
GPUBased multiview rendering
François de Sorbier

Graduate School of Science and
Technology

Keio University, Japan

fdesorbi@hvrl.ics.keio.ac.jp

Vincent Nozick
Université ParisEst

LABINFOIGM UMR CNRS 8049
France

vnozick@univmlv.fr

Hideo Saito
Graduate School of Science and

Technology
Keio University, Japan

saito@hvrl.ics.keio.ac.jp

ABSTRACT
Stereoscopic images in computer graphics applications often
require two rendering passes reducing by half the frame rate. In
this situation, the conversion from standard to stereoscopic images
may involve some difficulties to maintain real time rendering if
the geometry is made of thousands triangles. Since few years,
auto-stereoscopic displays have become more and more popular
because of their multi-user capability and because they do not
require any specific glasses. However, they usually require five or
more input views that can be difficult to generate in real time. In
this paper, we present a single pass algorithm using GPU that
speeds-up the rendering of stereoscopic and multi-view images.
The geometry is duplicated using a shader program that reduces
the data transfer between the main memory and the graphic card.
It also brings together the computation of some vertices's
properties that are similar from one view to another.

Keywords
multi-view, auto-stereoscopy, stereoscopy, real-time, GPU

1. INTRODUCTION
Stereoscopy is a technique that enables to watch three-
dimensional images on 2D display thanks, most of the time, to
specific glasses. It has many applications in various fields such as
data visualization, virtual reality or entertainment because it tends
to reproduce our visual perception and makes information easier
to understand. In computer graphics, stereoscopic rendering
consists in generating two images of a virtual environment from
two slightly different viewpoints. In other words, it requires to
render the geometry of the scene twice which can double the
computational time. In such case, it can be difficult to maintain
real-time rendering especially for applications like video-games
that are complex in term of geometry and visual effects.

Auto-stereoscopy is a technology recently applied to LCD
displays [2] that introduces the ability for one or several users to
watch stereoscopic images without wearing any glasses.
Depending on their characteristics, auto-stereoscopic displays
require from 5 to 64 images [9] to display a single 3D frame. A
filter, made of small lenses, is overlaid on the surface of the
screen and ensures to emit each image in a specific direction. So,
if the user is well located in front of the display, each eye can see
a single specific image.

However, the important number of required input images makes it
more difficult to maintain real-time rendering compared to a
single view rendering. We can state two facts in term of time for
standard multi-view rendering. Firstly, data transfer from main

memory to the graphic card is costly. Secondly, some operations
on vertices remain the same from one view to another which mean
there are redundant computations. Global transformations, parts of
illumination calculation and texturing are identical for example.

GPU programming is now very popular because it can speed-up
many algorithms thanks to an efficient parallelized architecture.
Recently, shaders have been updated with a new feature named
geometry shader (GS) that takes place between vertex shader and
rasterization stages [5]. Geometry shader introduces the
possibility to manipulate vertices of input primitives like points,
lines or triangles before emitting the result to the rasterization and
clipping stages. It becomes also possible to create new primitives
during this stage.

The goal of our approach is to exploit geometry shader to speed-
up the rendering process of stereoscopic or multi-view images.
The ability of geometry shaders to duplicate input primitives
allows rendering in a single pass. Multiple sending of the
geometry to the graphic card are reduced to a single transfer.
Moreover extra computation due to redundant operations is
avoided since our algorithm take place after the vertex shader
stage.

This paper is structured as follows. We start giving an overview of
related and previous works, and then we present a description of
our algorithm. In the next section we give details about the
implementation of our algorithm with shader codes. Finally, we
present and discuss the results of our approach.

2. PREVIOUS WORKS
Several methods have been proposed to overcome the multi-pass
rendering limitation for multi-view rendering of 3D information.
A point-based rendering solution was proposed by Hubner et
al. [4] using GPU to compute multi-view splatting, parameterized
splat intersections and per-pixel ray-disk intersections in a single-
pass. This method reaches 10 fps for 137k points in a 8-view
configuration. To increase multi-view rendering performance,
Hubner and Pajarola [3] present a direct volume rendering method
based on 3D textures with GPU computations to generate multiple
views in a single pass. These two solutions significantly decrease
the computation time but are not suited for polygon based
graphics.

