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In the effort of supporting elderly people living alone, this paper describes a novel video-based system for
detecting fall incidents. Widths of a same person are extracted from two cameras whose fields of view are
relatively orthogonal, for estimating the occupied area. We divide the scene into many small patches. Sizes
of a person moving through the scene are clustered and kept in the buffer of each patch in which the person
is captured, so-called Local Empirical Templates (LET), for building spatial distributions of occupied areas
of the person in walking or standing poses. We realize that occupied areas of lying-down and sitting person
are proportional to that of LET, spotted in the same scene patch. Therefore, we normalize the height and
the occupied area of a person estimated from the two cameras with respect to those of LET in the same scene
patch, leading the generation of a promising feature space in which three human states of standing, sitting or
bending, and lying down, are in separable regions. Fall incidents can be inferred from the time-series analysis
of human state transition. The experimental results with 24 realistic video samples in Multiple cameras fall
dataset (1) demonstrates high detection and low false alarm rates.
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1. Introduction

Recently, the population of elderly people has been
surging, particularly in developed countries. Majority of
them live alone at home. They might be suffered from
a fall accident which is considered as the most common
cause of injury for elderly people. The degree of injury
is proportional to the delay time in detecting fall in-
cidents and helping them immediately reach to health
care services (2). Unfortunately, a fall probably make el-
derly people experience unconscious states of mind and
physical pains. They are, in turns, unable to call for
emergency services by themselves. In this case, fall de-
tection systems which can automatically detect fall in-
cidents and generate an alarm to emergency centers are
essential in health care for elderly people.

So far, many systems were developed by using wear-
able devices, ambient devices or camera sensors to detect
fall incidents. Undoubtedly, wearable devices and ambi-
ent devices-based systems are able to achieve high accu-
racy. However, they often make inconvenient for users in
performing daily activities. In particular, elderly people
may easily forget to wear such kinds of devices every-
day. Noury et al. (2) and Yu (3) provided comprehensive
reviews of wearable sensors and ambient devices for fall
detection. In contrast, camera sensors mounted on the
walls, which are promising solutions are considered in
this paper.

The main challenge of using video surveillance is to
distinguish fall incidents from like-fall ones, i.e. losing
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balance, sitting down brutally, crouching on the floor,
and lying down on a sofa, etc. which often happen when
the person performs daily activities. In addition, the
person is often occluded by the furniture in the room
under the view of camera. Dynamic lighting conditions,
and low contrast between the person’s appearance and
background also pose difficulties.

In order to handle these challenges, many methods
were proposed and are summarized in the following text.
By using a single uncalibrated camera, the early work
of Anderson et al. (4) analyzed the size of human body
silhouettes. When the person is standing and falling,
the width-to-height ratios of silhouettes are small and
large, respectively. The aspect ratio changes may not
follow the rule due to the effect of human body upper
limb activities. To eliminate this effect, Liu et al. (5) used
a statistical scheme to remove peaks in vertical projec-
tion histograms of silhouette images. K-NN classifier is
trained by the features of aspect ratio and the difference
between height and width of human body silhouette.
Both methods merely reported the experiments with the
camera placed sideways. In practice of indoor surveil-
lance, the camera is preferred to be mounted obliquely
near to the ceiling for a wider field of view and occlusion
avoidance. Shoaib et al. (6) presented a context model to
learn the head and floor planes from the foregrounds of
one person moving in the scene under an oblique set-
ting of camera. Distance measures between locations
of detected heads and reference heads, provided by the
head plane, are used to classify fall incidents from other
events. Obviously, analyzing 2D silhouettes has two
weaknesses in common. It is unable to discriminate the
fall in parallel to the optical axis of the camera from the
sitting and bending poses. It is prone to poor perfor-
mance when the person is occluded by other objects or
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performs daily activities.
Motion History Image is adopted to quantify the mo-

