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ABSTRACT
Stereoscopic  images  in  computer  graphics  applications  often 
require two rendering passes reducing by half the frame rate. In 
this situation, the conversion from standard to stereoscopic images 
may involve some difficulties to maintain real time rendering if 
the  geometry  is  made  of  thousands  triangles.  Since  few years, 
auto-stereoscopic displays have become more and more popular 
because of  their  multi-user  capability  and  because  they  do  not 
require any specific glasses. However, they usually require five or 
more input views that can be difficult to generate in real time. In 
this  paper,  we present  a  single  pass  algorithm using  GPU that 
speeds-up the rendering of stereoscopic and multi-view images. 
The geometry is duplicated using a shader program that reduces 
the data transfer between the main memory and the graphic card. 
It  also  brings  together  the  computation  of  some  vertices's 
properties that are similar from one view to another.
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1. INTRODUCTION
Stereoscopy  is  a  technique  that  enables to  watch  three-
dimensional   images on 2D display thanks, most of the time, to 
specific glasses.  It has many applications in various fields such as 
data visualization, virtual reality or entertainment because it tends 
to reproduce our visual perception and makes information easier 
to  understand.  In  computer  graphics,  stereoscopic  rendering 
consists in generating two images of a virtual environment from 
two slightly different  viewpoints.  In other words,  it  requires to 
render  the  geometry  of  the  scene  twice  which  can  double  the 
computational time. In such case, it can be difficult to maintain 
real-time rendering especially for  applications like video-games 
that are complex in term of geometry and visual effects.

Auto-stereoscopy  is  a  technology  recently  applied  to  LCD 
displays [2] that introduces the ability for one or several users to 
watch  stereoscopic  images  without  wearing  any  glasses. 
Depending  on  their  characteristics,  auto-stereoscopic  displays 
require from 5 to 64 images [9] to display a single 3D frame. A 
filter,  made  of  small  lenses,  is  overlaid  on  the  surface  of  the 
screen and ensures to emit each image in a specific direction. So, 
if the user is well located in front of the display, each eye can see 
a single specific image. 

However, the important number of required input images makes it 
more  difficult  to  maintain  real-time  rendering  compared  to  a 
single view rendering. We can state two facts in term of time for 
standard  multi-view rendering.  Firstly,  data  transfer  from main 

memory to the graphic card is costly. Secondly, some operations 
on vertices remain the same from one view to another which mean 
there are redundant computations. Global transformations, parts of 
illumination calculation and texturing are identical for example.

GPU programming is now very popular because it can speed-up 
many algorithms thanks to an efficient parallelized architecture. 
Recently, shaders have been updated with a new feature named 
geometry shader (GS) that takes place between vertex shader and 
rasterization  stages [5].  Geometry  shader  introduces  the 
possibility to manipulate vertices of input primitives like points, 
lines or triangles before emitting the result to the rasterization and 
clipping stages. It becomes also possible to create new primitives 
during this stage.

The goal of our approach is to exploit geometry shader to speed-
up the rendering process  of  stereoscopic  or  multi-view images. 
The  ability  of  geometry  shaders  to  duplicate  input  primitives 
allows  rendering  in  a  single  pass.  Multiple  sending  of  the 
geometry  to  the  graphic  card  are  reduced  to  a  single  transfer. 
Moreover  extra  computation  due  to  redundant  operations  is 
avoided  since  our  algorithm take  place  after  the  vertex  shader 
stage.

This paper is structured as follows. We start giving an overview of 
related and previous works, and then we present a description of 
our  algorithm.  In  the  next  section  we  give  details  about  the 
implementation of our algorithm with shader codes. Finally, we 
present and discuss the results of our approach. 

2. PREVIOUS WORKS
Several methods have been proposed to overcome the multi-pass 
rendering limitation for multi-view rendering of 3D information. 
A  point-based  rendering  solution  was  proposed  by  Hubner  et  
al. [4] using GPU to compute multi-view splatting, parameterized 
splat intersections and per-pixel ray-disk intersections in a single-
pass.  This  method  reaches  10 fps  for  137k  points  in  a  8-view 
configuration.  To  increase  multi-view  rendering  performance, 
Hubner and Pajarola [3] present a direct volume rendering method 
based on 3D textures with GPU computations to generate multiple 
views in a single pass. These two solutions significantly decrease 
the  computation  time  but  are  not  suited  for  polygon  based 
graphics.

