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Abstract

Optical consistency between the real world and the

virtual objects is one of the important issues in Aug-

mented Reality (AR). This paper proposes a method

to estimate illuminations from an object shadow and

incomplete object shape information captured by an

RGB-D camera. The environmental illumination can

be estimated without any prior knowledge of the object

shape. The radiance of each light source is computed by

solving linear equations derived from color and depth

images. Since a priori knowledge of object shape is

not necessary, we can flexibly use/combine any objects.

Thus, we can use/combine multiple objects in the target

scene to increase the accuracy and flexibility. Experi-

mental results show the characteristics of our proposed

method.

1. Introduction

AR adds virtual information to the real world so that

human can perceive more information from their expe-

rience. To realize realistic AR, especially, any virtual

objects need to be consistent with the real world. One of

the important consistencies is optical one such as shad-

ing on the virtual objects and shadow cast by them. For

this purpose, two key components are necessary; realis-

tic rendering technique and accurate environmental in-

formation.

To calculate the light condition of the target scene,

researchers have proposed various methods. To realize

the optical consistency in AR, one of the well-used so-

lutions is to estimate the environmental light condition

from camera feedback.

There exist various methods estimating light distri-

bution.The methods are categorized into two types. The

first method directly acquires the light distribution of

the target scene from the camera observation. The point

of this method is how to observe wider angle view from

the camera(s).one of the aims one intuitive method is

to attach a fish eye lens to the camera [2]. Another

solution puts a spherical mirror in the scene and esti-

mates the light distribution from the reflection on the

mirror [1, 4]. The Second indirectly estimates the light

distribution. This method is based on a physics phe-

nomenon that shadow is generated by objects obstruct-

ing light sources. The idea of the indirect method is

to estimate light distribution from shadow appearing

on the image(s), so called illumination from shadow.

Modeling shadow as a product of scene geometry, re-

flectance property, and light distribution inverse opera-

tion can recover the light distribution from the shadow.

Sato et al. assumed that there is a known shape object

in the scene so that light distribution can be computed

with simple least square methods [5].

Merit of the former method is simplicity. Since cam-

era directly observes light distribution, we can easily

recover it. However, we should prepare special equip-

ments such as fish eye lens and spherical mirrors. On

the other hand, illumination from shadow methods does

not require them. However, their assumption about a

priori knowledge of object shape limits the usage envi-

ronment.

The purpose of this paper is to reduce the limitation

of existing illumination from shadow methods. Specif-

ically, our proposed method aims to estimate the light

distribution without a priori knowledge of object shape.

For this purpose, we introduce a depth camera and use

the incomplete object shape information obtained by it

instead of using the complete shape information. Even

though the single fixed depth camera provides incom-

plete shape information, such information can be useful

to estimate the light distribution. Since our method does

not require a priori knowledge of object shape, we can

flexibly use/combine any objects. This characteristic al-

lows us to use multiple objects in the target scene so that

we can expect that the objects contribute to increase the

accuracy of light distribution estimation.



2. Illumination Estimation using an RGB-D

Camera

This section describes our proposed method. We use

calibrated color camera and depth camera that every

pixel has color information (RGB) and depth informa-

tion (D). First of all, we briefly derive the basic idea

of calculating illumination from shadow, the reader can

refer to [5] for complete equations. Our method takes

three steps: Scene segmentation (Sec.2.2), scene geom-

etry acquisition (Sec.2.3), and solution of linear equa-

tion (Sec.2.4). In this paper, we assume that an object is

placed on a flat Lambertian plane.

