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Abstract—People always make a little contact with the
ground during usual activities mainly by feet but often lie
completely on the ground after accidental falls. Thus, we
propose using Human-Ground Contact Areas (HGCA) to
classify human states into standing, sitting and lying states. A
fall is defined by a fast change of human states from standing
or sitting to lying and continuity in lying state for a sufficient
duration. Temporal analyzing human-state transitions is used
to discriminate falls from usual events. To measure HGCA,
we project foreground of monitored person from one view to
another by using homography of the ground between them.
Overlap regions between projected foreground and foreground
in the latter view that only exist in which people are in contact
with the ground, due to plane parallax, are measured as HGCA.
We generalize a threshold of HGCA to separate lying states
from the others from view-invariant distributions of HGCA
with respect to human states. We propose using human state
simulation in which camera viewpoints are freely changed
to capture 3D human models in various states. Hundreds of
images are generated from the simulation as training data to
build these distributions. We test our method on ”multiple
camera fall dataset” leading to a competitive performance with
other methods tested on the same dataset.

Keywords-Fall Detection, The Elderly, Human-Ground Con-
tact Areas

I. INTRODUCTION

This paper studies a method of detecting fall incidents

of the elderly from surveillance cameras. It is critical to

help the elderly reach instant treatment after falling for not

worsening injury. The healthcare industry has realized the

useful application of fall detection in intelligent personal

emergency response systems [1]. Falls are sensed for auto-

matically making an instant contact with emergency centers.

Therefore, fall detection becomes an emerging research

topic.

In general, falls are detected when people change from

upright posture to almost lengthened one in a fast pace and

subsequently remain relatively immobile in the latter posture

for a while due to the shock impact of the fall [2], [3].

It leads to our proposal of using Human-Ground Contact

Areas (HGCA) to discern human states and a framework of

temporal analyzing human-state transition for fall inference.

Our contributions are three-fold. (1) We propose HGCA,

a good feature to discern Lying states from other states,

i.e. Standing, Sitting and Kneeling since people make a

little contact with the ground during usual activities but

often lie completely on the ground after falls. HGCA is

effectively estimated by using homography of the ground

between views, facilitating the real-time performance. (2)

We present a human state simulation in Google Sketchup

environment. A virtual camera is positioned on the surface

of a hemisphere to capture images of 3D human models in

various states and poses. We generate hundreds of samples

under a variety of viewpoints as training data to build

distributions of HGCA with respect to human states. Thus,

the classification of human states according to HGCA based

on these distributions is invariant to camera viewpoints. (3)

We present a framework of temporal analyzing human-state

transition for reliable fall inference based on above fall

definition.

In experiments, we choose ”Multiple Camera Fall

Dataset” [4], a common benchmark dataset in fall detection.

It leads to the fair comparison with state-of-the-art methods

[5], [6], [7], tested on the same dataset. Our results are

competitive.

We continue the paper with a summary of vision-based

fall detection methods, in section II. The proposed method

is described in section III. Section IV is dedicated to per-

formance evaluation, comparison and discussions. Finally,

section V concludes the paper and delineates future works.

II. RELATED WORKS

This section only focuses on vision-based techniques for

fall detection. Please refer to [2], [3] for interests in wearable

device and ambient device-based techniques.

One of the most popular class of approaches is based

on the analysis of silhouettes in a single view. Early works

[1], [8] extract speed of silhouettes’ centroids from top-view

cameras and compare it with special thresholds in furniture

and non-furniture areas (manually labeled) for detecting

falls. Top views are inappropriate for fall detection since

vital features of the vertical body motion to recognize a fall

are not available. Aspect ratios [9], [10], and its combination

with 2D speed [11] are considered with cameras placed

either sideways or obliquely. They are prone to false alarms

with a fall in parallel to the optical axis and the occlusion
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Figure 1: The flowchart of our proposed method

of furniture due to relying on simple features. Several

methods quantify the body motion by Motion History Image

[12], integrated spatiotemporal energy map [13], and the

distance map between two sampling of human skeletons [14]

since large motion is likely caused by a fall. Dimensional

variations of silhouettes are analyzed upon a large motion

to verify falls. Distinction of human shape matching costs

during usual activities and falls is presented in [7] at the

expense of high computation. Cucchiara et al., [15] train

probabilistic projection maps for various postures i.e., stand-

ing, crouching, sitting, and lying. Fall events are obtained

from a state transition graph.

Multiview approaches are adopted in several works to ex-

ploit 3D cues and decision fusion for accuracy enhancement.

