
Video Retrieval based on Tracked Features Quantization

Hiroaki Kubo, Julien Pilet, Hideo Saito.

Graduate School of Science and Technology

Keio University

Tokyo Japan

khiro, julien, saito @hvrl.ics.keio.ac.jp

Shin’ichi Satoh.

National Institute of Informatics

Tokyo Japan

satoh@nii.ac.jp

Abstract—In this paper, we present an image retrieval
method based on feature tracking. Feature tracks are summa-
rized into a compact discreet value and used for video indexing
purpose. As opposed to existing space-time features, we do not
make any assumption on the motion visible on the indexed
videos. As a result, given an example query, our system is able
to retrieve related videos from a large database. We evaluated
our system with the copy detection benchmark MUSCLE-
VCD-2007. We also ran retrieval experiment on hours of TV
broadcast.

Keywords-Video retrieval, Content based retrieval, Descrip-

tor, Quantization.

I. INTRODUCTION

With the quickly growing amount of video material

available on-line, organizing and retrieving sequences is

of primary importance. The classical approach to video

retrieval is to rely on keywords. The indexed material

have to be tagged beforehand, potentially automatically [4].

However, in some cases, it can be difficult to represent with

keywords a query to a video database. Another option is to

use an example as the query, which can be more intuitive.

Some methods, given a single image as a query, efficiently

search through a large database of images to extract relevant

ones [7], [5]. These approaches detect feature points on

the images and index them using quantized descriptors.

Using such an approach to index a video sequence requires

indexing independently every frame or key-frames, which

has drawbacks. The redundancy between frames is poorly

exploited, yielding large index tables. Inspired by the success

of image retrieval techniques, we propose a video retrieval

system that quantizes tracks of features. The descriptors

along the track are summarized together into a single index

entry. Doing so has the advantage of handling properly the

redundancy between consecutive frames. It can also easily

exploit a video sequence as a query, even in the case of a

static scene filmed by different cameras.

To index a sequence based on a feature tracked over

multiple frames, we rely on a method that follows two steps

of quantization [6]. First, a pre-built k-mean tree quantizes

the descriptors at a frame level. They are then grouped along

their tracks into histograms. These histograms, in turn, are

quantized to capture the different appearances the point can

take.

Capturing trajectories of image features is an efficient

approach to video copy detection [2], [9] and to action recog-

nition [8]. However, these methods fail to handle cases in

which the same scene is shot by different cameras, following

separate paths. Our approach aims at describing a single

physical point visible on several frames, by summarizing all

the available descriptors into a single one. Relying on such

a feature track representation is a new approach to recognize

and measure similarities of video. As a result, our method

can retrieve videos of a static or dynamic scene shot from

different viewpoints.

The rest of the paper is organized as follow. We first give

a brief overview of the way to quantize tracks [6]. Section III

presents the new representation of videos. We present video

retrieval results in Section IV.

II. CHARACTERIZING TRACKS OF FEATURES

This section summarizes a technique to describe tracks

of features [6]. We rely on the well known Scale Invariant

Feature Transform (SIFT [3]) to obtain local features and

their corresponding 128 dimensions descriptors. Our method

quantizes the descriptors using a K-mean tree, as suggested

by [5]. The K-mean tree is built by recursively clustering

sample descriptors acquired during a first training phase.

Our tree has at most 4 branches at every node and has about

leafs. This approach reduces the feature description

to a single discreet value.

SIFT features are then matched from frame to frame,

using simple normalized cross-correlation (Fig.1a). The re-

sult is a set of stable tracks of features forming a sequence

of K-mean tree leafs. Counting the number of occurrences

of each leaf in the sequence produces a sparse vector of

roughly dimensions, most of which being zero. This

vector, or histogram, is an estimation of the distribution of

the descriptors caused by the underlying real physical point.

It takes into account the instability of the feature detector.

Such a vector is depicted by Fig. 1(b), under the tree, using

gray levels to represent its values.

During a second training phase, we collect many of these

histograms and cluster them using agglomerative clustering.

