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Abstract. Augmented Reality is an emerging research field, that aims
for the composition of real and virtual imagery, by means of a camera
and display device. Spatial augmented reality employs data projectors
to augment the real world. In this setting, traditional tracking methods
fall short due to the interference caused by the projector. Recent works
assume a calibration process to model the projector and assume conti-
nuity in movement of the object being tracked. In this paper we present
a tracking-by-detection system that does not require such a procedure
and makes use of natural features represented by SIFT descriptors. We
evaluate a set of photometric invariants that have previously been shown
to improve the performance of object recognition, added to the descrip-
tor to reduce the influence of the projector. We evaluate the descriptors
based on precision-recall under projector distortion and the total system
based on its tracking performance. Results show tracking is significantly
more precise using one of the invariants.

1 Introduction

Augmented reality (AR) systems channel information from the real world through
a sensor and in the process, augment the real data with some virtual content,
deemed relevant for the application. The concept is most commonly applied to
vision, in which case the displays are devices such as head-mounted displays, hand-
held screens like tablets and smart phones or retinal displays, that project an im-
age straight into the eye. Spatial Augmented Reality (SAR) [1] is a sub field of
AR and makes use of data projectors as display devices. In this setting, the aug-
mented information is no longer confined to some plane only visible to the user,
but takes active part in its environment and generates a novel experience of the
surroundings.

With the goal of AR to augment the real world with some virtual imagery,
we are facing the challenge to properly align the two. Older systems use special
hardware trackers or fiducial markers, which are invasive, expensive or difficult
to use. Therefore, most recently developed AR systems employ natural features,
acquired with a camera, for tracking. The most significant challenge in SAR,
is that these methods are ineffective, due to the image projected onto the ob-
ject being followed. This naturally results in two approaches: (1) treating the
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projector as interference or (2) modelling the projected image. The latter ap-
proach requires a-priori information about the reflectance properties of the sur-
face and ambient illumination, which is obtained by means of some calibration
procedure, as demonstrated by Audet et al. [2,3]. Here, tracking was done by
template matching, which assumes some continuous motion between frames or
an educated guess on the motion parameters. To enhance usability, a system
omitting such a procedure and constraints would be preferable.

The work presented in this paper takes steps towards amarkerless, calibration-
free robust SAR system that does not require continuous motion or an initial esti-
mate of the motion parameters. To this end, we make use of tracking-by-detection.
The proper geometric invariance with respect to movement is obtained by using
SIFT detection and description. An optimal photometric description is sought by
evaluating several photometric invariant gradient representations in the SIFT de-
scriptor and the remaining feature noise is filtered out by robust estimation in the
form of RANSAC. We assume a planar, rigid surface using a static camera and
projector, where the projected image has been aligned before the tracking com-
mences. An illustration of an SAR setting is provided in figure 1. The contribu-
tions of this paper are twofold and can be summed up as follows: (1) we introduce
a robust tracking system for SAR and (2) we underline the expedience of colour
based information in local image descriptors, thereby confirming the results of
previous work on this topic [4,5]. The rest of this paper is organised in the fol-
lowing way. Section 2 will cover some related work on projector-camera systems,
SAR and colour feature description. In section 3, we will subsequently discuss
the invariant descriptors used, followed by a brief exposition of the matching
and tracking method in section 4. Section 5 will provide the experimental setup
along with the acquired results and we will finish with a discussion and some
future work in section 6.

Fig. 1. Example of an SAR setting, where an image attached to a planar surface is
augmented with some text
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2 Related Work

SAR incorporates a projector-camera system, which has been the subject of
some interesting research. Successful applications include the removal of shad-
ows cast by the speaker during a presentation, by means of multiple projectors
[6], combining multiple projectors to create large display walls [7], projection
defocus analysis and correction [8,9], manipulating one object’s colour and tex-
ture to make it look like another [10], and real-time correction of the geometry
of the projected image according to the underlying geometry of the projection
surface [11]. Audet [2,3] recently proposed an alignment strategy for SAR based
on 4-point parametrisation, suggested by Baker et al. [12], template matching
and Gauss-Newton optimisation of the homography parameters. A calibration
procedure was employed to model the intrinsics of the projector and camera,
colour mixing matrix and colour offset.