tion of human body (7). Large motion is more likely
caused by a fall incident. Silhouettes are approximated
by ellipse models whose orientation angle and ratio of
major and minor semi-axes’ length are used to discrim-
inate a fall from other activities, including the like-fall
ones, i.e. sitting down brutally. Similarly, integrated
spatiotemporal energy map is used to calculate motion
activity coefficients for detecting a large motion event (8).
Orientation angle, displacement, and major-to-minor-
semi-axes ratio of human ellipse models are analyzed
in the framework of Bayesian Belief Networks to rec-
ognize fall and slip-only events. Chen et al. (9) pre-
sented a combination of distance map of two sampling
human skeletons and variation analysis of ellipse human
models. Human shape is supposed to change progres-
sively and slowly during usual activities, and drastically
and rapidly during a fall (10). Therefore, shape-matching
costs during a fall and during a usual activity are high
and low, respectively. The method is reported to work
at the frame rate of 5 fps due to the expense of high
computational cost.

Apparently, in single uncalibrated camera-based
methods, 3D information that is important in detecting
falls is not made use of. Therefore, Cucchiara et al. (11)

used a sideways calibrated camera to train probabilistic
projection maps for each posture, i.e. standing, crouch-
ing, sitting and lying. They suggested using a tracking
algorithm with a state-transition graph to handle occlu-
sions, in turn, leading reliable classification results. In
their latter work (12), partial occlusion is detected and
compensated by a wrapping method from multiple cam-
eras. A Hidden Markov Model (HMM) is trained for
obtaining more robust recognition results. 3D head tra-
jectory is extracted from particle filter-based head track-
ing to discriminate fall incidents (13). Thome et al. (14)

applied the metric image rectification to derive the 3D
angle between vertical line and principal axis of ellipse
human models. Decisions made independently by mul-
tiple cameras are fused in a fuzzy context to classify
postures. Layer HMM is hand designed to make event
inference. Anderson et al. (15) introduced a framework
of fall detection in the light of constructing voxel per-
son. Linguistic aspect of the hierarchy of fuzzy logic
used in this research for fall inference makes this frame-
work extremely flexible, allowing for user customization
based on their knowledge of cognition and physical abil-
ity. Recently, Auvinet et al. (16) discussed a method of
reconstructing 3D human shape from a network of cam-
eras. They proposed the idea of Vertical Volume Distri-
bution Ratio since volumes of standing and lying-down
person are vertically distributed significantly differently.
The method is able to handle occlusion since the 3D re-
constructed human shape is contributed from multiple
cameras.

In this paper, we propose a novel method of fall de-
tection by using two cameras whose fields of view are
relatively orthogonal, facilitating the estimation of oc-
cupied areas of people. Instead of using calibrated cam-

Fig. 1. Estimation of occupied area of a person
from the views of two cameras

eras, our fall detection system learns the sizes of stand-
ing or walking people who appear in small local patches
of the scene. The learning process is straightforward and
can be implemented automatically. The purpose of this
learning process is to build a so-called local empirical
template, typically representing the size of a standing
person for each local scene patch. Consequently, the
spatial distribution of occupied area of a person in the
standing pose can be constructed from LETs, learned
from the two cameras. Since the height and occupied
area of a sitting and lying-down person are proportional
to those of a standing person in the same patch in the
scene, we choose the feature space composed of height
and occupied area normalized with respect to those of
LETs. Interestingly, the novelty of this paper is the
proposed feature space in which three human poses of
standing, sitting and lying down are in three separable
regions. Fall incidents are detected by time-series anal-
ysis of human state or pose transition.

The rest of this paper is organized as follows. Section
2 is dedicated on our proposed fall detection system.
Experimental results are reported in Section 3 with dis-
cussion. Conclusions are made in Section 4.

