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Abstract: We present a method for overlaying a texture onto a non-rigidsurface using a commodity depth camera. The
depth cameras are able to capture 3-D data of a surface in real-time, and have several advantages compared
with methods using only standard color cameras. However, itis not easy to register a 3-D deformable mesh to a
point cloud of the non-rigid surface while keeping its geometrical topology. In order to solve this problem, our
method starts by learning many representative meshes to generate surface deformation models. Then, while
capturing 3-D data, we register a feasible 3-D mesh to the target surface and overlay a template texture onto
the registered mesh. Even if the depth data are noisy or sparse, the learning-based method provides us with a
smooth surface mesh. In addition, our method can be applied to real-time applications. In our experiments,
we show some augmented reality results of texture overlay onto a non-textured T-shirt.

1 INTRODUCTION

Recent progress in computer vision significantly ex-
tended the possibilities of augmented reality, a field
that is quickly gaining popularity. Augmented reality
is a young field that can be applied to many domains
like entertainment and navigation (Azuma, 1997).

For clothes retail industry, examples of virtual
clothes fitting system have been presented. In these
systems, users can try on clothes virtually. It can be
applied to a tele-shopping system over the internet,
clothes designing, etc.

In order to realize such a virtual fitting using
a monocular 2-D camera, many methods, that reg-
ister a deformable mesh onto user’s clothes and
map the clothes texture to the registered mesh, have
been presented (Ehara and Saito, 2006) (Pilet et al.,
2007) (Hilsmann and Eisert, 2009). For the de-
formable mesh registration, they need that rich tex-
tures or the silhouette of the clothes can be extracted.

In the last few years, a new kind of depth cameras
has been recently released with a reasonable price. By
utilizing the 3-D data captured by the depth camera,
some industrial virtual cloth fitting systems have been
presented. However, those systems roughly, or just
do not, consider the shape of the clothes that a user
wants to wear. On the contrary, there are some meth-
ods which register a 3-D deformable mesh onto cap-
tured depth data of a target surface. Although those

registration methods are very accurate, most of them
require high processing time and are then not suitable
for real-time applications.

In this paper, we present a real-time method that
registers a 3-D mesh and overlays a template texture
onto a non-rigid target surface like a T-shirt. Our
method consists of an off-line phase and an on-line
phase. In the off-line phase, we generate a number
of representative sample meshes by exploiting the in-
extensibility of each edge of the triangles. Then the
PCA (Principal Component Analysis) is applied for
reducing the dimensionality of the mesh. In the on-
line phase, we quickly estimate few parameters for
generating the mesh according to input depth data.
The target region where the template texture should
be overlaid is defined by few color markers. Finally,
the generated mesh is registered onto the target sur-
face and the template texture is mapped to the regis-
tered mesh.

There are some contributions in our research.
First, we overlay a texture which has a feasible shape
onto a non-rigid surface captured by a commodity
depth camera. Even though input depth data is noisy,
our method can generate a natural and smooth shape.
Second, we also do not need to use any texture to gen-
erate the surface mesh that fits the real shape. Finally,
we achieve a real-time process by taking the advan-
tage of the PCA that is a simple method of reducing
the dimension of meshes.
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2 RELATED WORKS

Traditionally, methods that aim at overlaying a tex-
ture onto a non-rigid surface are applying a two di-
mensional or three dimensional deformable model re-
constructed from a commodity color camera.

2-D Deformable Model. Pilet et al. have pre-
sented a feature-based fast method which detects and
tracks deformable objects in monocular image se-
quences (Pilet et al., 2007). They applied a wide base-
line matching algorithm for finding correspondences.
Hilsmann and Eisert proposed a real-time system that
tracks clothes and overlays a texture on it by estimat-
ing the elastic deformations of the cloth from a single
camera in the 2D image plane (Hilsmann and Eisert,
2009). Self-occlusions problem is addressed by using
a 2-D motion model regularizing an optical flow field.
In both of these methods, the target surface requires a
rich texture in order to perform a tracking.

3-D Deformable Model. Several methods are tak-
ing advantage of a 3-D mesh model computed from
a 2-D input image for augmenting a target surface.
Shenet al. recovered the 3-D shape of an inextensi-
ble deformable surface from a monocular image se-
quence (Shen et al., 2010). Their iterativeL2-norm
approximation process computes the non-convex ob-
jective function in the optimization. The noise is re-
duced by applying aL2-norm on re-projection errors.
Processing time is, however, too long to satisfy a prac-
tical system due to their iterative nature.

