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Abstract

For the 3D modeling of walking humans the determi-
nation of body pose and extraction of body parts, from
the sensed 3D range data, are challenging image pro-
cessing problems. Real body data may have holes be-
cause of self-occlusions and grazing angle views. Most
of the existing modeling methods rely on direct fitting
a 3D model into the data without considering the fact
that the parts in an image are indeed the human body
parts. In this paper, we present a method for 3D hu-
man body modeling using range data that attempts to
overcome these problems. In our approach the entire
human body is first decomposed into major body parts
by a parts-based image segmentation method, and then
a kinematics model is fitted to the segmented body parts
in an optimized manner. The fitted model is adjusted by
the iterative closest point (ICP) algorithm to resolve the
gaps in the body data. Experimental results and com-
parisons demonstrate the effectiveness of our approach.

1. Introduction

Precise estimation of 3D body parts of articulated

human body and its pose from range data captured

by either a multi-camera video system or a projector-

camera range system is a challenging problem. Kine-

matic model of an articulated structure has been used

for modeling of human body extensively in security and

healthcare applications.

Kehl and Gool [1] presented a method for marker-

less tracking of full body pose from five camera views.

The system performs volumetric reconstruction using

edges and color information. The articulated model

built from super ellipsoids is matched against the image

edges and color to overcome ambiguous situations such

as touching limbs or strong occlusion. Caillette et al.

[2] presented a full body tracker based on Monte-Carlo

Bayesian framework. The volumetric reconstruction

method follows shape-from-silhouette paradigm from

four cameras. The appearance model represented by

Gaussian blobs is fitted onto voxels using the K-means

algorithm. The voxels are assigned to the nearest blob

using Mahalanobis distances between blobs and voxels

using both color and position. Horaud et al. [3] intro-

duced a new metric to register a model surface to body

data. The model surface of ellipsoids are used to repre-

sent body parts, and the body data recovered by six cam-

eras include point and normal vectors. The metric is de-

fined by the Euclidean distance from the ellipsoid-point

to the data-point under the constraint that the ellipsoid-

normal and the data-normal are parallel.

All the above methods are based on minimizing the

distance between the data and the model. The first dif-

ficulty with these methods is that a body model is di-

rectly fitted to the entire body data. We advocate that

segmentation of human body provides a priori knowl-

edge that can improve model fitting [4]. It is preferable

to fit a model for a body part to the data from the cor-

responding body part. The second difficulty is to deal

with the effect of holes caused by self-occlusions and

grazing angle views. A common approach to overcome

the holes is to fill them with a surface patch [5]. How-

ever, this produces undesirable bridges between the two

legs and in the areas near and under the arms.

In this paper we present a new 3D human body mod-

eling technique that uses 3D range data and addresses

the above problems. The entire human body is decom-

posed into six regions by a parts-based segmentation ap-

proach that exploits a priori information and avoids the

effect of holes. The kinematic model is fitted into the

segmented body parts, and then the fitted model is re-

fined by the iterative closest point (ICP) algorithm. Our

approach provides a high degree of accuracy compared

to the conventional direct fitting approach.

The contributions of this paper are: (a) Parts-based
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segmentation that incorporates a priori knowledge and

overcomes the problems caused by the holes. (b) Un-

like direct model fitting a two-step linear and non-linear

registration approach for fitting models to 3D data body

parts. (c) Modeling results are shown using 3D real

range image data acquired from a range camera projec-

tion system.

2. Technical Approach

Fig. 1 shows the block diagram of the proposed ap-

proach. We first measure 3D human body data by a

range-based projector-camera system with human in the

standing or walking postures. Following these data col-

lection we separate the human body data into six re-

gions, and then 3D human body model is fitted to the

segmented body parts in a top-down hierarchy from

head to legs. The body model is refined by the ICP

algorithm during the optimization process.

Figure 1. Block diagram of our approach.

2.1. Segmentation of Range Data into Body
Parts

The human body data are segmented into six regions:

head/ neck, torso, right arm, left arm, right leg, and left

leg. It can be written as x0 = {x1, x2, x3, x4, x5, x6}.
The subscript, reg, indicates the region number. Fig. 2

shows body axes, three segments, and six major regions

which include a total of twelve body parts. Here, r. and

l. indicate right and left, u. and l. indicate upper and

lower (e.g. r. l. arm is right lower arm). In the following

we present a fully automatic parts-based segmentation

method.