An alternative solution has been proposed by Morvan et al. [6] a
single 2D image plus a depth map that are interrelated to display
multiple views. Although the algorithm reduces the bandwidth of
data emitted to the system, it does an assessment over available
data to fill the area's missing information of the new views and
then reduces the content's truthfulness.

In 2008, de Sorbier et al. [7,8] introduced a new single pass
algorithm to render stereoscopic and multi-view images using the
GPU. This approach is based on a geometry shader
implementation and uses multiple rendering target extension
(MRT) associated with frame-buffer object (FBO) to save results
in distinct textures. Results show that, in some cases, the frame-
rate can be twice faster than a multi-pass technique. However,
MRT is limited to a single depth buffer shared by all the rendering
targets. This restriction is minimized by sorting the triangles in a
back to front order that increases computation time. Moreover,
hardware constraints limit the number of output textures to eight
while some auto-stereoscopic devices require nine viewpoints or
more. Finally, it is difficult to integrate this algorithm in an
existing application because existing shaders have to be rewritten.

3. ALGORITHM OVERVIEW
Advantages of Shaders
In standard OpenGL implementation, geometry is described as a
set of vertices that have to be sent from main memory to the
graphic card for each rendering pass. Moreover, there are several
function calls and OpenGL state modifications that can affect the
frame rate. Obviously, these operations decrease the performance
in case of stereoscopic or multi-view rendering because it needs a
rendering pass for each view.

By studying the concept of multi-view rendering [2], we can state
that some characteristics remain the same from one view to
another. Position of vertices is unchanged in the referential of the
scene meaning that a transformation matrix is shared over the
viewpoints. Likewise, texture coordinates, light vector and normal
of a vertex are identical. So, each characteristic independent of the
viewpoint might be computed once to increase the performances.
Then, each vertex should be duplicated according to a given
viewpoint.

In that sense, shaders provide useful functionalities to merge some
operations and duplicate only what is necessary. A vertex shader
is designed to apply several independent processing on each
vertex while a geometry shader is dedicated to handle primitives.
In particular, this GPU stage allows creating or removing vertices,
to emit new primitives and to apply transformations and takes
place just after the vertex shader.

Single Texture Based Approach
Previous work [8] on GPU-based multi-view rendering
demonstrates that it is possible to considerably speed-up the
process. However, the algorithm is difficult to use because of
constraints like the lack of an efficient depth test or the use of
multiple textures during the rendering stage.

Our approach takes advantage of a single texture to make possible
the use of the depth buffer. The goal is to generate all the views
and to render it at the correct position. Moreover, with only one
texture we can significantly increase the number of views that was
previously reduced at eight for a single rendering pass because of
hardware limitations. Obviously, it means that the size of the
texture is proportional to the number of views and the size of the
original view.

In our case, the different views are organized over the whole

texture in sub-areas. Each of them has a resolution of ()hw, . For

example, six views will spread over six sub-areas ()ji,SA

where 20 <i≤ and 10 <j≤ and the texture resolution is

()hw, ×× 23 . Furthermore, clipping stage takes place after the

geometry shader. According to these facts, we have to consider
transformations to correctly project the geometry in the texture
and apply one more step to refine clipping.

Geometry Transformation
Input triangles of the geometry shader are projected on an area
that covers the whole texture. So we have to apply operations on
these triangles in order to transform them to fit the bottom-left
sub-area of the texture. Then, triangles are duplicated and moved
over their assigned sub-area.

Since all the input views share a common image plan, the
transformation on triangles is a 2D operation composed of a
scaling S and a translation T that have to be applied after the

projection P of vertices. If the distribution of the views on the

texture is defined as y)NV(x, , then we define S as

()yx,=S NV/1 . Since the projection is normalized, we

defined T as:

),(/11 yxNVT +−=

Figure 1. Description of the transformations required to
duplicate the geometry using a single texture.

To send a duplicated triangle in a specific sub-area ()ji,SA , we

apply one more translation T' defined as:

() () ()ji,ji,=ji,T' ×× 2NV/1

The full process is depicted in Figure 1.

The result of these transformations is that there is no difference
between the views in each sub-areas. So, we need to apply one
more operation to take into account the perspective
transformation. For multi-view rendering, the only required
parameter is the eye separation Δ that defines the distance
between two adjacent viewpoints. Since projection volumes are
unchanged and view directions are parallels, we define the

stereoscopic transformation as a translation sT perpendicular to

the view direction. sT can be applied after using matrix M that

transforms each vertex into camera space. It means that the

translation is () ()()0,0,nbvj+iΔ=ji,Ts ×× where nbv is

the number of sub-area in a row.

