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Abstract— A calibration method for a structured light system
by observing a planar object from unknown viewpoints is
proposed. A structured light system captures a 3D shape by a
camera that observes a light stripe on an object illuminated by a
projector. The 3D shape, obtained from the system defined by a
pinhole model for the projection of a light stripe, is solved using
the equation of a plane model for the projector. The coefficients
of each light stripe’s equation are estimated using the 4×3
image-to-camera transformation matrix that is expressed by
camera parameters. Experimental results demonstrate a high
degree of accuracy when following the proposed approach.

I. INTRODUCTION

Studies in computer vision on 3D recovery using a light
stripe have been conducted [1]. Study results from this area
may advance with the development of object modeling and
recognition. For example, creation of custom-made clothing
using the 3D shape of a human body has already been
realized in the apparel business [2].

A structured light system based on a camera-projector pair
allows the 3D reconstruction of an object. We can obtain
highly accurate results by adding an appropriate geometric
model to the system; however, in many cases, these models
impose constraints on the projector of the structured light
system.

Typically, we can consider the 3D shape from a structured
light system defined by the pinhole model to approximate
both the camera and the projector. The camera is modeled
by the 3×4 projection matrix, and the projector by the 2×4
projection matrix [3]. It is assumed that all the light stripes
are emitted from the optical center of the projector.

Second, the baseline model, which is defined by the
distance between the camera and the projector, is proposed
[4]. If the baseline is not defined as a variable parameter, the
projector must assume the pinhole model. In addition, the
light stripe must be vertical to the baseline.

Finally, the equation of a plane model is proposed [5]. In
this model, some improvements are made in the projector,
which can be defined by the equation of a plane. Even if
light stripes are emitted in different directions, this model
can represent them more accurately than the above models.

The coefficients of the equation of a plane are estimated
using calibration rigs such as cubes, turntables, and slide
stages. Although these rigs can be placed in the correct
position, they are cubic or large-sized objects [6]. Therefore,
simple calibration rigs are required to simplify a user’s tasks.

Fig. 1. Calibration scene

In this paper, we propose a calibration method for a
structured light system by observing a planar object from
unknown viewpoints. Fig.1 shows a calibration scene of
the structured light system. The coefficients of each light
stripe’s equation are estimated using the 4×3 image-to-
camera transformation matrix that is expressed by camera
parameters. Our method provides a high degree of accuracy
when compared to other conventional methods.

II. GEOMETRIC MODEL
A structured light system is composed of a camera and

a projector. This system allows 3D reconstruction when the
camera observes a light stripe on a target object illuminated
by the projector. Fig. 2 is the geometric model of the
structured light system. Both the camera and the projector
are represented in the camera coordinate system. The camera
model is based on the pinhole model of perspective projec-
tion. The projector model is based on the equation of the
plane model.

A. Camera Model

The pinhole model of perspective projection is defined by
intrinsic and extrinsic parameters. The projection from a 3D
point Mw = [xw, yw, zw] in the world coordinate system
(Ow-Xw-Yw-Zw) to a 2D image point m = [u, v] in the
image plane is given by the following equation:

m̃ � A
[

R t
]

M̃w (1)

where A =

 α γ u0

0 β v0

0 0 1


In this formulation, the tilde in m and Mw indicates homo-
geneous coordinates. The matrix A is the camera calibration
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Fig. 2. Geometric model

matrix, which includes the focal length, the image center
c = [u0, v0], the skew, and the aspect ratio. The rotation
matrix R and the translation vector t, which translate to a 3D
point Mc = [xc, yc, zc] in the camera coordinate system (Oc-
Xc-Yc-Zc), encapsulate the camera orientation and position
[7].

In addition, we consider the discrepancy between the real
image coordinates m̆ = [ŭ, v̆] and the corresponding ideal
image coordinates [u, v] of perspective projection.

ŭ = u + (u − u0)[k1(x2 + y2) + k2(x2 + y2)2] (2)
v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] (3)

where k1, k2 are the radial distortion coefficients, and [x, y]
are the normalized image coordinates. The center of radial
distortion is the same as the principal point [8].