An alternative solution has been proposed by Morvan et al. [6] a 
single 2D image plus a depth map that are interrelated to display 
multiple views. Although the algorithm reduces the bandwidth of 
data emitted to the system, it does an assessment over available 
data to fill the area's missing information of the new views and 
then reduces the content's truthfulness. 



In  2008,  de  Sorbier  et  al. [7,8]  introduced  a  new  single  pass 
algorithm to render stereoscopic and multi-view images using the 
GPU.  This  approach  is  based  on  a  geometry  shader 
implementation  and  uses  multiple  rendering  target  extension 
(MRT) associated with frame-buffer object (FBO) to save results 
in distinct textures. Results show that, in some cases, the frame-
rate  can be twice faster  than a  multi-pass  technique.  However, 
MRT is limited to a single depth buffer shared by all the rendering 
targets. This restriction is minimized by sorting the triangles in a 
back to  front  order  that  increases computation time.  Moreover, 
hardware constraints limit the number of output textures to eight 
while some auto-stereoscopic devices require nine viewpoints or 
more.  Finally,  it  is  difficult  to  integrate  this  algorithm  in  an 
existing application because existing shaders have to be rewritten.

3. ALGORITHM OVERVIEW
Advantages of Shaders
In standard OpenGL implementation, geometry is described as a 
set  of  vertices  that  have to  be sent  from main  memory  to  the 
graphic card for each rendering pass. Moreover, there are several 
function calls and OpenGL state modifications that can affect the 
frame rate. Obviously, these operations decrease the performance 
in case of stereoscopic or multi-view rendering because it needs a 
rendering pass for each view.

By studying the concept of multi-view rendering [2], we can state 
that  some  characteristics  remain  the  same  from  one  view  to 
another. Position of vertices is unchanged in the referential of the 
scene  meaning  that  a  transformation  matrix  is  shared  over  the 
viewpoints. Likewise, texture coordinates, light vector and normal 
of a vertex are identical. So, each characteristic independent of the 
viewpoint might be computed once to increase the performances. 
Then,  each  vertex  should  be  duplicated  according  to  a  given 
viewpoint.

In that sense, shaders provide useful functionalities to merge some 
operations and duplicate only what is necessary. A vertex shader 
is  designed  to  apply  several  independent  processing  on  each 
vertex while a geometry shader is dedicated to handle primitives. 
In particular, this GPU stage allows creating or removing vertices, 
to  emit  new primitives  and to  apply transformations and takes 
place just after the vertex shader.

Single Texture Based Approach
Previous  work [8]  on  GPU-based  multi-view  rendering 
demonstrates  that  it  is  possible  to  considerably  speed-up  the 
process.  However,  the  algorithm is  difficult  to  use  because  of 
constraints like the lack of an efficient depth test or the use of 
multiple textures during the rendering stage.

Our approach takes advantage of a single texture to make possible 
the use of the depth buffer. The goal is to generate all the views 
and to render it at the correct position. Moreover, with only one 
texture we can significantly increase the number of views that was 
previously reduced at eight for a single rendering pass because of 
hardware  limitations.  Obviously,  it  means  that  the  size  of  the 
texture is proportional to the number of views and the size of the 
original view. 

In  our  case,  the  different  views  are  organized  over  the  whole 

texture in sub-areas. Each of them has a resolution of ( )hw, . For 

example,  six  views  will spread  over  six  sub-areas  ( )ji,SA  

where  20 <i≤  and  10 <j≤  and  the texture  resolution  is

( )hw, ×× 23 . Furthermore, clipping stage takes place after the 

geometry shader.  According to these facts, we have to consider 
transformations to  correctly  project  the  geometry in the  texture 
and apply one more step to refine clipping.

Geometry Transformation
Input triangles of the geometry shader are projected on an area 
that covers the whole texture. So we have to apply operations on 
these triangles in order to transform them to fit  the bottom-left 
sub-area of the texture. Then, triangles are duplicated and moved 
over their assigned sub-area.

Since  all  the  input  views  share  a  common  image  plan,  the 
transformation  on  triangles  is  a  2D  operation  composed  of  a 
scaling S and a translation T that have to  be applied after  the 

projection P of vertices. If the distribution of the views on the 

texture  is  defined  as y)NV(x, ,  then  we  define  S  as

( )yx,=S NV/1 .  Since  the  projection  is  normalized,  we 

defined T as:

),(/11 yxNVT +−=

Figure 1. Description of the transformations required to 
duplicate the geometry using a single texture.