Cucchiara et al., [16] extend [15] to cope with multiple

rooms. Camera handoff is treated by warping human appear-

ance between views based on homography. In [17], 3D angle

between vertical line and principal axis of eclipse human

models in metric-rectified images is extracted from differ-

ent views for posture classification. Layer HMM is hand

designed to make event inference. A two-level hierarchy of

fuzzy logic to infer linguistic summarizations of voxel per-

son’s states, reconstructed from two cameras, is introduced

for performing activity inference [18]. 3D silhouettes [5] are

reconstructed from multiviews since its vertical distributions

are different for standing and lying people. Hung and Saito

[6] approximate people by a rectangular cuboid by two

cameras whose fields of view are relatively orthogonal. A

feature space composing of height and bottom area of cuboid

is studied to classify human states into standing, sitting and

lying for event detection.

We realize that [5], [6], [18] based on 3D human re-

construction have good performance. However, it seems to

be not necessary to reconstruct 3D human models. A good

estimation of HGCA is also able to discriminate falls from

(a) Standing people (b) Lying people

Figure 2: The illustration of using planar homography for

fall detection

usual activities with a high accuracy. Hence in this paper, we

propose a low-cost and effective scheme to estimate HGCA

by using a planar homography constraint and a framework of

temporal analyzing human states for reliable fall inference.

III. PROPOSED METHOD

In multiple-view geometry [19], any two images of a

same planar surface (assuming a pinhole camera model) are

related by a planar projective transformation, so-called ho-

mography. This geometrical relation is successfully applied

to tracking people in multiple views [20]. In this paper, we

present a low-cost and effective scheme of estimating HGCA

based on this geometrical relation. Fig. 1 shows the flowchart

of our proposed method.

A. Flowchart

Image must be undistorted since the homography is only

held under a pinhole camera model. The homography matrix

H of the ground between two views is estimated by simply

specifying four point correspondences [19]. The initial setup

of our proposed method can be done offline.

Foregrounds are segmented and enhanced by morpho-

logical operators before labeled by connected component

algorithm, resulting in foreground blobs. These blobs are

clustered to form foregrounds of people which are mapped

between views by homography of the ground to measure

HGCA for event detection.

B. Projecting foregrounds by using planar homography

Let p be a 3D point on a plane Π (i.e. the ground), the

projections p1 = (x1, y1, 1) and p2 = (x2, y2, 1) of p (in

homogeneous coordinates) on two image planes are related

by a homography H of the plane Π between two views [19].

p1 = Hp2, (1)

where H is a nonsingular 3× 3 matrix. Let H3 denote the

third row of H . The point p1 in the first image is mapped

to pm in the second one by the homography H [20].
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Figure 3: Simulation setup in Google Sketchup. Colorful

dots are landmarks for homography calibration

pm = (xm, ym, 1) =
Hp1
H3p1

. (2)

If point p is on the plane Π, pm and p2 are coincident. But

if point p is not on the plane Π, there exists a misalignment

between pm and p2, reflecting the plane parallax. These

observations is elaborated in Fig. 2a. If people are standing

or sitting, making contact with the ground by feet, overlap

regions between foreground in the second view and projected

foreground happen at feet location. But when people lie on

the ground, overlap regions cover almost whole body (see

Fig. 2).

C. Estimation of HGCA

Let Ψ1 and Ψ2 be sets of foreground in the first and

second views, respectively. Let Ψm denote set of mapped

foregrounds by homography H from the first to the second

views and let X be human states, i.e., standing, sitting,

kneeling, and lying, etc. We suppose Ψ1 = Ψm = {n}
pixels, and Ψm ∩Ψ2 = {m | m ≤ n}. HGCA is a function

of X and is evaluated by

HGCA(X) =
Ψm ∩Ψ2

Ψ1
=

m

n
, (3)

D. Classification of human states

To generalize a threshold of HGCA to separate lying

states from the others, training data is needed to build

view-invariant distributions of HGCA with respect to human

states. This section proposes a human state simulation by

using Google Sketchup, as shown in Fig. 3, to generate

training images. We consider three typical sitting poses,

i.e. sitting on a chair and kneeling on the ground by one

or two legs, and three lying poses, corresponding to three

typical falls, i.e. falling forward, backward and sidewards. A

virtual camera is positioned and freely changed on surface

of a hemisphere to capture images of 3D human models in

various states and poses. The camera viewpoint is modeled

in spherical coordinate system by

Pcamera = P (r, α, θ)

r ≈ const (4)