Body Axes: The principal component analysis is ap-

plied to determine the coronal axis (X-axis), vertical

axis (Y -axis), sagittal axis (Z-axis), and centroid (O)

of a human body in the world coordinate system (O-X-

Y -Z). Here, the 3D point, x on the surface of a human

body, is denoted by [x, y, z], the 3D point, y, in the cen-

ter of the cross-section is denoted by [x′, y′, z′], and the

3D point, z, on the contour of the cross-section is de-

noted by [x′′, y′′, z′′].
Decomposition of Human Body: We divide body data

into three segments: upper, middle, and lower using the

cross-sectional areas along Y -axis. The upper segment

in height larger than m includes head and heck, the mid-

dle segment in height between m and n includes torso

(a) (b) (c)

Figure 2. Segmentation of human body.
(a) Body axes. (b) Three segments/levels.
(c) Twelve body parts.

and arms, and the lower segment in height smaller than

n includes legs. The cross-sectional area in height of

the centroid, g, is denoted by sg and the cross-sectional

areas in height m, n are denoted by sm, sn are given by

sm = ξ1sg , sn = ξ2sg . Here, ξ1, ξ2 are height param-

eters. They are estimated by searching for the similar

values in a vertical direction. Therefore, the body data

is separated into the three segments.

Head and Neck: The upper segment includes only

head and neck, x1, in our database. If a subject gets

her/his hands higher than the middle segment, the upper

segment includes 3D points of arms. In such cases, they

are removed by specifying the appropriate range. The

discriminant function which separates head and neck is

given by

p(x1|x ∈ upper segment(x)) =

sgn
{
(1 + ζ1)

‖z− y‖
‖x− y‖ − 1

}− 1 (1)

where ζ1 is a height parameter. If the function pro-

vides zero value, x is assigned to x1.

Torso and Arms: The middle segment includes torso,

x2, right arm, x3, and left arm, x4. Modeling meth-

ods which restrict a subject’s pose with the arms held

obliquely upward or downward often fail when applied

to the subject whose arms are close to torso. There-

fore, we divide the middle segment by using the cross-

sections. The discriminant function which separates

torso and two arms is given by

p(x2, x3, x4|x ∈ middle segment(x)) =

(x− x′)
{

sgn
{
(1 + ζ2)

‖z− y‖
‖x− y‖ − 1

}− 1
}

(2)

where ζ2 is a height parameter. The output zero, pos-

itive, and negative value assign x to x2, x3, x4 respec-

tively.

Legs: The lower segment includes right leg, x5, and left

leg, x6. Both legs are distributed separately when they
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are projected to the X-Z plane. So, we can separate

them by using the 2D coordinates [x, z] in the K-means

clustering algorithm. First, two initial cluster centers

are computed from x minimum and maximum values. It

proceeds to classify all the 3D points in this segment ac-

cording to the nearest center, and then recomputing the

two centers. The algorithm iterates this procedure un-

til convergence. The discriminant function which sepa-

rates the two legs is given by

p(x5, x6|x ∈ lower segment(x)) =

sgn
{‖x− μ2‖
‖x− μ1‖

− 1
}

with y = 0 (3)

where μ1, μ2 are the arithmetic means of 3D points

corresponding to the right leg and the left leg. They are

computed by the 2D coordinates in right leg and left leg

cluster, respectively. If the function provides a positive

value, x is assigned to x5, and if the function provides a

negative value, x is assigned to x6.

2.2. Model Fitting and Optimization

Kinematic Model: We use a kinematic model which

represents the articulated structure of the human body

as shown in Fig. 3. Our simplified 3D skeleton model

consists of 12 body parts and 11 joints with a total of 40

degrees of freedoms, where a 6D vector, p, represents

the global position and rotation, a 22D vector, q, rep-

resents the joint angles, and a 12D vector, r, represents

the lengths of the body parts.

The body part, i, shares a parent node based on a

kinematic tree. It is transformed by two angles, [θi
x, θi

z],
and one length, li, in the local coordinate system (Oi-

Xi-Yi-Zi). Here, we define the neck such that it does

not have the rotational joint; it is a fixed body part. The

kinematic model is approximated by a set of tapered

cylinders to express human shape variations among the

subjects.

Model Fitting: The segmentation is useful for coarse

registration, because it is unreasonable to fit a kine-

matic model to articulated objects without any previous

knowledge. The previous knowledge allows an auto-

matic model fitting and a reduction in the computational

cost. Therefore, we will fit the model to body data by

using the segmented regions.