To send a duplicated triangle in a specific sub-area ( )ji,SA , we 

apply one more translation T' defined as:

( ) ( ) ( )ji,ji,=ji,T' ×× 2NV/1

The full process is depicted in Figure 1.

The result of these transformations is that there is no difference 
between the views in each sub-areas. So, we need to apply one 
more  operation  to  take  into  account  the  perspective 
transformation.  For  multi-view  rendering,  the  only  required 
parameter  is  the  eye  separation Δ  that  defines  the  distance 
between two adjacent viewpoints.  Since projection volumes are 
unchanged  and  view  directions  are  parallels,  we  define  the 



stereoscopic transformation as a translation sT  perpendicular to 

the view direction. sT can be applied after using matrix M that 

transforms  each  vertex  into  camera  space.  It  means  that  the 

translation  is ( ) ( )( )0,0,nbvj+iΔ=ji,Ts ×× where nbv is 

the number of sub-area in a row.

Geometry transformation can be summed up as:

( ) ( ) ( )( )VertexM+ji,TP'+ji,T'=ji, s ××SAVertex  

(Equation 1.)

with P'=T×S×P

Clipping
Using a single texture means that the clipping will be applied on 
the  border  of  the  texture  and  not  on  each  sub-area  borders. 
Geometry transformation described in previous sub-section, will 
uncover new triangles in incorrect sub-area that will not disappear 
after clipping (Figure 2).

Figure 2. Description of clipping constraints when the 
different views are shared on a single texture.

 

To  partially  or  completely  hide incorrect  triangles,  we  need to 
apply our own clipping. It exists three options: do the clipping in 
the geometry shader, in the fragment shader or in both.

In the geometry shader, triangles outside or intersecting a border 
of  a  sub-area are detected using  the  Cohen-Sutherland method. 
Then the triangle is emitted, discarded or clipped depending on 
the result. However, the clipping requires to compute intersections 
with the border and, if necessary, to create new triangles.

In the fragment shader, fragments that are outside of their  sub-
areas are discarded. However, it requires testing a large number of 
fragments.

The  third  solution  is  to  clip  triangles  using  both  shaders.  The 
geometry shader detects and discards triangles that are outside of 
the sub-area. Then the number of fragments to test in fragment 
shader is reduced.

Advantages  and  limits  of  each  approach  are  compared  in  the 
discussion section.

4. IMPLEMENTATION
This section describes the implementation of our algorithm using 
OpenGL 2.1 and GLSL 1.2. The result of our method is saved in a 
texture using the Frame Buffer Object extension. 

The Vertex Shader
The  goal  of  the  vertex  shader  is  to  centralize  the  common 
operations from one view to another one. Equation 1 shows that 
the transformation matrix M (MODELVIEW matrix) is similar 
for each vertex. So each vertex can be multiplied with that matrix 
during the vertex shader stage. 

#version 120

void main(void){

gl_Position = gl_ModelViewMatrix * gl_Vertex;

}

Figure 3. One possible code for the vertex shader

  

Other parameters can be computed in vertex shader like texture 
coordinates,  light  vectors  depending  of  the  normal,  color  of 
vertices.

The Geometry Shader
#version 120

#extension GL_EXT_geometry_shader4 : enable

flat varying ivec2 subarea;  // Coordinates of a sub-area
uniform vec2 screensplit;    // Subareas distribution on texture
uniform int numberofviews;
uniform float eyesep;          // Eye separation

void main(void){
  vec2 T = -1.0+1.0/screensplit;
  mat4x4 TSP = mat4x4(1.0/screensplit.x,0.0,0.0,0.0,
                                       0.0,1.0/screensplit.y,0.0,0.0,
                                       0.0,0.0,1.0,0.0,
                                       T.x,T.y, 0.0,1.0)*gl_ProjectionMatrix;
  float start = -float(numberofviews*0.5)*eyesep;
  if(mod(numberofviews,2)==0) start += eyesep*0.5;
  for(int current=0;current<numberofviews;++current){
     subarea.y = int(floor(current/screensplit.x));
     subarea.x = current%int(screensplit.x);
     for(int i = 0 ; i < 3; ++i){  // for each point of the triangle
        vec4 tmp = TSP*(gl_PositionIn[i]+vec4(start,vec3(0.0));
        gl_Position = tmp;
        gl_Position.xy += subarea/screensplit*tmp.w*2.0;
        EmitVertex();
     }
     EndPrimitive();
     start += eyesep;
  }
}

Figure 4. One possible code for the geometry shader



In the geometry shader, we apply the transformations presented in 
the  previous  section.  For  each  sub-area,  vertices  of  the  input 
triangles  are  duplicated  and  translated  according  to  the 
corresponding  viewpoint.  The  result  is  multiplied  with  the 
OpenGL projection matrix, translated, and scaled to fit the sub-
areas.  All  this  operations  must  in  homogeneous  coordinates  to 
correspond with OpenGL matrix.