α = [0, 180o], δα = 30o

θ = [30o, 75o], δθ = 15o

where, r the radial distance, α the azimuth angle, and θ the

inclination angle. The angles are measured in degrees. The

inclination angle greater than 75o is not taken into account

since the camera viewpoints are near the top view which

is not appropriate for detecting falls. In addition, indoor

surveillance cameras are often positioned obliquely near the

ceiling. The spatial constraints make variations of inclination

angles in the range of [30, 75].
In simulation, both azimuth and inclination angles are

changed by steps δα and δθ in Eq. 4 to generate 196 training

images. Fig. 4 illustrates some generated images. Homogra-

phy of the ground between these views are automatically cal-

ibrated by matching colorful dots on the ground. We project

foregrounds between every pair of different views (α1, θ1)
and (α2, θ2) in the training set with Δα = |α1 − α2| > 0
or Δθ = |θ1 − θ2| > 0 to estimate HGCA for building

distributions. Our aim is to generalize a threshold of HGCA

to separate lying states from the others regardless viewpoint

variations. It is noted that human models in simulation

are stationary and cameras are moving. Both Δα and Δθ
are determined by positions of cameras. But in reality,

cameras are fixed and people are moving. When people

travel in the fields of views of a fixed-camera pair, both

azimuth and inclination angles (Δα,Δθ) vary freely which

are determined by positions of both people and cameras, not

by the positions of cameras.

We weight all viewpoints equally, that is, all (Δα,Δθ)
1 are allowed to happen with a uniform probability. The

overall histograms of HGCA with respect to human states

are built and shown in Fig. 5a, together with distribution

fits. Threshold of HGCA to separate lying states from the

other ones is determined at the intersection of distributions

of HGCA with respect to lying states and sitting states.

We realize from the simulation that measuring HGCA by

using Eq. 3 is usually inaccurate for a pair of viewpoints

with Δα < 90o as shown in Fig. 4 since overlapping regions

usually cover body parts which are not in contact with the

ground. This phenomenon does not happen for a pair of

viewpoints with Δα ≥ 90o. Thus, using a pair of cameras

positioned at least 90o apart (in terms of azimuth angles)

will lead to fewer situations occurring Δα < 90o when

people travel in their fields of views. The constraints of

indoor spaces and camera placement make some viewpoints

frequently happen and some rarely happen. Thus, viewpoints

can be weighted unequally to adapt to specific contexts. Fig.

1One of them must be non-zero
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θ = 30o

θ = 45o

θ = 60o

θ = 75o

(a) α = 0o (b) α = 30o (c) α = 60o (d) α = 90o (e) α = 120o (f) α = 150o (g) α = 180o

Figure 4: Some generated image samples from the simulation. We show standing, sitting, kneeling and lying people in rows.

Foregrounds in first-column images are projected and overlaid by yellow in images in other columns

(a) All viewpoints

(b) All viewpoints except Δα = 30o

Figure 5: Histograms and distribution fits of HGCA with re-

spect to human states. Exponential and normal distributions

fits are for standing, sitting and lying states, respectively.

5b show distributions of HGCA excluding viewpoints of

Δα = 30o. However, these distributions in Fig. 5a and 5b

are quite similar. In this paper, we use the distributions in

Fig. 5a in experiments for various camera settings.

E. Framework for Fall Inference

The fall definition in Section I leads to a typical fall

characteristics based on HGCA, as shown in Fig. 6. When a

fall happens at Tfall, HGCA increases by ΔHGCA to make

a state transition from Usual states composing of Standing,

Sitting, and Kneeling to Lying states in a so-called falling

period of ΔT1. Subsequently, the fallen person is relatively

immobile in a period of ΔT2. In this section, we present a

framework for fall inference based on the fall definition that

can be broken into necessary and sufficient conditions.

Necessary condition is the change of human postures

from upright to lengthened. In our framework, the change of

human postures is described by a state transition from Usual

states to Lying states. Such state transitions are caused not

only by fall events but also by lying-down events (people

lying on a sofa or a bed). Fall events are associated with

a fast movement of human body. In contrast, lying-down

events are performed in a leisure manner by the elderly.

Therefore to claim a state transition as a fall event, we must

verify the following sufficient conditions.

Sufficient conditions compose of a fast pace of changing

states and an observation of Lying states in a sufficient

duration after the state transition. Without satisfying both

sufficient conditions, the state transition is definitely not

caused by a fall event. The proposed framework for fall

inference is described in the module of Event Detection in

Fig. 1.

To this end, we keep both human states X and HGCA in

the buffer of N frames. Upon a state transition at Ttrans, we

start verifying both sufficient conditions to whether claim a

fall event. Fast pace of changing states is characterized by

ΔT1 and ΔHGCA which are evaluated by

ΔHGCA = HGCA[Ttrans]−HGCA[Tfall] (5)

ΔT1 = Ttrans − Tfall
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Figure 6: Typical fall characteristics based on HGCA

where ΔHGCA the increment of HGCA in falling period.

From distributions in Fig. 5, ΔHGCA should be at least

0.3 to prevent from trivial state transitions, likely caused by

noise.

