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Abstract—Stereoscopic displays are becoming very popular
since more and more contents are now available. As an ex-
tension, auto-stereoscopic screens allow several users to watch
stereoscopic images without wearing any glasses. For the moment,
synthetized content are the easiest solutions to provide, in real-

time, all the multiple input images required by such kind of
technology. However, live videos are a very important issue
in some fields like augmented reality applications, but remain
difficult to be applied on auto-stereoscopic displays. In this paper,
we present a system based on a depth camera and a color camera
that are combined to produce the multiple input images in real-
time. The result of this approach can be easily used with any
kind of auto-stereoscopic screen.

I. INTRODUCTION

Auto-stereoscopy is a technology recently applied to LCD

displays [1] that introduces the ability for one or several users

to watch stereoscopic images without wearing any glasses.

Depending on their characteristics, auto-stereoscopic displays

require from five to 64 input images [2] to display a single 3D

frame. A filter, made of small lenses or thin slits, is overlaid

on the surface of the screen and ensures to emit each image

in a specific direction. So, if the user is well located in front

of the display, each eye can see a single specific image.

In computer graphics, the input images can be easily gener-

ated [3]. For video streams, a basic solution consists in using as

many cameras as needed input images [4], [5]. Even so, such

approaches require to configure precisely the capture system,

can be difficult to move or are designed for only one specific

device.

To reduce the number of cameras, a solution using online

video-based rendering method has been proposed by Nozick

and Saito [6]. It takes advantage of the GPU to generate up

to 16 views thanks to a capture system made of only four

web-cameras. The images can be computed and displayed in

interactive time (around 15 frames per second), but it works

only in a limited area and needs to be configured precisly.

Another solution has been proposed by Fehn [7]. A single

image with its corresponding depth information is used to

generate images from new viewpoints. However, this kind of
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approach is mostly applied with video file since the depth map

cannot be generated in real time. Some specific cameras [8]

are able to capture videos with the corresponding depth-map,

but are still prototypes, cannot process the data in real-time or

have a very small resolution. Lee et al. have proposed a system

to generate multiple 2D-Plus-Depth images by using several

cameras and a single depth camera [9]. The depth camera is

used to estimate an initial depth map for each color camera.

The result is refined by applying a belief propagation method.

The authors have improved this system by adding more depth

cameras [10].

Our goal is to create a real-time multi-view rendering

system designed for live video streams. Our approach is based

on a depth camera that can provide depth information in real-

time. A color camera is also added in order to capture the

color information.

This paper is structured as follow. We start by giving an

overview of our depth and color cameras based system that

takes advantage of a 3D-mesh to correct the mismatching

between the two viewpoints and to generate the images

corresponding to the new viewpoints. In the next section,

we describe our algorithm used to speed-up the multi-view

rendering process of a mesh thanks to the GPU.

II. DEPTH-CAMERA BASED SYSTEM

In this section, we describe our capture system composed of

a depth camera and a color camera. We also explain the steps

to generate the depth map corresponding to the viewpoint of

the color camera by creating a mesh from the data transmitted

by the depth camera.

A. Details About our System

A depth camera is a device that captures and transmit the

depth information corresponding to a real environment. The

camera of our system is based on the Time Of Flight (TOF)

technology [11] and generates the depth map of a scene in

real time. For each pixel of the low resolution sensor of the

camera (176×144) a depth value, a 3D coordinate, a grayscale

component and a confidence value are available. These values

are computed according to the time required by an infrared

light to go and return to the camera’s sensor.
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Fig. 1. A color camera is added in the system since our depth camera cannot
capture the color information.

Since, this camera is not able to capture any color informa-

tion, another camera is necessary. Color is also an important

cue for the perception of depth [12], [13], so we use a high

resolution camera to compensate the low resolution of the

depth camera. This color camera is added besides the depth

camera as presented in Fig. 1.

These two cameras are not located at the same position,

so their viewpoints are slightly different. Combining directly

the depth information with the color image will result into a

discordance between the depth perception and the displayed

image. Therefore, a transformation is required to map the

depth information onto the color image. It consists in creating

a mesh from the data captured by the depth camera and

projecting the result onto the color image. This process can be

done only if the cameras are calibrated in the same coordinate

system. This step is described in the following sub-section.