Even though colour can be a descriptive feature, it is still not common practice
to add it to descriptors. Some work has been done, mostly in the field of ob-
ject recognition. Funt and Finlayson [13] adapted a colour indexing scheme and
showed that this improves previous results on object recognition. Geusebroek et
al. [14] derived a set of photometric invariants, based on a previously presented
Gaussian opponent model [15] and van Gemert et al. [4] showed that exploiting
one of the invariants in an object recognition setting can improve performance.
van de Wijer and Schmid [16] added colour and colour invariance properties to
the SIFT [17] descriptor, which increased matching performance. van de Sande
et al. [18] evaluate the performance of colour descriptors for object recognition
and show performance can be increased.

Burghouts and Geusebroek [5] evaluated 5 SIFT based descriptors using grey-
scale and colour invariants, firmly put in a Gaussian spatio-spectral scale space
framework and found an improvement in object recognition using colour. In the
next section, we will briefly go over the derivation of the invariants, for a more
rigorous treatment, the reader is referred to Geusebroek et al. [19,14,15]. A quick
overview of the descriptors along with their invariance properties is provided in
table 1.

3 Invariant Colour Descriptors

Since we are treating the projected image as interference, we are interested in
image features that are as invariant as possible to distortion caused by the pro-
jector, yet descriptive enough for us to accurately track the surface. Any deriva-
tion of invariants relies on a physical model of light formation. For this, the
Kubelka-Munk model can be applied [14], which models the reflected spectrum
of a body, according to a material dependent reflection and absorption function.
The resulting model of the spectrum at location x on the image plane is given
by:

E(λ,x) = e(λ,x)(1 − �f (x))
2R∞(λ,x) + e(λ,x)�f (x) (1)

where e(λ,x) denotes the illumination spectrum at x, �f the Fresnel reflectance,
λ the (visible) wavelength and R∞ the material reflectance property. Koenderink
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[20] showed that under several assumptions, the only reasonable function for
probing the spatial structure of an image is the Gaussian. Geusebroek et al. [15]
show an extension can be made with respect to the spectral dimension, giving a
new model of colour measurement:

Êσλ

λk =

∫
E(λ)Gλk (λ;λ0, σλ)dλ (2)

where k ∈ {0, 1, 2}, Gλk(λ0,σλ) indicates the kst Gaussian derivative centred

around λ0 with spectral bandwidth σλ, Ê indicates the spectral intensity (i.e.,
the greyscale channel), Êλ measures the ’yellow-blue’ channel and Êλλ describes
the ’red-green’ channel. The Gaussian opponent colour model can be computed
from RGB values directly by the linear transformation [15]:

⎛
⎝ Ê

Êλ

Êλλ

⎞
⎠ =

⎛
⎝0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17

⎞
⎠

⎛
⎝R
G
B

⎞
⎠ (3)

For tracking the surface, we are interested in surface property R∞ and should
therefore look for transformations that isolate R∞ from the other elements in
the model. By making some assumptions on the environmental conditions, a set
of invariants can be derived, that make use of the spatio-spectral scale space.
Under equal energy but uneven illumination, we have that:

E(λ,x) = i(x)
{
�f (x) + (1− �f (x)

2R∞(λ,x)
}

(4)

Where i(x) denotes spatial intensity variation, since this is equal for all wave-
lengths. After taking first and second spectral derivative and adding the oppo-
nent colour model,

Êλ = i(x)(1 − �f (x))
2 ∂R∞(λ,x)

∂λ Êλλ = i(x)(1 − �f (x))
2 ∂2R∞(λ,x)

∂λ2
(5)

we will see that their ratio Ĥ = Êλ

Êλλ
depends only on object reflectanceR∞(λ,x).