Salzmann et al. generated a deformation
mode space from the PCA of sample triangular
meshes (Salzmann et al., 2007). The non-rigid shape
is then expressed by the combination of each defor-
mation mode. This step does not need an estimation
of an initial shape or a tracking. Later, they achieved
the linear local model for a monocular reconstruction
of a deformable surface (Salzmann and Fua, 2011).
This method reconstructs an arbitrary deformed shape
as long as the homogeneous surface has been learned
previously.

Perriollat et al. presented the reconstruction of
an inextensible deformable surface without learning
the deformable model (Perriollat et al., 2010). It
achieves fast computing by exploiting the underlying
distance constraints to recover the 3-D shape. That
fast computing can realize augmented reality applica-
tion. Note that most of those approaches require cor-
respondences between a template image and an input
image.

Depth Cameras. Recent days, depth cameras have
been becoming popular and many researchers have
been focusing on the deformable model registration

using it (Li et al., 2008) (Kim et al., 2010) (Cai et al.,
2010). The depth camera has a big advantage against
a standard camera because it captures the 3-D shape
of the target surface with no texture.

Amberget al. presented a method which extends
the ICP (Iterative Closest Point) framework to non-
rigid registration (Amberg et al., 2007). The opti-
mal deformation can be determined accurately and
efficiently by applying a locally affine regulariza-
tion. Drawback of this method is that the processing
cost increases due to the iterative process. Papazov
and Burschka proposed a method for deformable 3-
D shape registration by computing shape transitions
based on local similarity transforms (Papazov and
Burschka, 2011). They formulated an ordinary dif-
ferential equation which describes the transition of a
source shape towards a target shape. Even if this ap-
proach does not require any iterative process, it still
requires a lot of computational time.

In addition, we are aware that most methods us-
ing a depth camera assume that the input depth data is
ground truth. Therefore, they may result in an unnat-
ural surface if the depth data is noisy.

3 TEXTURE OVERLAY ONTO
NON-RIGID SURFACE

In this section, we describe our method to overlay a
texture onto a non-rigid surface. Fig. 1 illustrates the
flow of our method. First, in the off-line phase, we
generate deformation models by learning many rep-
resentative meshes. That deformation models were
proposed by Salzmannet al. (Salzmann et al., 2007).
Because the dimension of the mesh in the model is
low, we can quickly generate an arbitrary deformable
mesh to fit the target surface in the on-line phase. In
addition, thanks to the models, even though the input
data is noisy, we can generate a natural mesh that has
smooth shape.

In Salzmann’s method, the iterative processing is
required because it is not easy to generate a 3-D mesh
only from a 2-D color image. In our case, we can
generate a 3-D mesh directly by taking advantage of
3-D data from a depth camera.

3.1 Surface Deformation Models
Generation

In the off-line phase, we generate the deforma-
tion models by learning several representative sam-
ple meshes. This part is based on Salzmann’s
method (Salzmann et al., 2007) that can reduce dras-
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Figure 1: Flow of our method.

tically the number of degrees of freedom (dofs) of a
mesh by assuming that the original length of the edge
is constant and utilizing PCA.

In our approach, the target surface and the tem-
plate texture are rectangular, so we introduce a rect-
angular surface mesh made ofm = M × N vertices
V = {v1, ...,vm} ⊂ R

3.

3.1.1 Sample Mesh Generation

Thanks to Salzmann’s work, we can generate sample
meshes that are variously deformed by setting small
angle parameters. The number of the parameters is
considerably smaller than 3×m that is the original
dofs of the meshV.

We randomly constrained the range of the angle
parameters to[−π/8,π/8] and discarded the gener-
ated meshes that may still not preserve the topology.

Finally, all the sample meshes are aligned in order
to uniformize the result of the PCA.

3.1.2 Dimensionality Reduction

For more sophisticated expression of the mesh, Salz-
mann proposed the method to conduct the dimension-
ality reduction by running the PCA on the sample
meshes presented in Sec. 3.1.1. As a result, we can
get the average mesh̄V = {y1, ...,ym} ⊂ R

3 andNc
principal componentsP = {p1, ...,pm} ⊂ R

3 which
represent some deformation modes. Then an arbitrary
mesh can be expressed as follows:

V = V̄+
Nc

∑
k=1

ωkPk (1)

whereV is the vertices of the target surface mesh that
we want to generate,ωk denotekth principal compo-
nent score or weights, andPk denote the correspond-
ing principal components or deformation modes.Nc
is the number of the principal components, which is
determined by looking at the contribution rate of the

PCA. For example, settingNc to 40 principal compo-
nents is enough to reconstruct over 98% of the origi-
nal shape. Any mesh can then be expressed as a func-
tions of the vector:Θ = {ω1, ...,ωNc}. OnceΘ is
known, the surface mesh can be easily reconstructed
using Eq. 1.