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.794

3240

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.794

3252

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.794

3248

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.794

3248

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.794

3248

Figure 1. Structure of our method. (a) Keypoints are tracked from frame to frame. Descriptors are extracted at each frame. (b) The descriptors are
quantized using a k-mean tree. The descriptors of a track distributes on the tree’s leafs, forming an histogram. This histogram is in turn vector quantized
with the pre-computed prototypes called A,B,C, and D on this figure. In this example, the track’s histogram resembles B. (c) Following a similar process,
each track of the video is assigned to a prototype. The vector counting the number of occurrences for each prototype describes the video sequence. (d)
During retrieval, our system compares this description with the ones of the indexed videos.

About representative prototypes remain. At runtime,

the system determines which prototype best matches the

observed tracks. Each track can then be described by a stable

discreet value we call Feature Track ID (FTID). Fig. 1(c)

denotes FTIDs with A,B,C, and D.

III. VIDEO REPRESENTATION

In this section, we describe how to represent, index,

and retrieve videos using the previously presented FTID.

Basically, FTIDs are used as words in a bag of word model.

Given a video sequence , our system extracts a number

of feature tracks and assigns FTIDs to them. Let denote

the number of occurrences of FTID in the sequence .

Our system then normalizes the histogram:

(1)

In other words, we calculate Feature Track ID for all

tracks in the video and count them to make an histogram. At

the end of the sequence, the histogram is normalized with

its maximum value. We then set a threshold to eliminate too

small bins to represent videos. In our case, the threshold is

set to , to ignore bins which did not reach 10% of

the largest one.

The indexing process corresponds to compute Eq. 1 for

each video. For retrieval, the query video is compared to

index sequences using cosine similarity. For the particular

video , the similarity is:

(2)

Where and are the FTID histogram of video Q and

X. Computing the similarity for all indexed videos can be

achieved quickly using inverted tables. For each FTID , a

table lists the indexed movies in which the bin is greater

than . By considering only the movies listed in tables

corresponding the non-zero dimensions of the query , the

system has to process only a limited number of sequences.

IV. EXPERIMENTS

Here we describe the two experiments we conducted to

evaluate our system. Because no common video retrieval

benchmark exists, we tested our system’s ability to achieve

copy detection.

We tested our system with the benchmark of MUSCLE-

VCD-2007 [1]. Although our method is not designed for

copy detection, our system achieves over 70 percent of

correctness.

To test the video retrieval capabilities of our method, we

indexed about three video database and ran queries on it.

The results of video retrieval are shown in Fig:2.

A. Copy Detection

The copy detection task consists in determining whether

or not the query video has been copied in one of the

101 indexed videos, and if yes, which in which one. The

benchmark contains 15 query videos which either do not

contain any common part with the database, or contains

modified portions of it.

To index the 101 movies, we first divide them into short

shots by comparing the color histogram and number of

tracked points between consecutive frames. We also split

the query sequence with the same method. Using Eq.2, each

shot finds the best matching one in the database and votes

for the corresponding movie. We also average similarity best

scores to obtain a movie level score. Thresholding it at

tells whether the query is copied in the database or not.

Table I shows the retrieval scores. Our method achieves a

classification score of 73 percent. Most of the computation

time is spent extracting SIFT features. Our method failed to

handle mirroring and flipping effects, since the SIFT descrip-

tor is not designed for invariance to such transformations.

32413253324932493249

(a)

2000 Frames 2000 Frames 2000 Frames 2000 Frames 2000 Frames

(b)

10460 Frames 88828 Frames 134374 Frames 88841 Frames 63888 Frames

(c)

8723 Frames 139152 Frames 163154 Frames 139152 Frames 88592 Frames

(d)

3826 Frames 3826 Frames 3751 Frames 3884 Frames 31501 Frames

(e)

19027 Frames 16146 Frames 19242 Frames 21477 Frames 12609 Frames

(f)

19829 Frames 20333 Frames 18734 Frames 18096 Frames 19818 Frames

Figure 2. Video Retrieval Results. Videos are represented in this figure by manually selected frame. The leftmost image of each row is the query video.
The few first results appear on its right, in the retrieval order. (a) The system retrieves shots of a TV show, from a 3 hours TV recording. (b) The system
retrieves scenes with a few people from the MUSCLE-VCD-2007 database (about 100 hours). (c) Our system retrieves several videos of Ronald Mac
Donald from a database of 80 shorts movies downloaded on the internet (total: 6 hours). (d) Our method finds modified versions of a cartoon from the
same database. (e) and (f) The system retrieves some gameplay videos of same series.