Spatial derivation and application of the chain rule subsequently results in the
invariant image gradient ∂

∂j Ĥ :

Ĥj =
ÊλλÊλj − ÊλÊλλj

Ê2
λ + Ê2

λλ

(6)

with j ∈ {x, y}, which is defined for Ê2
λ + Ê2

λλ > 0.
If we further assume Fresnel reflectance is negligible, i.e., �f (x) ≈ 0, (1)

reduces further to:
E(λ,x) = i(x)R∞(λ,x) (7)

The surface property can be obtained by the ratio Ĉ = Êλ

Ê
with spatial deriva-

tives:

Ĉλj =
ÊλjÊ−ÊλEj

Ê2
Ĉλλj =

ÊλλjÊ−ÊλλEj

Ê2
(8)
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One more invariant can be derived, under yet again a stricter interpretation of
the Kubelka-Munk model. If we consider diffuse reflectance, equal energy and
uniform illumination with intensity i, (1) is reduced to:

E(λ,x) = iR∞(λ,x) (9)

by taking the spatial derivative of (9) we get:

Êj =
∂R∞(λ,x)

∂j
(10)

If we let Ŵj =
Êj

Ê
, we gain an expression that determines the change in ob-

ject reflectance in the j direction, independent of illumination intensity. Similar
properties can be defined for higher order spectral derivatives. Again employing
the Gaussian colour model we get:

Ŵj =
Êj

Ê
Ŵλ,j =

Êλ,j

Ê
Ŵλλ,j =

Êλλ,j

Ê
(11)

Similar to Burghouts and Geusebroek, we added the photometric invariant gra-
dients to the SIFT descriptor, along with the greyscale channel (Ê), as used in
the original version of SIFT. Addition of the intensity channel might seem con-
tradictory, since we are trying to obtain invariance with respect to disturbing
influences, but we found the combination between invariance and descriptiveness
improved performance, thereby confirming their results.

Table 1. Photometric Invariants

Name Given by Invariance properties

E-grey Ê None

E-colour Ê, Êλ, Êλλ None

W-colour Ŵ , Ŵλ, Ŵλλ Illumination intensity

C-colour Ĉλ, ˆCλλ Object geometry and viewing angle, illumination intensity

H-colour Ĥ Object geometry and viewing angle, illumination intensity, spec-
ular reflection

4 Tracking

The goal of the tracking stage is to compute the homography that maps points
of the template to the points in each subsequent frame, by matching interest
point locations between the two. With this homography, the projected image
can be updated and aligned with the current orientation of the surface. An
illustration is provided in figure 2. We performed matching by building a KD-
tree on the interest points of the template, which reduces matching complexity
and computing nearest and second nearest neighbours between the template
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(a) Initial frame (tem-
plate)

(b) Following frame,
distorted augmentation

(c) Following frame,
corrected augmentation

Fig. 2. Tracking problem. The goal is to compute the motion between the initial image
and subsequent frames using interest point matching. The added text causes interfer-
ence, rendering tracking more challenging.

points and frame points at every timestep. The nearest neighbour distance ratio
(NNDR) between descriptor d, its nearest d1 and second nearest neighbour d2

NNDR =
||d− d1||2
||d− d2||2 (12)

as used by Mikolajczyk and Schmid [21] was applied, which they showed to
improve matching performance. We employed the metric based on Euclidean
distance in feature space and used RANSAC as a robust estimation technique
for finding the homography between the set of matches.