B. Calibration

The pose estimation of depth and color cameras has to be

defined in a same coordinate system in order to be able to

project the mesh generated from the depth map onto the color

image.

For each pixel of the depth image, the depth camera

provides a corresponding 3D coordinate. This set of points

is defined in a coordinate system wherein the depth camera’s

position is the origin. Following this statement, we also set

the depth camera as the origin of our capture system. Thus,

the calibration stage only requires to estimate the pose of the

color camera in relation to the depth camera.

Using a set of 2D/3D correspondences is a common way

to estimate the pose of a camera [14]. In our case, the 3D

coordinates can be easily retrieved thanks to our depth camera.

First, 2D correspondences are found between the data from

the depth camera and the color image by using a chessboard

pattern or by clicking pixels. Three kinds of images provided

by the depth camera are used and associated with the color

image to define these correspondences as depicted in Fig. 2.

The depth and gray-scale images are used to select relevant

points, whereas the confidence map is used to check the

validity of the depth value computed by the camera (white

areas represent a high confidentiality).

Second, for each pixel of the images generated by the

Fig. 2. Four images are used for the calibration. (A) the depth map, (B)
the corresponding gray scale image, (C) the confidentiality map and (D) the
color Image

depth camera, a 3D coordinate exists. So, a list of 2D/3D

correspondences between the color image and the 3D space

can be created. OpenCV [15] is then used to compute the

pose estimation of the camera based on these 2D/3D corre-

spondences and intrinsic parameters of the camera.

C. Generating the New Depth Map

In order to compute the depth map corresponding to the

viewpoint of the color camera, our objective is to take advan-

tage of a mesh generated from the 3D coordinates provided

by the depth camera. This relation between the depth camera,

the color camera and the mesh is depicted in Fig. 3. Using

a computer graphics based approach can significantly reduce

the processing time in comparison to a Depth Image Based

Rendering (DIBR) approach.

The intrinsic and extrinsic parameters, computed during

the calibration stage, are used to set up the position of the

viewpoint for the rendering. The mesh, made of triangles and

defined in the coordinate system of the depth camera, will

then be observed from the viewpoint of the color camera. The

mesh is finally rendered using this configuration.

The rendering process will also automatically generate a

depth map but the computed z-values are not linear due to a

Fig. 3. The goal is to use a mesh obtained thanks to the data of the depth
camera to compute the depth map corresponding to the viewpoint of the color
camera.
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Fig. 4. Results presenting color images with their corresponding depth-map
generated thanks to our approach.

non-linear transformation. A GPU-based program is then used

to convert this depth map into a metric depth information.

In our approach, occlusions are reduced because we are

using only one mesh in which all the points are connected

with triangles. So occlusions are replaced by an automatic

interpolation between two different depths. However, depth

data can also be missing on the border of the mesh. Our

solution is to extrude the borders of the mesh as presented

in the Fig. 3 but will generate flat areas in the depth map.

Examples of results are presented in Fig. 4.

A matching between the color image and the depth map is

presented in Fig. 5 and shows that errors are mainly located in

flat areas previously described, in areas close from the depth

camera, on specular objects and on occlusion areas.

With our approach, the depth map corresponding to the

Fig. 5. Comparison between the edges color image and its corresponding
depth-map. Errors are mainly located in occlusions and close areas. Especially,
the screen on the left part is not visible from the depth camera, so depth
information doesn’t match in this area.

Fig. 6. Two input image formats for auto-stereoscopic displays. (A) Philips’
2D-plus-depth format. (B) Tridelity’s sub-pixel alignment.

color camera’s viewpoint is generated in real time. The ren-

dering time is only limited by the frame-rate of the cameras.

D. Application to Auto-Stereoscopic Displays

Content for auto-stereoscopic displays [16], [17] can be

divided into two categories. The first one is the 2D plus Depth

format [7] that only requires a color image and its correspond-

ing depth map. The second one consists in generating and

mixing the different views before displaying the result.

The Philips’ display [18] use an integrated rendering algo-

rithm based on the 2D plus Depth technology. The input image

format is a disparity map interleaved with the color image as

depicted in Fig. 6. Our approach can easily provide the color

image with its corresponding depth map. Depth information is

easily and quickly transformed into a disparity and mixed with

the color image map by using the GPU to fit the requirement

of the 2D plus Depth format.