We  add  an  extra  variable  subarea that  is  used  to  associate  a 
triangle  with  its  sub  area  coordinates.  This  is  useful  to  easily 
identify  a fragment in  the fragment  shader step and be able  to 
compute the clipping.

The  code  in  Figure  4  presents  our  approach  with  the  clipping 
performed only in  the  fragment  shader.  The  clipping based on 
geometry and fragment shaders needs only few changes. It checks 
if  triangles  are  completely  outside  the  sub-area  boundaries 
whether or not. The test is done by computing the position of each 
vertex when they are transformed into sub-area ( )0,0SA . If at 

least one vertex is in this sub-area then we continue the process 
else  we  discard  the  triangle.  It  slightly  reduces  operations  in 
geometry shader and the number of emitted fragments.

We  will  omit  the  implementation  details  of  the  clipping  with 
geometry shaders, since performances of this approach are quite 
bad compared to the two others. 

The Fragment Shader
The traditional fragment shader is increased by a single test for 
clipping.  Each  fragment  is  associated  with  its  target  sub-area 
thanks to the variable subarea. With this information and the size 
of  a  sub-area,  it  is  possible  to  know if  the  fragment  has  to  be 
discarded or not. 

#version 120

uniform ivec2 subareasize;

flat varying ivec2 subarea;

void main(void){
    ivec2 coord  =  ivec2( gl_FragCoord.xy ) –  subarea * 
subareasize;
  
  if( coord.x > screensize.x || coord.y > screensize.y ||

         coord.x < 0 || coord.y < 0){
        discard;
    }else 

gl_FragColor = vec4(1.0,0.0,0.0,1.0);
   }
}

Figure 5. One possible code for the pixel shader

If the fragment is kept then any kind of operation can be applied 
on it like illumination per pixel (Figure 6, Figure 11, Figure 12), 
texturing.  So  there  are  only  few modifications  in  the  fragment 
shader code. 

Figure 6. Himeji Castle, 6 views. 35,200 triangles. Lighting 
per pixel.

5. RESULTS & DISCUSSIONS
Performances Analysis
We experimented  our  algorithm on  a  bi-Xeon  2,5Ghz running 
Linux. The graphic card is a nVIDIA GeForce GTX 285 with 1Go 
memory. The algorithm was tested using different kind of models 
with  various  numbers  of  triangles  and  graphical  effects.  The 
resolution  of  each  view  is 7681024× .  No  special  data 
structure like VBO was used.

Figure 7. Performances of our approach compared to the 
standard one. Tests are applied with various numbers of 

views and triangles.

Figure 7 presents the performances obtained using our approach 
compared to the standard multi-pass rendering. We evaluate the 



results over different number of triangles and views. If the scene 
is  made  of  one  thousand  triangles  then  we  notice  that 
performances  of  our  algorithm  are  similar  or,  in  case  of  two 
views, slightly worst compare to the normal one. 

In all other analyzed conditions, performances of our multi-view 
rendering  are  around twice  better  than the  standard multi-view 
rendering. Rendering with four view-points shows that our results 
can be three time better for more than 5000 triangles. Especially 
in this case, the differences between two and four views are small.

Performances  are  closely  dependent  of  the  number  of  input 
primitives.  For  low  number  of  triangles,  our  approach  is  less 
effective than the standard one because the number of OpenGL 
drawing calls does not exceed the transfer capabilities from the 
main memory to the graphic card.

Results are similar for two and four views. So, in Figure 8, we 
analyze  our  rendering  algorithm with  1  to  17  view-points  and 
10000 triangles. In the first fourth cases, performances are quite 
similar then after, an important drop in frame-rate occurs until 13 
view-points. Finally, performances seem to become stable again. 
We think that under a given amount of data, geometry shaders can 
parallelize  operations but  they will  become a  bottleneck in  the 
other case. 

Figure 8. Frame-rate of our approach on a scene with 
10,000 triangles in function of the number of views. 

 

The frame-rate for one view is less than the one for two views. 
This  is  because  our  algorithm apply  some  operations  that  are 
useful for multi-view rendering but make no sense for a single 
view.