ΔHGCA ≥ 0.3 = MinΔHGCA (6)

Combine Eqs. 5 and 6,

HGCA[Tfall] ≤ HGCA[Ttrans]−MinΔHGCA (7)

Tfall and ΔT1 are calculated by using Eqs. 5 and 7. A

state transition is considered as fast if ΔT1 ≤ 1 second [2],

[3]. Finally, extracting ΔT2 is very straightforward to verify

the second sufficient condition. In practice, 5 seconds are

considered to be long enough for experiment conditions.

IV. PERFORMANCE EVALUATION AND DISCUSSION

A. Performance evaluation and comparison

We adopt the common metric used in state-of-the-art

methods [5], [6], [7] for a fair performance comparison by

computing sensitivity and specificity,

SE =
TP

TP + FN

SP =
TN

TN + FP
, (8)

where SE the sensitivity, SP the specificity, TP True

Positive, FN False Negative, TN True Negative, FP False

Positive, In each video sequence, the actual time occurring

a fall (denoted tfall ) is manually annotated. This time

is defined by the first moment of human body hitting the

ground after a fall. A fall is detected after or before tfall,
resulting in TP or FP, respectively. A fall is not detected

after or before tfall, resulting in FN or TN, respectively.

We test our method with two pairs of cameras, i.e.

cameras 2 and 7 (positioned 180o apart), cameras 2 and

(a) Walking, HGCA = 0.1244, cam-
eras 2 and 5

(b) Sitting on a sofa, HGCA = 0.1105,
cameras 2 and 7

(c) Falling to the ground, HGCA =
0.837, cameras 2 and 7

Figure 7: Results of our method in scene 15. The yellow

dots are projected foregrounds, overlaid in the right images

5 (positioned 90o apart) and with three of them. Perfor-

mance of three experiments are compared with that of other

methods, tested on the same dataset, in Table I. Although

results in [6] seem to be better than ours, it does not consider

a fall from sitting to lying states that frequently happens

with the elderly. Our performance is competitive with low

computational cost. Average frame rate of our non-optimized

OpenCV and C code is about 22 fps (2 cameras), running

on a common PC with chipset Intel core i7 3820QM, in

comparison with approximate 15 fps in [6] (2 cameras),

5 fps in [7] (one camera), and 0.9 and 15 fps in [5] by

CPU and GPU implementation (three cameras), respectively.

However, the comparison is not quite fair since they are

implemented on different hardware. In next section, we

discuss several issues, which may affect the performance

of our method.

B. Discussions

1) Lighting Conditions: We believe that the lighting

conditions in the dataset are typical in indoor surveillance.

Shadow and reflection happen frequently but not severely.

They may cause errors in estimating HGCA of standing

and sitting states. Although the performance of our method

without using shadow removal algorithms is not sensitive by

lighting variations, we will continue to investigate further the

influence of severe lighting variations as well as integrate

shadow removal algorithms to make the method robust to a

variety of lighting conditions.

2) Furniture Occlusion: Occlusion by furniture fre-

quently happens in indoor surveillance that make HGCA

estimation inaccurate, degrading performance. Our method

fails to detect the fall events in scenes 15 and 22 by a pair

of cameras 2 and 5 but correctly detects them by a pair of

cameras 2 and 7. The reason is that the sofa covers a part

of human body when he lies on the ground after falling.

Similarly, our method fails to detect the fall event in scene

19 by a pair of cameras 2 and 7 but correctly detect it by
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Table I: Performance comparison between our method and

three state-of-the-art methods [5], [6], [7], tested on the same

dataset. Results in [5] are with 3 cameras.

Sensitivity Specificity

Our method (cameras 2, 5 and 7) 95.8 % 96 %
Our method (cameras 2 and 7) 88 % 100 %
Our method (cameras 2 and 5) 88 % 96 %
Hung and Saito, 2012 [6] 95.8 % 100 %
Rougier et al., 2011 [7] 95.4 % 95.8 %
Auvinet et al., 2011 [5] 80.6 % 100 %

a pair of cameras 2 and 5 due to the same reason. Thus,

we combine 3 these cameras to make the method robust to

furniture occlusion since we believe that people are occluded

in this view but are likely visible in the other ones. Decisions

made independently by these camera pairs are fused simply

by OR rules to enhance the event detection accuracy as

shown in Table I.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a low-cost scheme to estimate HGCA

efficiently for detecting fall incidents of the elderly. Al-

though a good performance is reported, it is the results

evaluated merely on the common dataset containing limited

challenges in the real world. In the future, we will continue

this work by testing it against real falls of the elderly in

real home environments, instead of simulated falls in the

dataset. We will study more about fusion rules to combine

decisions made independently from various pairs of cameras

to enhance further the accuracy. Shadow removal algorithms

will be integrated to reduce segmentation errors caused by

severe lighting variations.
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