2. Our proposed fall detection system

2.1 Estimation of occupied area from two
views Fig. 1 shows an example of home environ-
ments in which elderly people are assumed living alone.
If there are more than one person presenting in the
room, using a fall detection system seems to be not
much meaningful. In this sense, our proposed fall detec-
tion system is activated upon the detection of only one
person. Two cameras are mounted on the walls, near
to the ceiling, and in the oblique settings so that their
fields of view are relatively orthogonal. Foregrounds are
extracted from the input videos by using Gaussian Mix-
ture Model (17) (GMM). The person detected in the first
camera is identical to the one detected in the other cam-
era. Foreground of the person in each view is represented
by a rectangle or a bounding box. Under the two ortho-
graphic views, the occupied area of the person is roughly
estimated by
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Fig. 2. Flowchart of extracting Local Empirical
Templates

OA = WCam1 ×WCam2 · · · · · · · · · · · · · · · · · · · · · (1)

where OA, occupied area of the person, appearing in
the intersection of two fields of view, WCam1, width of
the person extracted from the first camera, and WCam2,
width of the person extracted from the other one.
2.2 Local empirical templates Apparently,

the occupied area of a person estimated by Eq. 1
varies throughout the scene due to the perspective ef-
fect of cameras. To eliminate the perspective effect, we
suggest using Local Empirical Templates (LET), which
have demonstrated to be effective in dealing with this
issue (18).

The cameras are assumed to be stationary and to be
higher than people’s head. Images captured from the
two cameras are divided into many cells. The number
of cells depends upon the resolution of the images and
the camera settings. Foregrounds of people moving in
the scene are captured along their trajectories and kept
in the buffer of each cell. We cluster the sizes, width and
height, of the foregrounds in each cell since people are
different in size, leading the generation of an appropri-
ate empirical template for each cell. By its nature, the
sizes of templates near to and far away the camera are
large and small, respectively. Therefore, LET provides
a good reference information of perspective caused by
the camera. In addition, LET is also able to handle the
effect of image distortion. The procedure of obtaining
LET in unknown scenes is straightforward and can be
performed automatically as shown in Fig. 2
2.3 Feature selection and computation We

assume that a person is detected at the cell (m, n) in the
view of the first camera †. The person is also appeared
at the cell (p, q) in the view of the other one. From the
buffer of cell (m, n) in the view of the first camera, the
template TCam1(m,n) = {W temp

Cam1(m,n), Htemp
Cam1(m,n)}

is extracted in which W temp
Cam1(m,n) and Htemp

Cam1(m,n)
are width and height of the template TCam1(m,n),
respectively. Similarly, the template TCam2(p, q) =
{W temp

Cam2(p, q), Htemp
Cam2(p, q)} is also extracted from the

buffer of cell (p, q) in the view of the other one.
Firstly, we choose the person’s height as a feature to

distinguish the standing pose from sitting and lying-
down ones. Since the height of person in standing
pose is always well larger than that of person in sit-

† a person is considered to be detected in a cell if the per-
son’s head appears in the cell

ting and lying-down poses, we normalize the height of
detected person with respect to the height of LET, ex-
tracted in the same scene patch with the detected per-
son. It is important to note that LET is the tem-
plate of people in standing pose. If we denote widths
and heights of the person detected at the cell (m,
n) in the first camera and at the cell (p, q) in the
other one by WCam1(m,n), HCam1(m,n),WCam2(p, q),
and HCam2(p, q), respectively. The normalized height is
calculated as the follows.

NHCam1(m,n) =
HCam1(m,n)

Htemp
Cam1(m,n)

NHCam2(p, q) =
HCam2(p, q)

Htemp
Cam2(p, q)

· · · · · · · · · · · · · · · (2)

In indoor environments, the person is likely occluded
by the furniture under the view of camera, leading the
inaccurate measures of height. Broken foreground also
contributes to the inaccuracy of the height measures.
However, it is rarely that the person is occluded by
other objects and broken foreground happens in the both
views of cameras. Therefore, the two measures in Eq. 2,
extracted from two cameras should be fused to produce
a more reliable feature, representing the height of the
person. In this paper, we take their average.