We also wanted to compare the performances between clipping 
only in the geometry shader (GSC) and clipping in the geometry 
and fragment shaders (GFSC). Results are presented in Figure 9. 
using different number of views and triangles. 

We observe that with 10000 triangles, frame-rate applying GFSC 
is better than GSC. This difference is more important with four 
views  which  tends  to  confirm  our  analysis  of  behavior  of 
geometry shader. With 40000 triangles GSC have similar results 
than GFSC independently from the number of views. Number of 
operations in geometry shaders becomes too much important and 
leads to a bottleneck. Actually, pixel clipping takes advantage of 
the  unified  shader  architecture of  modern  GPU  that  allow  to 

reallocated a pool of processors to a specific shader which also 
explain why results are quite similar.

Figure 9. Comparison of the frame rate between a clipping 
in pixel shader stage and a clipping in geometry and pixel 

shader stages.

1.1. Gaming Scenario
We applied our approach on a real case to demonstrate that we 
can  easily  integrate  it  in  an  existing  implementation.  We used 
Nexuiz [1] which is an open-source  First  Person Shooter (FPS) 
game.

Figure 10 shows that we can obtain 34 frames per second while 
rendering four views.  Note that  in,  Figure 10,  the 2D interface 
remains of single view. 

However, the performances were not as high as expected. First, 
video games tend to reduce the number of triangles which is in 
line with the explanations of the previous sub-section.

Second, video games use data structures such as VBO to quickly 
send data to the graphic card. We explain in the following sub-
section the consequence of this.

Figure 10. Nexuiz, 4 views



OpenGL 3
At  this  time,  we  only  used  our  algorithm  with  the  OpenGL 
glVertex function to send the geometry at the graphic card. We 
tested our approach with some data structures like  Vertex Buffer  
Objects (VBO) that copy directly the data on the graphic card, but 
results of our algorithm were lower than a standard multi-view 
rendering.

In previous works of de Sorbier  et al.[8], they were using  VBO 
and  could  obtained  promising  results.  At  this  time,  they  were 
using an  nVIDIA geForce GTS 8600 graphic card with OpenGL 
2.1 which is older than ours.

Our  opinion  is  that  the  architecture  of  modern  GPU  has 
significantly  been improved and is  now dedicated to  deal  with 
new requirements of OpenGL 3. It means that our implementation 
have  to  fit  the  same  requirements  to  take  advantage  of  the 
capabilities of such a graphic card.

6. CONCLUSIONS
We  have  presented  an  algorithm  to  generate  stereoscopic  and 
multi-view  images  using  the  GPU  in  a  single  pass.  We  take 
advantage  of  the  geometry  shader  to  speed-up  the  rendering 
process  by  duplicating  the  geometry  on  the  graphic  card  and 
avoiding redundant computations.  Our algorithm overcomes the 
limitations  introduced in  previous  works,  such as  shared depth 
buffer and restrictions on the number of output-views. Moreover, 
the implementation of this approach is now simplified.

We generate all the views on a single texture which requires only 
one depth buffer. We explained the transformations applied on the 
input  triangles  to  duplicate  and  spread  them  over  the  single 
texture.  We  also  introduced  different  solutions  to  resolve  the 
clipping problems when a duplicated triangle overlaps two views. 

The  results  showed  that  performances  of  our  approach  vary 
according to the number of triangles and views. The algorithm is 
efficient when it  processes more than 1000 triangles otherwise, 
benefits  of  the  geometry  shaders  are  under-exploited.  We  also 
noticed that the frame-rate is quite similar to render two, three or 
four  views  but  decreases  while  rendering  more  views  because 
geometry shader becomes a bottleneck. But our approach always 
remains better than the standard multi-pass rendering. Results are 
two times higher or even three times for example in case of four 
views  rendering.  Finally,  we  compared  our  solutions  for  the 
clipping  problem  and  explained  that  performances  are  similar 
mainly because the unified shader architecture of modern GPU.

We presented an implementation of our approach in a game but 
performances  were  reduced  because  of  the  requirement  of 
OpenGL 3 on recent graphic cards. So, our next goal is to update 
our algorithm to be able to use data structures like VBO using the 
new design of OpenGL 3.
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Figure 11. Kyoto Golden Pavilion, 9 views. 23,400 triangles. Toon shading effect with borders emphasis.

Figure 12. Rome from City Engine (procedural.com), 12 views. 86,300 triangles. Texturing with shaders.