Geometry transformation can be summed up as:

() () ()()VertexM+ji,TP'+ji,T'=ji, s ××SAVertex

(Equation 1.)

with P'=T×S×P

Clipping
Using a single texture means that the clipping will be applied on
the border of the texture and not on each sub-area borders.
Geometry transformation described in previous sub-section, will
uncover new triangles in incorrect sub-area that will not disappear
after clipping (Figure 2).

Figure 2. Description of clipping constraints when the
different views are shared on a single texture.

To partially or completely hide incorrect triangles, we need to
apply our own clipping. It exists three options: do the clipping in
the geometry shader, in the fragment shader or in both.

In the geometry shader, triangles outside or intersecting a border
of a sub-area are detected using the Cohen-Sutherland method.
Then the triangle is emitted, discarded or clipped depending on
the result. However, the clipping requires to compute intersections
with the border and, if necessary, to create new triangles.

In the fragment shader, fragments that are outside of their sub-
areas are discarded. However, it requires testing a large number of
fragments.

The third solution is to clip triangles using both shaders. The
geometry shader detects and discards triangles that are outside of
the sub-area. Then the number of fragments to test in fragment
shader is reduced.

Advantages and limits of each approach are compared in the
discussion section.

4. IMPLEMENTATION
This section describes the implementation of our algorithm using
OpenGL 2.1 and GLSL 1.2. The result of our method is saved in a
texture using the Frame Buffer Object extension.

The Vertex Shader
The goal of the vertex shader is to centralize the common
operations from one view to another one. Equation 1 shows that
the transformation matrix M (MODELVIEW matrix) is similar
for each vertex. So each vertex can be multiplied with that matrix
during the vertex shader stage.

#version 120

void main(void){

gl_Position = gl_ModelViewMatrix * gl_Vertex;

}

Figure 3. One possible code for the vertex shader

Other parameters can be computed in vertex shader like texture
coordinates, light vectors depending of the normal, color of
vertices.

The Geometry Shader
#version 120

#extension GL_EXT_geometry_shader4 : enable

flat varying ivec2 subarea; // Coordinates of a sub-area
uniform vec2 screensplit; // Subareas distribution on texture
uniform int numberofviews;
uniform float eyesep; // Eye separation

void main(void){
 vec2 T = -1.0+1.0/screensplit;
 mat4x4 TSP = mat4x4(1.0/screensplit.x,0.0,0.0,0.0,
 0.0,1.0/screensplit.y,0.0,0.0,
 0.0,0.0,1.0,0.0,
 T.x,T.y, 0.0,1.0)*gl_ProjectionMatrix;
 float start = -float(numberofviews*0.5)*eyesep;
 if(mod(numberofviews,2)==0) start += eyesep*0.5;
 for(int current=0;current<numberofviews;++current){
 subarea.y = int(floor(current/screensplit.x));
 subarea.x = current%int(screensplit.x);
 for(int i = 0 ; i < 3; ++i){ // for each point of the triangle
 vec4 tmp = TSP*(gl_PositionIn[i]+vec4(start,vec3(0.0));
 gl_Position = tmp;
 gl_Position.xy += subarea/screensplit*tmp.w*2.0;
 EmitVertex();
 }
 EndPrimitive();
 start += eyesep;
 }
}

Figure 4. One possible code for the geometry shader

In the geometry shader, we apply the transformations presented in
the previous section. For each sub-area, vertices of the input
triangles are duplicated and translated according to the
corresponding viewpoint. The result is multiplied with the
OpenGL projection matrix, translated, and scaled to fit the sub-
areas. All this operations must in homogeneous coordinates to
correspond with OpenGL matrix.

We add an extra variable subarea that is used to associate a
triangle with its sub area coordinates. This is useful to easily
identify a fragment in the fragment shader step and be able to
compute the clipping.

The code in Figure 4 presents our approach with the clipping
performed only in the fragment shader. The clipping based on
geometry and fragment shaders needs only few changes. It checks
if triangles are completely outside the sub-area boundaries
whether or not. The test is done by computing the position of each
vertex when they are transformed into sub-area ()0,0SA . If at

least one vertex is in this sub-area then we continue the process
else we discard the triangle. It slightly reduces operations in
geometry shader and the number of emitted fragments.