NH(m,n, p, q) =
NHCam1(m,n) + NHCam2(p, q)

2
(3)

However, in two cases of the person falling in parallel
to the optical axis of camera and the person sitting on
a chair or bending the body, 2D measures of the per-
son’s height by Eq. 3 are quite similar. Fortunately,
the occupied areas of the person in these two cases are
significantly different. We estimate the occupied area of
the person as the follow.

OA(m,n, p, q) = WCam1(m,n)×WCam2(p, q) (4)

Similarly, occupied area of the LET in the same scene
patch with the detected person is estimated by

OAtemp(m,n, p, q)

= W temp
Cam1(m,n)×W temp

Cam2(p, q) · · · · · · · · · · (5)

We reveal that the occupied areas of the person in
sitting and lying-down poses are proportional to that of
the person standing in the same position in the scene.
We normalize the occupied area of a person estimated
by Eq. 4 with respect to the occupied area of LET, es-
timated by Eq. 5, leading the generation of a feature,
so-called Normalized Occupied Area.

NOA(m,n, p, q) =
OA(m,n, p, q)

OAtemp(m,n, p, q)

=
WCam1(m,n)×WCam2(p, q)

W temp
Cam1(m,n)×W temp

Cam2(p, q)
· · · · · · · · · · (6)

The normalization process cancels the perspective ef-
fect of cameras. Therefore, the normalized measures of
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Fig. 3. Flowchart of our proposed fall detection
system in which ST, SI, and LY are STanding, SIt-
ting, and LYing states, respectively

both person’s height and occupied area are lower and
upper bounded. They are also independent of positions
of the person in the scene. The position notation in Eq.
3 and Eq. 6 can be simplified. In summary, our pro-
posed feature space is composed of normalized height,
NH and normalized occupied area, NOA of a person.

We reveal that three states of a person, standing, sit-
ting and lying down, are in three separable regions in the
proposed feature space. For a standing person, both fea-
tures of normalized height and normalized occupied area
vary around one, since LET is the template of a stand-
ing person. The height of sitting or lying-down person is
smaller than that of standing person in the same patch
in the scene. We find a threshold THheight to distinguish
sitting and lying-down people from standing people. Ob-
viously, the value of threshold is smaller than one. It is
the fact that occupied area of a lying-down person is
larger than that of a sitting person, considering in the
same scene patch. We also find a threshold THarea to
differentiate lying-down people from sitting people. In
our implementation, we choose 1 out of 24 video samples
in the dataset for training, in order to find the thresholds
THheight and THarea. In this training video, the per-
son must exhibit all three poses of standing, sitting on
a chair, and lying on the floor. The other video samples
are used for cross validation.
2.4 Fall detection The flowchart of our pro-

posed fall detection system is shown in Fig. 3. Fore-
grounds of a moving person are extracted from both
cameras for features computation and fusion. After
thresholding the features, we are able to detect the states
of the person since they lie in three separable regions of
the feature space. In this paper, three human states,
namely, standing, sitting and lying are taken into ac-
count. Bending bodies are considered as the state of
sitting since people in either sitting or bending poses
occupy similar areas.

It is noted that the human states are detected frame
by frame. However, to detect fall incidents, we must
keep eye on the history of human states, as shown in
Fig. 3. Fall incidents are claimed to be detected when

Table 1. Actions can be inferred from the
time-series analysis of human state transition

Standing Sitting Lying

Standing Standing or Walking Sitting down Falling

Sitting Standing up Sitting Lying or Crouching

Lying Prohibited Getting up Lying

people changes their states directly from standing to ly-
ing (11). For lying-down action of elderly people, for ex-
ample, crouching on the floor or lying on the floor, the
state transition should be from standing to sitting and
subsequently to lying-down states. Changing states di-
rectly between lying and standing is prohibited. The
transition must undergo the intermediate state of sit-
ting. The summarization of actions that can be inferred
by the time-series analysis of human state transition is
given in the Table 1.