In the following section, we explain our method to
generate a 3-D mesh from an input depth image and
to overlay a texture onto a non-rigid surface by using
the surface deformation models.

3.2 Mesh registration

The goal in the on-line phase is to overlay a template
textureS onto a target surfaceT by using a color
image and its corresponding depth image. In order
to create the mesh onto which the texture is mapped,
we need to estimate the optimal principal component
score vectorΘ. In general, the principal component
scoreωk is described as:

ωk = (V− V̄) ·Pk (2)

whereV̄, Pk andV were defined in Eq. 1.
This equation means thatωk will be higher if

(V− V̄) is similar to Pk. In that case,Pk consider-
ably affects the shape of the generated surface mesh,
and vice versa. The generated surface mesh will then
receive the template texture and will be overlaid onto
the target surface.

3.2.1 Point Cloud Sampling

Eq. 2 means that each data needs to have the same
dimension. AlthoughV is unknown, the input point
cloud of the target surfaceT is useful as a good can-
didate to replaceV. The simplest idea is to setV
by finding the corresponding points between the point
cloud ofT and the vertex coordinates of̄V. However,
T is a big data set without any special order, implying
that the computational time may become high.

Therefore we sample the point cloud ofT to
match its dimension to the dimension ofV. The sam-
pling is done on the input depth image by using color
markers. We have eight points defined by eight color
markers onT and add an additional point which is a
centroid of them. Based on their image coordinates,
we sample the region covered by the color markers
such that the number of vertex becomes the expected
sampling resolutionND. ND is set tom that has the
same dimension as̄V. Each sampled coordinate are
computed as linear interpolation of the image coordi-
nates of adjacent 4 points as presented in Fig. 2.
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Figure 2: Markers and sampled coordinates. Green points
on the surface border denote the markers that are detected
based on its color. The center green point is an average
coordinate of the green points on the surface border. Yellow
points are the sampled coordinates.

3.2.2 Normalization

Even if the dimension of the sampled point cloud has
become same as the one ofV̄, it can not still be used in
Eq. 2 because the scale and the orientation of the point
cloud is different from those of̄V andPk. In order to
match them, we define a normalized coordinate sys-
tem and a rigid transformation matrixM which trans-
forms the data from the world coordinate system to
the normalized system.

M is computed using the captured depth
data. We first define a rigid transformation which
makes all sampled points ofT to fit the co-
ordinates of the undeformed mesh. The unde-
formed mesh is aligned in the normalized sys-
tem so that its four corner vertices correspond to
the coordinates

(

−W−1
2 ,−H−1

2 ,0
)

,
(

W−1
2 ,−H−1

2 ,0
)

,
(

−W−1
2 , H−1

2 ,0
)

and
(

W−1
2 , H−1

2 ,0
)

. Note thatW and
H respectively represent the width and the height of
the undeformed mesh.

The estimation ofM is done by a least-squares fit-
ting method. The sampled point cloud ofT is nor-
malized asV′ of TN by M. The alignment of̄V andPk
in the normalized system can be pre-processed during
the stage presented in the Sec. 3.1.1.

3.2.3 Stretch of Average Mesh

Thex andy coordinates ofV′ do not match the ones
of V̄ in the normalized coordinate system whenT is
deformed. If their difference is too big, we can not
reconstruct the optimalωk. Therefore we stretch the
shape ofV̄ to roughly match the one ofV′.

The stretch ofV̄ is applied on theXY plane di-
rection in the normalized coordinate system. The ver-
tex coordinates of̄V which correspond to the color
markers are transformed to the marker’sx andy co-
ordinates while keeping eachz coordinate. On top of
that, those stretching transformation vectors are used

for the other coordinates of̄V. The remaining coor-
dinates are transformed by applying a weight on the
previously computed vectors. Each weight is pre-
processed based on the square distance between the
viewing coordinate ofV̄ and each vertex coordinate
corresponding to the markers ofV̄. The resulting ver-
tex coordinates are expressed byV̄′. As a result of the
stretching,x andy coordinates ofV′ andV̄′ become
similar.