2.1. Illumination from Shadow

Considering the light source in all directions, we

model that light sources are distributed on a hemisphere

with an infinite distance radius. We follow a mathemat-

ical form presented by Sato et al. [5]. Due to the lack of

space, let us define discrete equation. Pixel value i(u)
observed at a point x on a flat plane is written as

i(u) =
N

∑

n=1

Vn(x)RdLn cos θn, (1)

where u represents pixel position, Vn(x) is a visibility

term of n-th light source w.r.tlet@tokeneonedota point

x. The function Vn(x) is 1 if the n-th light source is

visible, otherwise is 0. A constant Rd is a diffuse re-

flection parameter of the plane. Since Lambertian sur-

face uniformly reflects the light to all directions, Rd is

set to a constant value. Ln represents the radiance of

n-th sampling light source. Its direction is defined by

θi and φi which are the elevation and azimuth angles

w.r.tlet@tokeneonedotthe point x respectively. By in-

creasing θi and φi by a constant degree, it is possible

to be set the sampling light source on the hemisphere.

Light intensity cos θn is computed from the angle of the

light source and the point x.

Equation (1) tells us that a pixel in the shadow area

gives one linear equation. If we know the scene geom-

etry, i.elet@tokeneonedot, 3D shape of an object in the

target scene, we can estimate N light source distribution

by least square methods from M >= N pixels deriving

M linear equations [5].

2.2. Segmentation

To obtain the visibility term Vn(x) and light inten-

sity cos θn, we need to know the location of shadow and

object area separately. Our proposed method estimates

these two by background subtraction using both color

images and depth images.

We use four input images and their pixel values are

cobj(u), cbg(u), dobj(u), and dbg(u), where the variable

c and d denote color image and depth image and the

subscripts bg and obj denote background image and ob-

ject image respectively. Each difference image is de-

fined as follows

cdiff(u) =

{

1 if |cobj(u) − cbg(u)| > τc

0 otherwise
(2)

ddiff(u) =

{

1 if |dobj(u) − dbg(u)| > τd

0 otherwise
(3)

where τ represents the threshold for detection, the sub-

script diff denotes difference image.

When we put an object in the scene, the depth im-

age gets difference only on object area while the color

image does on both object and shadow area. Using

these differences, we segment the shadow area and ob-

ject area separately. First, we detect object area. Since

object area corresponds to ddiff(u) = 1, we set object

area aobj(u) = ddiff(u). Next, we detect shadow area.

Utilizing the difference between cdiff(u) and ddiff(u)
mentioned above, we extract the shadow area by taking

exclusive OR of the difference images as ashadow(u) =
cdiff(u)

⊕

ddiff(u).

2.3. Computation Vn(x)

Next, we compute the visibility function Vn(x)
from the depth image dobj(u) and the segmented ar-

eas aobj(u) and ashadow(u). As mentioned above,

the depth camera provides incomplete shape infor-

mation of the object because the backside of it

w.r.tlet@tokeneonedotthe depth camera is invisible.

Thus, there are three types of possibilities for the vis-

ibility function: visible and n-th light reaches the point

x resulting Vn(x) = 1; visible and object blocks n-th

light to the point x resulting Vn(x) = 1; and invisible.

There are several choices how to deal with the invisible

case. One omits the corresponding Vn(x) from linear

equations while another somehow sets the term 1 or 0.

To increase the number of linear equations, we do not

omit the corresponding Vn(x). If we set the Vn(x) to

1, this means that the backside of the object has a flat

shape like a cliff, but this assumption is too restrictive.

Thus, we set Vn(x) corresponding to the invisible area

to 0.

2.4. Solution of Linear Equations

Now, we have Vn(x), cos θn, and the constant value

Rd computed from the color background image cbg.



When the shadow area has M pixels, we can derive M

linear equations each of which corresponding to each

pixel on its. Since any light intensity should have a pos-

itive value, we estimate the light distribution by non-

negative least-square algorithm [3].

3. Experiments and Results

This section validates our proposed method by using

real images of indoor environments. We estimated the

light distribution using our proposed method and Sato

et al.’s [5] method. After that, we superimposed the

shadow of the virtual object in real scene by using esti-

mated light distribution. In this experiment, Microsoft

Kinect is used as an RGB-D camera. We used eight var-

ious objects (shown in Fig. 1). They include both sim-

ple shapes (e.g., Box, Hemisphere) and complex ones

(e.g., Duck1, Doll1). As mentioned above, our method

can flexibly allow multiple objects. We combined the

linear equations of the multiple objects, except for Box,

will be called Combined.