In this paper, we keep states of the person detected
in N frames for analyzing the state transition in a prob-
abilistic framework. We define a stable state in the N
frames that appears with the highest probability. The
other states are considered as unstable states with small
probabilities. When the person makes a state transi-
tion, the probability of the stable state is gradually re-
duced. Meanwhile, the probability of an unstable state
is progressively surged. The state transition is confirmed
when the probability of the unstable state is higher than
that of the stable state. In the implementation, N is set
to 60.

3. Experimental results and discussion

3.1 Multi-view fall dataset For fair compar-
isons with existed methods of fall detection, the perfor-
mance evaluation must be conducted in a same dataset.
In this paper, we use the ”Multi-view fall dataset” re-
leased by Auvinet et al. (1) and compare the performance
of our proposed fall detection system with that of latest
works (10) (16), tested on the same dataset. This dataset
recorded simulated falls simultaneously from eight cam-
eras, which are mounted on the walls and in the oblique
settings. The dataset consists of 24 realistic scenarios,
showing 24 fall incidents and 24 confounding events (11
crouching, 9 sitting and 4 lying on a sofa). An experi-
enced clinician in the field of health care for elderly peo-
ple tried to simulate different kinds of fall, for instance,
falling forward, falling backward, and losing balance,
etc. The ground truth for each frame is also provided
along with the video samples. We use the video samples
captured by the second and the fifth cameras for mak-
ing experiments since they form two orthographic views.
In the dataset, inexpensive IP cameras with a wide an-
gle to cover all the room are employed. Consequently,
the images are highly distorted. Fig. 4 illustrates some
examples of simulated falls and daily activities.
3.2 Separable feature space In Section 2.3, we

discuss about the separable characteristics of our pro-
posed feature space, consisting of normalized height NH
and normalized occupied area NOA. In this section, we
will demonstrate the validity of our discussion. We use
1 out of 24 video samples in the dataset in the training
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(a) falling forward (b) falling backward (c) carrying object (d) putting off the coat

(e) losing balance (f) failing to sit on a chair (g) lying on a sofa (h) sitting

(i) falling to the sofa (j) falling from the sofa (k) doing house work (l) crouching with occlusion

Fig. 4. Examples of simulated falls and daily activities

phase for finding the thresholds THheight and THarea to
separate the feature space. This video sample must con-
tain three actions of walking, sitting, and lying on the
floor. Therefore, the ninth scenario seem to fit the train-
ing purpose. We also use another video sample showing
a man walking through the scene for learning LETs. In
the video sample, he does not walk through all corners
of the scene. Therefore, interpolation and extrapolation
with the prior knowledge of the scene perspective are
performed for learning LETs. We compute the features
by Eq. 3 and Eq. 6 for every frame of the ninth sce-
nario and draw them in the feature space along with the
ground truth, as shown in Fig. 5.

In this training scenario, the man enters the scene and
approaches to the chair, that is, he is in the standing
pose. The features of his standing pose in this dura-
tion vary around the point (1, 1) in the feature space.
When he sits on a chair, his normalized height declines
below 0.65; The red line in Fig. 5 shows the transition
when he sits down and stands up. After standing up, he
falls and lies on the floor. In the state of lying on the
floor, his normalized height is also well smaller than 0.65;
Therefore, we can set the threshold THheight to 0.65 for
discriminating the standing pose from sitting and lying
poses. Fortunately, the normalized occupied areas of sit-
ting and lying poses are significantly different. We use
the threshold THarea of 2 to separate the regions of sit-
ting and lying poses in the feature space. We test our
proposed fall detection system with these above thresh-
olds on the other video samples of the dataset. Fig. 6

Fig. 5. The feature space of the ninth scenario, in
which SS stands for the transition from Standing
to Sitting

demonstrates the feature space of the eighth scenario,
tested with the thresholds obtained in the training. The
fall incident is detected by the time-series analysis of
human state transition and are denoted by the red line
in Fig. 6. It also confirms the validity of the impor-
tant separability characteristics of our proposed feature
space.