We applied the symmetric transfer function [22] to compute the projection
error. Not all putative matches will have equal confidence level and we can add
this uncertainty into the optimisation by adding a weight term to the residual:

ri = wi

(||MHxi
t − xi

t+1||2 + ||xi
t −M−1

H xi
t+1||2

)
(13)

where wi denotes a confidence weight of putative match (xi
t,x

i
t+1), which we

computed by 1−NNDR and MH the current estimate of the homography. We
applied a probabilistic setting to estimate the number of RANSAC iterations
needed [23,24]. If we denote q to be the probability of sampling from the data a
minimum sample set (MSS), containing no outliers, we can define the probability
of sampling an MSS containing at least one outlier, for h consecutive iterations
as (1 − q)h. If we now define a probability threshold ε, such that (1 − q)h ≤ ε
and invert the relation, we have that:

h ≥
⌈ log ε

log(1− q)

⌉
(14)
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By defining NI to be the total number of inliers in the data, N the total number
of points in the data and k the cardinality of the sample set, we compute q
according to:

q =

(
NI

k

)
(
N
k

) =
NI !(N − k)!

N !(NI − k)!
=

k−1∏
i=0

NI − i

N − i
≈

(NI

N

)k

(15)

By making a conservative approximation of the number of inliers N̂I in the form
of the maximum cardinality of the consensus set so far, we gain the following
expression for h:

h =
⌈ log ε

log
(
1− (N̂IN−1)k

)
⌉

(16)

Estimating the number of iterations rather then keeping them fixed improves
performance and reduces computation time. As N̂I increases, q and therefore h
decrease, i.e., the better MSS we find, the less iterations we estimate to need
and therefore the number of iterations is an indication of the estimated quality
of the fit, evaluated by the residual functions defined before.

RANSAC attempts to minimise a loss function
∑

i ρ(ri) over all data, where
in its original formulation ρ(r) is defined as:

ρRANSAC(r) =

{
1 if r > δ
0 else

(17)

with δ the outlier threshold. Without any extra computational costs, a more
sensible loss function can be defined, based on the residual of the datum:

ρMSAC(r) =

{
r if r ≤ δ
δ else

(18)

which is dubbed MSAC by Torr and Zissermann [23,24]. By combining this
estimator with the confidence weighted matching, described earlier, the distance
in feature space is propagated through to the learning phase of RANSAC and
therefore directly taken into account in the final estimate of the homography.

5 Experiments and Results

This section provides details on the experimental setup and results after apply-
ing the presented method. Before proceeding, we would like to make clear the
assumption made, when performing the experiments. The results reflect the fol-
lowing conditions. (1) The projector and camera are assumed to be static and
the projected image is aligned with the surface at the first timestep. (2) The
internal parameters of both camera and projector are static. (3) The projection
surface is rigid, planar and displays a low amount of specular reflectance (a de-
gree similar to ink printed on paper). (4) The image of the camera is sharp and
sufficiently exposed and the image of the projector is taken to be sharp enough
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to cause some interference. (5) There is no occlusion (6) there are no serious arte-
facts originating from the camera lens such as lens distortion, vignetting, etc.
and there is no image compression. During experimentation, we found it was
difficult to prevent clipping effects, using current hardware, since the exposure
correction of the camera is at least a frame behind. Because these are realistic
challenges, we have left them in the experiments. It is worth to note, however,
that these influences are known to inhibit performance of invariants.

5.1 Hardware and Implementation Details

The video’s where recorded in 800x600, 24 BPP at 15 FPS using PPM file format
and test images where printed on standard A4 paper. We make use of a tem-
plate which was extracted by sampling the first image from the image sequence,
which contains a projected image. Some functions in Marco Zuliani’s RANSAC
toolbox where very helpful and an adaptation of the implementation of colour
SIFT, kindly provided by the authors [5], was used for the experiments. All pa-
rameter settings where held similar to those used by Lowe [17] and Burghouts
and Geusebroek [5], unless mentioned otherwise in the experiments. We used an
NNDR of 0.7, which performed best during initial testing. To filter out back-
ground points, we used a threshold to only consider points that actually moved
between frames, which was set to 3 pixels. Feature points where detected in Ê,
using the method described by Lowe [17] and are equal for all descriptors.