The distance between 3D data of a segmented region,

xreg,j , and 3D model of the tapered cylinder, yi,j , is

linearly minimized as

dc =
1
M

M∑
j=1

‖ xreg,j − Ryi,j ‖ (4)

(a) (b)

Figure 3. Kinematic model. (a) Body
model approximated by 12 tapered cylin-
ders. (b) Hierarchical structure.

where R is 3×3 rotation matrix including two an-

gles θi
x, θi

z and M is the number of points of the seg-

mented region. The tapered cylinders can be fitted by

determining two angles and one length in the order of

levels 1, 2, 3 of the hierarchical structure. With regard

to the head and neck, the parameters are estimated from

the distribution of 3D points in the X-Y plane and Y -

Z plane, respectively because the data of head hair and

lower head region cannot be captured.

Optimization: The Interactive Closest Point (ICP) al-

gorithm provides fine registration by minimizing the

distance between the body data and kinematic model

[6]. The key steps in the algorithm are (a) Uniform sam-

pling of points on both shapes. (b) Matching each se-

lected point to the closest sample in the other shape. (c)

Uniform weighting of point pairs. (d) Rejecting pairs

with distances lager than some multiple of the standard

deviation. (e) Point-to-point error metric. (f) Standard

select-match-minimizes iteration.

The distance between 3D data of the entire body,

x0,j , and 3D model of the tapered cylinder, zi,j , to be

iteratively minimized is

df =
1
N

N∑
j=1

‖ x0,j − Rzi,j ‖ (5)

where R is 3×3 rotation matrix including two angles

θi
x, θi

z and N is the number of corresponding points.

The tapered cylinders are adjusted by changing the two

angles in the order of the levels 1, 2, 3 of the hierarchical

structure.

3. Experimental Results

Data and Parameters: The body data of three subjects

are captured by the range projector-camera system [7].

The system, consisting of nine projector-camera pairs,

captures range data of the entire body in ∼2 seconds

with 640 × 480 pixels images, 3 mm depth resolution,
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Figure 4. Fitted kinematic models by proposed approach.

Table 1. Performance comparison of two fitting approaches with/without segmentation in parts
of the body.

Parts# 1 3 4 5 6 7 8 9 10 11 12

Direct fitting approach [mm] 25.9 47.3 30.4 32.1 17.1 17.1 20.3 14.9 25.4 20.0 32.1
Proposed approach [mm] 24.8 46.8 28.9 23.6 16.5 17.6 20.2 14.9 19.7 15.1 37.3

and the measurement accuracy within 2 mm. The num-

bers of measurement points are approximately 1/2 to

one million. For all of experiments in this paper we

used ξ1 = 0.25, ξ2 = 0.5, and ζ1 = 1.0. The value of

ζ2 is from 0.13 to 0.14 depending on the subject and the

pose.

Results: Fig. 4 shows the results of human body mod-

eling by the proposed two-step fitting using parts-based

segmentation. From left to right, the first figure shows

the body data in the standing posture. The numbers of

measurement points is approximately one million. The

second figure shows the segmented body parts. The col-

ored regions correspond to torso, head/neck, right arm,

left arm, right leg, and left leg. The segmentation facili-

tates model fitting and reduce the computational cost.

The third figure shows the kinematic model and the

fourth figure shows the kinematic model superimposed

on the body data. The fitted model provides joint angles

and lengths of body parts. The fifth figure shows the

fitted model rotating about X-axis, Y -axis, and Z-axis,

at every 30 degrees.

Comparisons: Table 1 is the results of comparison of

the two approaches. The fitting error is defined as the

Euclidian distance between the data and the model. We

observe that our approach achieves better performance

than the direct fitting approach, especially for the five

body parts, i.e. upper torso (#1), right upper arm (#4),

right lower arm (#5), right lower leg (#10), left upper

leg (#11) the results are significantly improved. The av-

erage error for direct fitting and the proposed approach

for all the body parts are 25.7mm and 24.1mm, respec-

tively. The experiments clearly demonstrate the effec-

tiveness of the proposed technique and the value of im-

age segmentation.

4. Conclusions

We proposed a method for 3D human body model-

ing using parts-based segmentation. The segmentation

exploits the previous knowledge and avoids the effect

of the holes in the data. In our approach, the body data

is decomposed into six regions, and then the kinematic

model is fitted to the segmented body parts. The fitted

model is refined by the ICP algorithm outwardly from

the center of a human body. Through rigorous exper-

iments we verified that our approach is better than the

direct fitting approach.
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