Other displays like [19] use a sub-pixel alignment of several

input images into a single one (Fig. 6). In our approach, a

3D mesh reduces significantly the complexity of the multi-

view rendering because we can use the same stereoscopic

rendering algorithm than in computer graphics. It consists in

translating the viewpoint along a specific axis according to the

eye separation distance and the view direction. However, the

color information has to be associated with the mesh to be

correctly displayed when the mesh will be rendered from a

new viewpoint.

A solution is to map the color image on the mesh by using a

projective texture technique [20] that generates automatically

the texture coordinates on the mesh. This method requires to

define a projective texture matrix as follows:

Mtexture =

[

0.5 0 0 0
0 0.5 0 0
0 0 1 0

0.5 0.5 0 1

]

× Mprojection × Mmodelview (1)

Where Mprojection and Mmodelview are matrices defined

with the converted intrinsic and extrinsic parameters of the

color camera. The texture coordinates are obtained by multi-

plying each vertex of the mesh by this matrix using the GPU

for example. Then, the color information will be correctly

displayed, even if the viewpoint is modified.

However, multi-view rendering is often considered as a slow

process since each view requires a specific rendering pass.

Computational time can be very high, especially when the

geometry is made of thousands of triangles (25000 in our
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case). In the next section, we present a GPU-based multi-view

rendering algorithm applied to speed-up that process.

III. MULTI-VIEW RENDERING ALGORITHM

In this section, we present a GPU-based multi-view render-

ing algorithm that takes advantage of similarities of vertexes

among each view and of the geometry shader to speed-up the

rendering process.

A. Overview

By studying the concept of multi-view rendering [1], we

can state that some characteristics remain the same from one

view to another. Position of vertexes is unchanged in the

referential of the scene meaning that the same transformation

is shared over the viewpoints. Likewise, texture coordinates,

light vector and normal are identical for a given vertex. So,

each characteristic independent of the viewpoint might be

computed only once in order to increase the performances.

Then, each vertex should be duplicated and shifted according

to a given viewpoint.

In that sense, shaders [21] provide useful functionalities to

merge some operations and duplicate only relevant data. A

vertex shader is designed to apply several independent pro-

cessing on each vertex, while a geometry shader is dedicated

to handle primitives. In particular, this GPU stage allows to

create or remove vertexes, to emit new primitives and to apply

transformations. This stage takes place just after the vertex

shader.

B. Our Approach

1) Single texture based approach: Previous works [22],

[23] on GPU-based multi-view rendering demonstrate that

it is possible to considerably speed-up this kind of process.

However, this algorithm is difficult to implement and require

many modifications in the original code. The result of this

approach is rendered into several textures (limited to eight)

thanks to FBO and MRT extensions. One consequence is that

an algorithm like the painter algorithm have to used instead of

the standard depth test of the OpenGL pipeline. It can generate

artifacts or increase computational time.

Our approach have been designed to overcome all these

issues. The solution is to render all the views in one texture

instead of several. In that case, the number of views depends

on the maximal resolution of the texture and the resolution

of the generated views, but remains higher compared to the

previous approaches. Moreover, the depth test can now be used

without any restriction. Finally, only few modifications are

required and are mainly located in the geometry shader code.

In this approach, the different views have to be organized

over the surface of our single texture. Each single space

occupied by a view is named sub-area and defined as SA(i, j)
where i and j are the coordinates along the horizontal and

vertical axis as depicted in Fig. 7. We defined the 2D

vector NV as the number of sub-areas along each axis.

Of course, the total number of rendered views must be

lower than the number of sub-areas. For example, five views

Fig. 7. Description of the transformations required to duplicate the geometry
using a single texture.

with a resolution of (w, h) will spread over five sub-areas

SA(i, j) where 0 ≤ i ≤ 2 and 0 ≤ j ≤ 1. So the number

of sub-areas is then NV = (3, 2), the final resolution of

the texture is (3×w, 2×h) and one sub-area will not be filled.

2) Geometry Transformation: In OpenGL, the modelview

matrix M is used to transform the geometry into the coordinate

system of the camera. It refers to the extrinsic parameters of

the camera, while the OpenGL projection matrix P refers to

the intrinsic parameters. The rendering is then achieved by

multiplying each vertex, first with the modelview matrix and

after with the projection matrix.