5.2 Evaluation Strategy

To estimate the accuracy of the methods, we have used 2 different square test im-
ages of varying texture and colour. The first evaluation setting is an adaptation
of the setup used by Mikolajczyk and Schmid [21] and Burghouts and Geuse-
broek, testing only the effect of projector distortion in our case. The images
where attached to a rigid surface, which was held still throughout the process.
We used two different projector conditions in the form of video’s taken from
the intro of TV shows. One causing mild interference and one causing strong
interference. This results in 4 video’s with a total number of 151 frames. Interest
points in a frame with a projected image where computed and matched against
subsequent frames. For determining correspondences, the strategy proposed by
Schmid et al. [25] was applied, where the radius was set to 1 pixel in our setting.
Average over all frames where taken and precision and recall where computed
and interpolated by sweeping through the NNDR. Results are shown in figure 3.

The second setting tests the robustness of the tracking method with respect
to both geometric and photometric changes of the scene. Again, the images
where attached to a rigid surface, which this time was subjected to translation,
rotation and perspective movement. For each surface, this was done two times,
one time using slow movement and one time using very fast movement. We used
three different projector conditions: one where there is no projection at all and
two with the before mentioned video’s, giving us a total of 12 video’s, with in
total 1430 frames without any projection and 3740 frames with. Two frames
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Fig. 3. Precision-Recall of Matching

of the different backgrounds and different projections are provided in figure 4.
Please note that to keep conditions equal for all invariants, we did not explicitly
update the projected image, but used the video’s to emulate possible distortion,
caused by the projector. To compensate for the random nature of RANSAC,
each homography was estimated 5 times, each using a different random seed
and treated as iid. The 4 corner points where annotated in every other frame,
in each video and subsequently averaged, since they are typically not iid. This
also compensates for small annotation errors. If we denote f to be the number
of frames in a video, this leaves us with a total of 5� f

2 � number of samples.
The followingmetrics provide insight in theperformance.Tobeginwith,we com-

puted the Euclidean distance between the annotated points and their estimated

(a) Background 1, projection 1 (b) Background 2, projection 2

Fig. 4. Stills of test video’s for tracking
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position in each frame, by using the annotated corner points in the first frame and
warping them according to each estimated homography. Secondly,we used the esti-
mated number of RANSAC iterations as a mild indication of the estimated quality
of the matches along with the number of inliers after finishing RANSAC. A large
discrepancy between true and estimated quality of the homographywould indicate
a flaw in description or matching. A small number of high quality matches in com-
bination with a high quality fit would be preferred, since the time complexity of
RANSAC increases with the number of points.

5.3 Tracking Results

To set a benchmark and give an indication of the kind of error values the method
should aim for, we first evaluated the tracking method without any projector
interference. The mean and median Euclidean distance over all frames is provided
in table 2, along with one standard deviation. A Kruskal-Wallis test, reveals
no significant difference (p = 0.33419) in tracking performance based on the
Euclidean distance. We subsequently ran the methods with projection. Same
metrics along with the match rates, number of RANSAC iterations and number
of inliers are given in table 3.

Table 2. Tracking results without projection

Mean Eucl. Dist. Median Eucl. Dist.

E-grey 16.98 +/- 13.25 16.0278
E-colour 16.51 +/- 4.99 16.0445
W-colour 16.69 +/- 8.88 16.0154
C-colour 16.36 +/- 4.87 15.9499
H-colour 18.46 +/- 22.75 16.0218

Table 3. Tracking results with projection

E-grey E-colour W-
colour

C-colour H-colour

Nr. of Matches 210.03 +/-
110.95

113.83 +/-
83.39

119.66 +/-
91.19

138.22 +/-
88.95

97.98 +/-
68.36

Nr. of itt. 131.15 +/-
144.72

85.70 +/-
127.40

73.22 +/-
117.35

36.68 +/-
71.46

75.93 +/-
119.60

Nr. of inliers 138.67 +/-
110.40

90.45 +/-
82.84

97.71 +/-
90.26

116.99 +/-
89.46

79.10 +/-
67.75

Avg. Eucl. Dist. 94.39 +/-
1388.36

70.97 +/-
276.20

99.19 +/-
905.15

24.99 +/-
37.36

167.29 +/-
1212.93

Median Eucl. Dist. 19.092 20.1653 19.6647 18.9503 20.4581
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Kruskal-Wallis tests reveal significant effects in all metrics. We subsequently
computed a Wilcoxon rank sum on Euclidean distance between E-colour and E-
grey, C-colour and E-grey and C-colour and E-colour, which all show significant
effects (p � 0.05).