Score Search Time

Best Run(IBM-1) 0.83 44min

Average 0.7 54min

Our method 0.73 80min

Table I
RETRIEVAL SCORE AND TIME

B. Video Retrieval

We show some video retrieval results calculated by our

method in Fig2.

In our first experiment, we recorded 3 hours of TV

programs, including news, variety, and commercials. We

split the video in parts of frames and handle them

independently. Fig. 2(a) depicts an example query selected

among the 3 hours recording. The query shot is part of a

variety show. The system retrieves other parts of the same

show. In this example, many feature track could be matched

on the background.

We also conducted a retrieval experiment using the

MUSCLE-VCD-2007 as a database. As opposed to the copy

32423254325032503250

detection experiment, we used each video directly with the

similarity score of Eq. 2. We use a copy detection query

which does not have ground truth in database. Because of

the variety of MUSCLE-VCD-2007 database, the contents

of results are independent, but these videos have similar

portions which we show in Fig2(b).

In addition, we tested our method on 6 hours of video

we downloaded from Nico-Nico Douga. The database has

80 sequences, some of which showing modified versions of

others. Several video might also share the same subject. In

both case, our method succeeded in retrieving the related

videos. As shown by Fig. 2(c), different sequences showing

the same clown could be retrieved, despite changes in scene,

background, and actions. In the example of Fig. 2(d), several

cartoon videos share a similar background. Our method

successfully retrieved all the related videos, in spite of

modified frame contents, newly added characters, and other

changes. In the example of Fig. 2(e) and (f), our method

retrieved some gameplay videos of same series.

V. DISCUSSION AND CONCLUSIONS

We presented a representation of videos using FTID-

histogram which is able to capture the instability of feature

points. By efficiently quantizing feature track information,

our approach can represent videos in an efficient and com-

pact manner. Because of FTID’s robustness to keypoint’s

instability, our approach can extract discriminative features

from videos. In addition, as depicted by Fig. 2, our method

can handle severe transformations of videos.

Our method, as most feature-based image retrieval ap-

proaches, ignores the spatial relationship of features in

the similarity score, thereby decreasing the quality of the

retrieved results. In future work, we consider to use the

relative locations of features to improve retrieval.

REFERENCES

[1] N. B. J. Law-To, A. Joly. Muscle-vcd-2007: a live
benchmark for video copy detection, 2007. http://www-
rocq.inria.fr/imedia/civr-bench/.

[2] J. Law-To, O. Buisson, V. Gouet-Brunet, and N. Boujemaa.
Robust voting algorithm based on labels of behavior for video
copy detection. In Proceedings of the 14th annual ACM
international conference on Multimedia, page 844. ACM,
2006.

[3] D. Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–
110, 2004.

[4] R. Morzinger, R. Sorschag, G. Thallinger, and S. Lindstaedt.
Automatic image annotation using visual content and folk-
sonomies. In Proceedings of the Metadata Mining for Image
Understanding Workshop at VISAPP2008, Funchal, Madeira,
Portugal, 2008.

[5] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In Computer Vision and Pattern Recognition,
2006.

[6] J. Pilet and H.Saito. Virtually augmenting hundreds of
real pictures: An approach based on learning, retrieval, and
tracking. In IEEE Virtual Reality, Boston, MA, March 2010.

[7] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proc. ICCV,
volume 2, pages 1470–1477. Citeseer, 2003.

[8] J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li.
Hierarchical spatio-temporal context modeling for action
recognition. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2009.

[9] X. Wu, Y. Zhang, Y. Wu, J. Guo, and J. Li. Invariant visual
patterns for video copy detection. In Proceedings of the IEEE
International Conference on Pattern Recognition, pages 1–4,
2008.

32433255325132513251