Bottom row of the right column in Fig. 2 shows the

scenes captured by a fish-eye lens camera. The posi-

tions of the real light sources (fluorescent lamps) are

marked with blue circles and the position of the RGB-

D camera is marked with a red circle.

For the discretizing the light distribution, we had one

for every 5 degrees in 0 ≤ θ ≤ 70, assuming the light

sources are not located around the ground plane and for

each 10 degrees in 0 ≤ φ < 360. Thus, the number of

the light sources N is 505 degrees. Our method is im-

plemented as follow, OS:Windows 7, CPU:Intel Core

i7-2600 3.40GHz, RAM:3.49GB, implement environ-

ment:Microsoft Visual C++ 2010.

3.1. Light Source Estimation

Fig. 2 shows the estimated results. Due to the lack

of space, we show some of the results. First row shows

object images; second row is the estimated light distri-

butions. First three columns show the results of three

of eight objects: Box, Duck2, and Hemisphere. Fourth

column is Combined. Fifth column shows the Sato et

al.’s method. Since it requires a priori knowledge of ob-

ject shape, we used same Box for estimation.

The objects’ shadows show that it seems to have two

bright light sources. As mentioned above, our method

uses incomplete shape information, the result of Sato et

al.’s method with the complete shape information can

be regarded as an ideal result. Thus, it cannot overcome

their method in estimation accuracy. In this experiment,

we regarded the result of Sato et al.’s method as Ground

Box

Doll1

Duck1

Doll2

Duck2

Sphere

PenLight

Hemisphere

Figure 1. Eight Objects using out experi-
ments.

Truth and evaluated the errors between our method and

theirs one.

In second row of Fig. 2, even the results are dif-

ferent according to the objects, all the results have a

bright light source at the bottom center and darker light

sources are distributed. Furthermore, compared with

Real scene, they tend to have errors of light sources

around the RGB-D camera. It is due to the lack of infor-

mation of linear equations corresponding to an invisible

shadow area which is mentioned in [6].

We evaluated the light distribution of our method

and the Ground Truth. Table. 1 shows the RMSE and

standard deviation (Std. dev.) between our proposed

and Sato et al.’s methods. Each estimated sampling

light takes a value from 0 to 1. As mentioned above,

these methods have theoretical mis-estimation around

the RGB-D camera. In this evaluation, we ignored 13

light sources around the camera to reduce the effect of

the mis-estimation. From Table. 1, Hemisphere and

PenLight are worse than the others. Compared with

other object images in Fig. 1, especially, Hemisphere

has only one visible shadow from center to bottom left

direction and the shadows cast smaller area. Other ob-

ject images seem to have two shadows from center to

bottom left and right direction. It causes that the lin-

ear equations can’t be included the information of true

shadow from center to right direction cast by present

light sources. On the other hand, Combined is best of

all results. Because each object shadow has different

shape of its shadow, linear equations can be included

many shadow information by using multiple objects.

3.2. Shadow Rendering

For quantitative evaluation, we performed the

shadow rendering results by using each estimated light

distribution as shown in the first row of Fig. 3. As same

as the estimated light distribution, we regarded Sato et



al.’s result as Ground Truth. The second row of Fig. 3

shows error map comparing with Ground Truth. Com-

paring with the real scene, Sato et al.’s method well-

rendered two large shadows. On the other hand, our

proposed method seems to have lack of them. We com-

puted the evaluation value of the rendering shadows.

Table. 2 shows the RMSE, Std. dev., and Maximum

(Max) value of the absolute difference between our pro-

posed and Sato et al.’s methods.