3.3 Performance evaluation, comparison and
discussion In this section, we will evaluate the per-
formance of our proposed fall detection system and com-
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Fig. 6. The feature space of the eighth scenario,
testing with thresholds obtained in the training

pare with other methods (10) (16), tested on the same
dataset. To do that, we compute the sensitivity and
the specificity, obtained from the time-series analysis of
human state transition, as the follows.

( 1 ) True Positive (TP): the number of falls correctly
detected.

( 2 ) False Negative (FN): the number of falls not
detected.

( 3 ) False Positive (FP): the number of normal ac-
tivities detected as a fall.

( 4 ) True Negative (TN): the number of normal ac-
tivities not detected as a fall.

( 5 ) Sensitivity: Se = TP
TP+FN

( 6 ) Specificity: Sp = TN
TN+FP

High sensitivity means that most fall incidents are cor-
rectly detected. Similarly, high specificity implies that
most normal activities are not detected as fall events. A
good fall detection system has high values of sensitivity
and specificity.

We have tested our proposed fall detection system on
24 realistic video samples of the dataset. The system is
able to detect 23 out of 24 fall incidents. It fails to detect
the fall event in the 22nd scenario since the person is sit-
ting stably on a chair and subsequently he slips to the
floor. Therefore, our system detects as a lie-down event.
No normal activities detected as falls are reported. Our
sensitivity and specificity of our fall detection system
are 95.8% and 100%, respectively. Table 2 shows the
performance comparison between our methods and two
other methods (10) (16), tested on the same dataset.

Table 2 shows that our results are very competitive in
comparison with those of other methods (10) (16) tested
on the same dataset. It is noted that the results of
the method proposed by Auvinet et al. (16) are reported
with a network of three cameras. The sensitivity of their
method can be boosted to 100 % if a network of more
than four cameras is employed. Both of these methods
are high computational costs. Rougier et al. (10) reports
the implementation of 5 fps and argues that it is suffi-
cient for detecting fall events. Auvinet et al. (16) presents
the GPU implementation to realize their method in real-
time. However, our proposed fall detection system com-

Table 2. Performance comparison between our
method and two other works (10) (16), tested on the
same dataset

Sensitivity (Se) Specificity (Sp)

Our method 95.8 % 100 %

Auvinet et al. (16) † 80.6 % 100 %

Rougier et al. (10) 95.4 % 95.8 %

posing of low cost modules is implemented in real-time
in a common desktop PC.

Our proposed fall detection system is user-friendly.
After the cameras are mounted on the wall, users can run
the system in the learning mode. The learning process is
performed automatically, capturing the foregrounds of a
person walking through the scene. It is better for the
system to capture the size of monitored person. When
the learning process is completed, the system is ready
for detecting falls. It is noted that the initial settings
can be done by the users without knowledge of com-
puter vision. In addition, our fall detection system is
able to preserve the privacy of the users.

4. Conclusions

We have presented a novel method of fall detection
for aiding elderly people living alone. Local empirical
templates are used to handle the effects of distorted im-
ages and the perspective. We have proposed a novel
feature space, composing of normalized height and nor-
malized occupied area. The most important character-
istics of the feature space is that three human states of
standing, sitting and lying on the floor lie in three sep-
arable regions. Fall incidents are detected by the time-
series analysis of human state transition. Our proposed
method achieves the very competitive performance in
comparison with other methods (10) (16), tested on the
same dataset. However, it has two other advantages:
(1) the real-time implementation in a common PC since
it is composed of low computational cost modules, and
(2) the user-friendly system. In addition, it is able to
preserve the privacy of the users.
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