B. Projector Model

Let us consider the case in which the light stripes are
emitted in different directions. It is difficult to assume that the
projector model is based on the pinhole model of perspective
projection, because the light stripe is not exactly illuminated
from the optical center of the projector. Therefore, we use
the equation of a plane model to accurately represent the
projector instead of considering the projection of the light
stripe, which depends on the inner structure. The light stripe,
which appears in the 3D space, is expressed by the plane.

In the camera coordinate system, each light stripe is
described by

aixc + biyc + cizc + di = 0 (4)

where i is the light stripe number, and ai, bi, ci, and di are
the coefficients. There are an equal number of equations of
the planes and light stripes.

Next, we define the baseline li, i.e., the distance between
the optical center of the camera and the light stripe of
the projector; projection angle θi, i.e., the angle between
the Zc-axis and the light stripe; and tilt angle φi, i.e., the
angle between the Yc-axis and the light stripe. From the
coefficients of the equation, these explicit parameters can
also be obtained.

li = di/ai (5)
θi = arctan(−ci/ai) (6)
φi = arctan(−bi/ai) (7)

The proposed model is applicable to various structured light
systems, because each light stripe is denoted by the equation
of a plane.

C. Triangulation

A 3D point Mc at the intersection of the viewpoint
from the camera and the light stripe from the projector is
triangulated by the camera and projector parameters. From
(1) and (4), we derive the linear equation [xc/zc, yc/zc, 1/zc]
as follows: α γ 0

0 β 0
ai bi di

 xc/zc

yc/zc

1/zc

 =

 u − u0

v − v0

−ci

 (8)

Therefore, the camera coordinates [xc, yc, zc] are expressed
as

xc =
(u − u0) − γ

β (v − v0)

α
zc (9)

yc =
v − v0

β
zc (10)

zc =
di

ai

− ci

ai
− (u−u0)− γ

β (v−v0)

α − bi

ai

(v−v0)
β

(11)

The coordinate zc is computed by the triangulation principle
using one side and two angles of a triangle. Then, the
coordinate xc and yc are calculated based on the scaling
relation of the camera.

III. CALIBRATION METHOD

We present a calibration method for the structured light
system by observing the reference plane from unknown
viewpoints. Fig. 1 is a calibration scene of a structured light
system. The reference plane contains a checkered pattern so
that the calibration points can be detected as the intersection
of straight lines. Our approach to calibrating a structured
light system incorporates two separate stages: camera cali-
bration and projector calibration.

A. Camera Calibration

In the camera calibration stage, camera parameters are
obtained by Zhang’s method [9]. First, the camera calibration
matrix A is estimated from perspective projections and
homographies between the image and the world coordinates.
Then, the rotation matrix R, translation vector t, and radial
distortion coefficients k1, k2 are computed. Finally, the
camera parameters are optimized with a nonlinear refinement
based on the maximum likelihood criterion.

B. Projector Calibration

In the projector calibration stage, we estimate the equation
of a plane for the light stripe using the 4×3 image-to-camera
transformation matrix. Although, in the work of Huynh et
al. [10] this matrix is solved by world point to image point
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Fig. 3. Projector calibration

correspondences, it is represented by the camera parameters
as follows:

M̃c =
[

Mc

1

]
=

[
Q
kT

] xw

yw

1


�

[
Q
kT

]
Q−1A−1m̃

�
[

I
(rT

3 t)−1rT
3

]
A−1m̃ (12)

where Q =
[

r1 r2 t
]

k = [0, 0, 1]

Here, ri is ith column of the rotation matrix R. Once the
camera parameters are obtained by Zhang’s method, the ori-
entation and position of the reference plane are determined.
Unlike other methods that necessitate recalculation, here,
we use the 4×3 image-to-camera transformation matrix that
can be computed directly. This matrix has eight degrees of
freedom, which are the same as homography in 2D space.

The ith light stripe is illuminated on the reference plane
as shown in Fig. 3 so that a segment of the line is projected
onto the image plane. Equation (12) allows the ith light stripe
image-to-camera transformation. Therefore, the coefficients
of the equation of the ith plane (ai, bi, ci, and di) can be
computed by the least squares method with at least three
image coordinates. This is how all the light stripes are
estimated.