We will omit the implementation details of the clipping with
geometry shaders, since performances of this approach are quite
bad compared to the two others.

The Fragment Shader
The traditional fragment shader is increased by a single test for
clipping. Each fragment is associated with its target sub-area
thanks to the variable subarea. With this information and the size
of a sub-area, it is possible to know if the fragment has to be
discarded or not.

#version 120

uniform ivec2 subareasize;

flat varying ivec2 subarea;

void main(void){
 ivec2 coord = ivec2(gl_FragCoord.xy) – subarea *
subareasize;

 if(coord.x > screensize.x || coord.y > screensize.y ||

 coord.x < 0 || coord.y < 0){
 discard;
 }else

gl_FragColor = vec4(1.0,0.0,0.0,1.0);
 }
}

Figure 5. One possible code for the pixel shader

If the fragment is kept then any kind of operation can be applied
on it like illumination per pixel (Figure 6, Figure 11, Figure 12),
texturing. So there are only few modifications in the fragment
shader code.

Figure 6. Himeji Castle, 6 views. 35,200 triangles. Lighting
per pixel.

5. RESULTS & DISCUSSIONS
Performances Analysis
We experimented our algorithm on a bi-Xeon 2,5Ghz running
Linux. The graphic card is a nVIDIA GeForce GTX 285 with 1Go
memory. The algorithm was tested using different kind of models
with various numbers of triangles and graphical effects. The
resolution of each view is 7681024× . No special data
structure like VBO was used.

Figure 7. Performances of our approach compared to the
standard one. Tests are applied with various numbers of

views and triangles.

Figure 7 presents the performances obtained using our approach
compared to the standard multi-pass rendering. We evaluate the

results over different number of triangles and views. If the scene
is made of one thousand triangles then we notice that
performances of our algorithm are similar or, in case of two
views, slightly worst compare to the normal one.

In all other analyzed conditions, performances of our multi-view
rendering are around twice better than the standard multi-view
rendering. Rendering with four view-points shows that our results
can be three time better for more than 5000 triangles. Especially
in this case, the differences between two and four views are small.

Performances are closely dependent of the number of input
primitives. For low number of triangles, our approach is less
effective than the standard one because the number of OpenGL
drawing calls does not exceed the transfer capabilities from the
main memory to the graphic card.

Results are similar for two and four views. So, in Figure 8, we
analyze our rendering algorithm with 1 to 17 view-points and
10000 triangles. In the first fourth cases, performances are quite
similar then after, an important drop in frame-rate occurs until 13
view-points. Finally, performances seem to become stable again.
We think that under a given amount of data, geometry shaders can
parallelize operations but they will become a bottleneck in the
other case.

Figure 8. Frame-rate of our approach on a scene with
10,000 triangles in function of the number of views.

The frame-rate for one view is less than the one for two views.
This is because our algorithm apply some operations that are
useful for multi-view rendering but make no sense for a single
view.

We also wanted to compare the performances between clipping
only in the geometry shader (GSC) and clipping in the geometry
and fragment shaders (GFSC). Results are presented in Figure 9.
using different number of views and triangles.

We observe that with 10000 triangles, frame-rate applying GFSC
is better than GSC. This difference is more important with four
views which tends to confirm our analysis of behavior of
geometry shader. With 40000 triangles GSC have similar results
than GFSC independently from the number of views. Number of
operations in geometry shaders becomes too much important and
leads to a bottleneck. Actually, pixel clipping takes advantage of
the unified shader architecture of modern GPU that allow to

reallocated a pool of processors to a specific shader which also
explain why results are quite similar.

Figure 9. Comparison of the frame rate between a clipping
in pixel shader stage and a clipping in geometry and pixel

shader stages.

1.1. Gaming Scenario
We applied our approach on a real case to demonstrate that we
can easily integrate it in an existing implementation. We used
Nexuiz [1] which is an open-source First Person Shooter (FPS)
game.

Figure 10 shows that we can obtain 34 frames per second while
rendering four views. Note that in, Figure 10, the 2D interface
remains of single view.

However, the performances were not as high as expected. First,
video games tend to reduce the number of triangles which is in
line with the explanations of the previous sub-section.