The goal of our approach is to duplicate and shift the input

geometry using the GPU because similarities exist among the

vertexes of the different views. One similarity is the modelview

matrix, so we need to apply it only one time on each vertex.

The view shifting can be performed after using the modelview

matrix on each vertex and will consist in a simple translation

on x axis depending on the value of the eye separation distance

∆. This translation for the kth generated view will then be

defined as a vector Tv(k) = (k × ∆, 0, 0).

Since our rendering context is a single texture then the

input triangles will be transformed and projected on the overall

surface of the texture. So we have to apply extra operations

on the triangles to transform them to fit the bottom-left sub-

area of the texture. All the input views share a common image

plan, so the transformation of the triangles is a 2D operation

composed of a scaling S and a translation T that are applied
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after the normalized OpenGL projection P of vertices. S and

T are then defined as:

S =
1

NV
(2)

T = −1 +
1

NV

By applying the transformations of Eq. 2, the triangles will

be located in the sub-area SA(0, 0) in bottom-left. One more

translation TSA is then required to move the duplicated and

shifted triangles into their respective sub-areas.

TSA(i, j) =
1

NV
× 2 × (i, j) (3)

The full process is depicted in Fig. 7. Using Eq. 2 and 3, the

process that transforms an input vertex Vin into the sub-area

SA(i, j) for the view k can be summed up as :

VSA(i,j) = TSA(i, j) + TSP × (Tv(k) + M × Vin) (4)

with TSP = T × S × P .

3) Clipping: The clipping stage consists into eliminating

triangles or part of triangles that are not visible in the rendering

area. This process takes place after the rasterisation, thus after

the geometry shader. So, no data will be missing when the

triangles will be shifted in the geometry shader. However, it

induces that some triangles will overlap several sub-areas or

will be rendered into an incorrect sub-area instead of being

eliminated. This problem is presented in Fig. 8. It means that

a specific clipping have to be applied just after the geometry

shader stage and will depend on each sub-area borders .

Our clipping is based on the OpenGL user’s defined clipping

using a distance value. In the geometry shader, we compute

the distance between each vertex and the four borders of the

sub-area it should belong. If the distance is negative for one

Fig. 8. Some triangles can overlap two different sub-area. A specific clipping
is then required to eliminate undesirable pixels.

Fig. 9. Set of five images generated with our GPU based multi-view
approach. For each view, the corresponding transformed mesh is presented.

vertex, then the triangle associated with that vertex will be

automatically clipped by OpenGL.

C. Results

We experimented our algorithm on a bi-Xeon 2,5Ghz run-

ning Linux. The graphic card is a nVIDIA GeForce GTX

285 with 1Go memory. Our depth mesh is made of 25000

triangles (176 × 144). The resolution of each generated view

is 1024 × 768.
For one view the frame-rate is around 51 frame/sec. Ap-

plying a standard multi-pass rendering for five views, the

frame-rate drops to 23 frame/sec. Using our approach, we can

increase our frame-rate to 38 frame/sec. An example of result

of our approach is presented in Fig. 9.

IV. CONCLUSION

In this paper, we have presented a capture system for auto-

stereoscopic displays based on a depth camera. Since the depth

camera is not able to capture color information, we added

a color camera at a slightly different position. An algorithm

using a 3D mesh is applied to match the color and depth

information and produce the input views required by the auto-

stereoscopic displays.
We also presented a GPU-based multi-view rendering al-

gorithm to speed-up the rendering process from several view-

points. Similarities exists among the vertexes from one view
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to another like position, color, normal. So we take advantage

of the geometry shader to compute these properties only one

time and to operate a duplication and transformation of the

geometry for each viewpoint. This approach requires only few

modifications compare to the original single view rendering

code. Finally, our method is only limited by the frame-rate

of the cameras (30 images per second). Results have been

applied with success on two auto-stereoscopic displays using

two different technologies.

For the moment, our approach is based on a single mesh and

a projective texture. The consequence is that the image quality

is decreased in occlusion areas. We plan to use a separate our

generated mesh into several layers and fill the missing color

information thanks to an in-painting method.
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