6 Discussion

Table 2 shows tracking is marginally though not significantly improved if there is
no projector distortion. This is mainly reflected by the lower standard deviation
of E-colour and C-colour, which represents a smaller amount of outliers. These
outliers would produces strong quirks in the corrected image of the projector
and less is therefore desirable.

It is interesting to see the discrepancy between the precision-recall curve and
the tracking performance. Burghouts and Geusebroek also found that, when
added to the SIFT descriptor, C-colour performs more or less equal to grey
scale SIFT, when varying illumination colour, but outperforms it when varying
viewpoint and illumination direction. It is therefore expected that this shows in
the tracking without projection setting in our experiments. A different distance
metric (Mahalanobis distance instead of Euclidean) and other minor variations
in experimental setup and evaluation may have been the reason that this does
not show significantly. Mikolajczyk and Schmid found that the NNDR not only
improves matching performance, but also changes the shape of the curve slightly,
which may have had some influence in the difference between previous work. It
is known that clipping effect can severely impede the performance of invariants.
We inspected both the stationary and tracking video’s in the search for severe
clipping effects, but even though it occurs, we did not find a big difference.

From the results in table 3 we can draw the following conclusions. The addition
of colour clearly improves performance, except for H-colour. Similar conclusions
where drawn by Burghouts and Geusebroek [5]. Lack of descriptiveness or in-
stability due to non-linearity of the computation are probable causes. As far as
colour goes, all arguments are in favour of C-colour. The number of matches is
lower than E-grey, which improves speed of RANSAC and there are less itera-
tions required to reach a consensus set with a high number of inliers. The median
of E-grey is lower than E-colour but the average of E-colour is lower, which is
caused by several outliers in the estimated position of the plane, using E-grey.
The outliers are caused by difficult conditions. In general, all colour descriptors
show a smaller standard deviation and are therefore better able to cope with
these conditions.

7 Conclusion

In this paper we have presented a tracking-by-detection method for Spatial Aug-
mented Reality (SAR) which, contrary to previous work on the topic, does not
require a calibration procedure and does not assume continuous motion between
frames. To this end, we have applied SIFT in combination with RANSAC for
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tracking and have evaluated a set of photometric invariants, added to the SIFT
descriptor, from which the invariant C-colour significantly improved tracking
performance under projector distortion. This confirms other work using the same
invariant for object recognition.

Future work using the current assumptions will revolve mostly around op-
timisation. SIFT is known for its good performance, but a large amount of
substantially faster methods have been developed. The extension to colour using
gradient based descriptors is relatively straight forward: simply replace the im-
age gradient or approximation thereof, by the invariants presented earlier. In this
spirit, we made some attempts using SURF descriptors, but did not acquire sim-
ilar performance. We suspect the better noise robustness of SIFT renders it more
efficient in the current domain. Applying the method to pixel-ratio based detec-
tors/descriptors such as FAST, randomised trees and FERNS is less obvious, but
if this is done successfully, it will give a large boost in terms of computational
speed.

Part of the assumptions made could be alleviated by allowing freedom of
movement of the camera, thereby also tracking the projected image. Another
extension would be compensating for radiometric variation and not only geo-
metric change. Several mesh based methods have been developed and used in
common AR settings, for augmenting non-rigid surfaces. A substantial challenge
in applying this to SAR is that the projected image will be covariant with view-
ing angle. The use of multiple projectors and viewer tracking may provide a
solution to this.
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