3.2.4 Principal Component Scores Computation

Thus, we can adapt Eq. 2 to:

ωk = (V′− V̄′) ·Pk. (3)

Because eachωk that is calculated in the Eq. 3 is
applicable toV̄′, we generate the mesh using this new
equation:

V = V̄′+
Nc

∑
k=1

ωkPk. (4)

Then we get the meshV corresponding toTN .

3.2.5 Mesh Projection

Once we generateV, the last stage is to transform it
to the world coordinate system. Because we already
know transformationM from the world coordinate
system to the normalized coordinate system, we can
transformV by usingM−1.

For the rendering, we define the texture coordi-
nates for each vertex of a surface mesh. Therefore,
the texture is overlaid on the target surface obtained
by M−1V.

4 EXPERIMENTAL RESULTS

All the experimental results have been done on a com-
puter composed of a 2.50 GHz Intel(R) Xeon(R) CPU
and 2.00 GB RAM. We use the depth camera Mi-
crosoft Kinect with an image resolution of 640×480
pixels and a frame rate of 30 Hz. The target surface is
a region of a T-shirt without any textures, but defined
by eight basic color markers. For the resolution of the
rectangular mesh, we set bothM andN to 21 vertices.

4.1 Depth Comparison

We evaluated our method by the comparison of depth
value between the registered mesh and the depth cam-
era. We plot the depth data of the depth camera and
the registered mesh in the direction of the horizontal
image axis in Fig. 3.
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Figure 3: Plot of depth data of depth camera and generated mesh. The blue points in the top row images denote the positions
which are used for plotting. The bottom row images are the plot of the depth data.

The registered mesh is deformed following the
depth data. Despite of discrete depth data from the
depth camera, our method can generate similar and
smooth shape.

4.2 Processing Time

We calculated the computational time because our
method is supposed to be used for a real-time appli-
cation. The result of the average computational time
in 100 frames is shown in Table 1. Note that the com-
putational time of the mesh registration including the
sampling, the normalization and the principal compo-
nent scores computation is quite small. As a whole,
the average processing speed was over 25 frames per
second.

Table 1: Processing time.

Task Time(msec)
Capturing 11

Marker Detection 11
Mesh Registration 7
Image Rendering 4

4.3 Visualization of Mesh Registration
and Texture Overlay

Finally, we illustrate the visualization result of the
texture overlay onto the non-rigid target surface of the
T-shirt as augmented reality in Fig. 4. Even if the tar-
get has no texture inside the target region, our mesh is
deformed to fit the surface according to the data ob-
tained by the depth image.

5 DISCUSSION

Following the description about our method and ex-
perimental results, we summarize the characteristics
of our method. In terms of the processing speed as
the principal advantage of our method, we achieved
quite high processing speed thanks to the reduction
of the dofs of the mesh and the non-iterative mesh
registration method. Since we also regard the mesh
registration accuracy is sufficient, our method can be
applicable to a practical virtual fitting system. More-
over, since the mesh registration is based on the de-
formation models, our method is robust to the noise
of the input depth image.

On the other hand, if the cycle of the spatial fre-
quency of the target surface is shorter than the sam-
pling interval of the mesh, we can not generate a mesh
having appropriate shape. Although this problem is
supposed to be solved by shrinking the sampling in-
terval, additional processing will be required because
average mesh needs to be sampled.

Basically, the deformation models produce not an
optimal but a broken mesh in case that the target sur-
face is deformed more sharply than the learning angle.
To attack this problem, it might be effective to learn
much more varieties of the representative meshes.

6 CONCLUSIONS AND FUTURE
WORK

We presented a registering method of the 3-D de-
formable mesh using a commodity depth camera for a
texture overlay onto a non-rigid surface. Our method
has several advantages. First, it is not required to at-
tach a rich texture onto the target surface by taking the
advantage of using a depth camera. Second, the PCA
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(a) (b) (c) (d)

Figure 4: Some visualization results. All images are cropped for the visualization and the shadow is reflected from pixelvalue
of a color image. (a): Input color images. (b): Input depth images. (c): Registered mesh. (d): Texture overlay onto the target
T-shirt.

enables us to generate a feasible shape mesh even if
the depth data are not very accurate or noisy. Further-
more the PCA reduced the dofs of the mesh and helps
to obtain a real-time processing.

As a future work, we will implement the sampling
of the depth image using GPU shader programming
since it will provide a more dense sampling and then
more precise registration with faster processing. In
addition, we expect to replace our template mesh by
a T-shirt model in order to achieve a global virtual T-
shirt overlaying and remove the color markers.
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