Second, video games use data structures such as VBO to quickly
send data to the graphic card. We explain in the following sub-
section the consequence of this.

Figure 10. Nexuiz, 4 views

OpenGL 3
At this time, we only used our algorithm with the OpenGL
glVertex function to send the geometry at the graphic card. We
tested our approach with some data structures like Vertex Buffer
Objects (VBO) that copy directly the data on the graphic card, but
results of our algorithm were lower than a standard multi-view
rendering.

In previous works of de Sorbier et al.[8], they were using VBO
and could obtained promising results. At this time, they were
using an nVIDIA geForce GTS 8600 graphic card with OpenGL
2.1 which is older than ours.

Our opinion is that the architecture of modern GPU has
significantly been improved and is now dedicated to deal with
new requirements of OpenGL 3. It means that our implementation
have to fit the same requirements to take advantage of the
capabilities of such a graphic card.

6. CONCLUSIONS
We have presented an algorithm to generate stereoscopic and
multi-view images using the GPU in a single pass. We take
advantage of the geometry shader to speed-up the rendering
process by duplicating the geometry on the graphic card and
avoiding redundant computations. Our algorithm overcomes the
limitations introduced in previous works, such as shared depth
buffer and restrictions on the number of output-views. Moreover,
the implementation of this approach is now simplified.

We generate all the views on a single texture which requires only
one depth buffer. We explained the transformations applied on the
input triangles to duplicate and spread them over the single
texture. We also introduced different solutions to resolve the
clipping problems when a duplicated triangle overlaps two views.

The results showed that performances of our approach vary
according to the number of triangles and views. The algorithm is
efficient when it processes more than 1000 triangles otherwise,
benefits of the geometry shaders are under-exploited. We also
noticed that the frame-rate is quite similar to render two, three or
four views but decreases while rendering more views because
geometry shader becomes a bottleneck. But our approach always
remains better than the standard multi-pass rendering. Results are
two times higher or even three times for example in case of four
views rendering. Finally, we compared our solutions for the
clipping problem and explained that performances are similar
mainly because the unified shader architecture of modern GPU.

We presented an implementation of our approach in a game but
performances were reduced because of the requirement of
OpenGL 3 on recent graphic cards. So, our next goal is to update
our algorithm to be able to use data structures like VBO using the
new design of OpenGL 3.

7. ACKNOWLEDGMENTS
Part of the work presented in this paper was supported by the
FY2009 Postdoctoral Fellowship for Foreign Researchers from
the Japan Society for Promotion of Science (JSPS) and by the
National Institute of Information and Communications
Technology (NICT).

8. REFERENCES
Alientrap, Nexuiz, http://www.nexuiz.com, 2009.

Dodgson, N. A. 2005. Autostereoscopic 3d displays. Computer.
38(8):31–36.

Hubner, T. and Pajarola, R. 2007. Single-pass multi-view volume
rendering. In Proceedings of International Conference Computer
Graphics and Visualization.

Hubner, T., Zhang, Y. and R. Pajarola, R. 2006. Multi-view point
splatting. In GRAPHITE’06, 285–294.

Lichtenbelt, B. and Brown, P. 2007. EXT gpu shader4 Extensions
Specifications. NVIDIA.

Morvan, Y., Farin, D., and de With, P. H. N. 2007. Joint depth
texture bit-allocation for multi-view video compression. In Picture
Coding Symposium (PCS).

de Sorbier, F. Nozick, V. and Biri, V. 2008. Accelerated
stereoscopic rendering using gpu. In 16th International Conference
in Central Europe on Computer Graphics, Visualization and
computer Vision'2008 (WSCG'08), ISBN 978-80-86943-16-9,
February 2008.

de Sorbier, F, Nozick, V. and Biri, V. 2008. GPU rendering for
autostereoscopic displays. In 4th International symposium on 3D
Data Processing, Visualization and Transmission (3DPVT'08),
June 2008.

Takaki, Y 2006. High-density directional display for generating
natural three-dimensional images. In Proceedings of the IEEE,
volume 94, 654–663.

http://www.nexuiz.com/

Figure 11. Kyoto Golden Pavilion, 9 views. 23,400 triangles. Toon shading effect with borders emphasis.

Figure 12. Rome from City Engine (procedural.com), 12 views. 86,300 triangles. Texturing with shaders.

