel probability fields and multiple graph cuts. 
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Table 2. Indoor Scene: Accuracy of regionalize cut with 
probability map 

 False Positives False Negatives 
Average 0.15% 0.15% 

Worst 0.23% 0.34% 

Table 3. Outdoor Scene: Accuracy of regionalize cut with 

probability map 

 False Positives False  Negatives 
Average 0.15% 0.15% 

Worst 0.23% 0.34% 
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