IV. RESULTS

A. Calibration

The ”Handy 3D Camera Cartesia”, which is a structured
light system of SPACEVISION Incorporated [11], has been
calibrated. This system consists of a camera, the focal length
and resolution of which are 8 mm and 640×480 pixels,
respectively, and a projector, the number of light stripes of
which is 254. Three surface images and light stripe images
(a luminance value corresponds to the light stripe number)
are captured by observing the reference plane from three
viewpoints, as shown in Fig. 4. The light stripe images are
obtained when the projector emits a structured light pattern.

Table 1 describes the intrinsic camera parameters esti-
mated by Zhang’s method. Fig. 5 is the calibration result
of the projector parameters, which include the baseline,
projection angle, and tilt angle, instead of the equation of

(a)

(b)

Fig. 4. Input images. (a) surface images; (b) light stripe images

TABLE I
CAMERA PARAMETERS

A

[
1061.71 −0.562002 350.08

0 1064.09 286.547
0 0 1

]
k1 -0.140279
k2 -0.0916363

a plane. When the number of light stripes increases, the
baseline gradually reduces, the projection angle increases,
and the tilt angle remains almost constant. The camera and
projector parameters allow the 3D reconstruction of an object
by the triangulation principle.

B. Evaluation

We have evaluated the accuracy of proposed calibration
by comparing with other methods as follows:

( i ) The pinhole model calibrated with a slide stage:
The camera is modeled by the 3×4 projection
matrix, and the projector is modeled by the 2×4
projection matrix [12]. The parameters are esti-
mated using a slide stage.

( ii ) The equation of a plane model calibrated with a
slide stage:
The camera model is based on the pinhole model.
The projector model is the equation of a plane
model. The parameters are estimated using a slide
stage.

(iii) The equation of a plane model calibrated with the
reference plane (the proposed method):
The camera model is based on the pinhole model.
The projector model is the equation of a plane
model. The parameters are estimated using the
reference plane.

Evaluations of the above three techniques are performed
using five equal spheres of 25 mm radius, which are placed
in front of the structured light system. Fig. 6 shows the
measurement results of these spheres, according to which,
(i) appears to be externally distorted when compared to (ii)
and (iii).
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(a) (b) (c)

Fig. 5. Projector parameters. (a) baseline; (b) projection angle; (c) tilt angle

(i) (ii) (iii)

Fig. 6. Measurement results of spheres.

TABLE II
EVALUATION RESULTS OF SPHERICITY ERROR

Index No. 1 No. 2 No. 3 No. 4 No. 5
Points 15,629 15,629 19,405 19,861 19,861

( i ) 0.41 0.38 0.26 0.26 0.31
( ii ) 0.22 0.31 0.20 0.13 0.20
(iii) 0.23 0.32 0.21 0.15 0.21

The sphericity error is formulated by

E =
1
S

S∑
p=1

(rp − r̂)2 (13)

where S is the number of measurement points, rp is the
actual measurement value, and r̂ is the theoretical value. rp

is the distance between a measurement point and a center
point that is computed by fitting the ideal sphere to all of
the measurement points. Table 2 illustrates the evaluation
result of the sphericity error. Thus, the equation of a plane
model is more appropriate for the structured light system
than the pinhole model. From (ii) and (iii), we infer that
there are minor differences between using the slide stage
and the reference plane.

Therefore, it has proven that our approach to calibrate
the system, defined that the projector model is using the
equations of a plane, achieves high accuracy measurements.
The calibration using a planar object obtains similar results
to the traditional method using a slide stage.

V. CONCLUSION

In this paper, a calibration method for a structured light
system by observing a planar object from unknown view-
points was presented. A structured light system captures a
3D shape by a camera that observes a light stripe on an

object illuminated by a projector. The projector model is
based on the equation of a plane model. We proposed an
estimation approach for the coefficients of the equation of a
plane is based on the 4×3 image-to-camera transformation
matrix which can be computed directly from the camera
parameters. Furthermore, we verified our method, which uses
a simple planar object, provides a high degree of accuracy
in the experiment.
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