These results concern how clearly shadows are ob-

served on the image. Looking at object images, the

shadows appear differently. Box case has two large

shadows, thus, both methods can estimate the corre-

sponding light sources. Since the difference between

Box and Sato et al.’s method is only the incompleteness

of shape information, we can conclude that Box’s er-

ror is caused by shape incompleteness. Duck2 case has

also two shadows but they are relatively less clear than

Box. These unclearer shadows and object’s complex

shape cause the result worse than Box. Surprisingly,

Hemisphere shows worst result even though it’s one of

the simple objects. Comparing with the other two cases,

as mentioned before, Hemisphere has only one visible

shadow. This condition can be the error cause. Com-

bined result is almost as same as Duck2 and worse

than Box. Comparing with Duck2, its maximum error

is reduced and mean and standard deviation is slightly

reduced. One plausible cause is that some error/noise

makes the light distribution result worse.

4. Discussions

These experiments show some characteristics of our

proposed method. Comparing with Sato et al.’s result,

illumination estimation with incomplete shape informa-

tion provides slightly worse results. This is the limita-

tion of our proposed method. Basically, a simpler shape

object such as Box provides better result than a com-

plex shape object. There are two possible causes of this

observation. One is the invisible area. Since Box has

less invisible volume than other cases, the number of

mis-estimation of Vn(x) is less than the others. An-

other cause is shape complexity. With a complex shape

objects, depth camera provides worse measurement er-

rors. This makes Vn(x) worse even Vn(x) correspond-

ing to visible area. Comparing Box and Hemisphere,

it is clear that our method requires as much linear equa-

tions as possible even with simple shape objects. If one

object is used in our method, the ideal object is like

Box, because its shape is simple and its shadows can

be clearly observed.

Combining linear equations from multiple objects

has both pros and cons. The important contribution of

our proposed method is that Combined provided better

result than each component such as Duck2 and Hemi-

sphere as we expected. However, Box’s result is better

than Combined, which means that combining the linear

equations also accumulates mis-estimation of Vn(x).
Since we rely on simple non-negative least squares, our

method is sensitive to noises or large errors. One po-

tential idea to conquer this difficulty is to apply more

sophisticated optimization such as sparsity constraint

or object shape constraint. Since the object shape in-

directly relates to Vn(x), the developing optimization

can be a good future direction.

In our method, the estimation process does not run

in real time. (For example, computation time of Box

is about 40 min.) Our method takes a lot of time in

the calculation of Vn(x). Also, the shadow rendering

process takes about 50 min. However, we consider that

its process can be real time by using computer graphic

technics which are used in [4].

5. Conclusions

This paper proposes a method to estimate light distri-

bution from shadow and incomplete object shape using

an RGB-D camera. In our method, to estimate the light

distribution, visibility term Vn(x) is computed from in-

complete object shape. The experimental results show

that our proposed method can estimate the light dis-

tribution even with incomplete object shape informa-

tion. In our experiments, we confirmed the limitation

of our proposed method, derived some characteristics

of it, and found potential future direction.
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Figure 2. Light estimation results:The top row shows object images using our experiments,

the bottom row shows estimated light distributions. the bottom row of right column shows the
scene captured by a fish-eye lens camera.

Table 1. Evaluation values of estimated light distributions in Fig. 2.

Object name Box Duck1 Duck2 PenLight Doll1 Doll2 Sphere Hemisphere Combined

RMSE (×10−3) 6.9 6.6 6.9 8.3 7.3 7.0 7.6 8.2 6.4

Std.dev. (×10−3) 7.6 7.1 7.5 9.1 8.0 7.0 7.6 8.2 7.0
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Figure 3. Shadow rendering results: the top row shows shadow rendering results using esti-

mated light distributions, the bottom row shows error maps with Sato et al. [5].

Table 2. Evaluation values of shadow rendering results shown in Fig. 3.

Object name Box Duck1 Duck2 PenLight Doll1 Doll2 Sphere Hemisphere Combined

RMSE
[pixel value] 6.1 9.1 7.3 9.1 9.1 7.8 7.6 9.8 7.2

Std.dev.
[pixel value] 5.3 8.1 6.4 7.7 8.3 6.3 6.8 8.9 6.4

Max
[pixel value] 58.9 128.7 70.6 90.0 140.7 68.6 66.5 82.8 66.0


