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ABSTRACT

In this paper, we propose an approach for generating free

viewpoint videos based on multiple depth and color cameras

to resolve issues encountered with traditional color cameras

techniques. Our system is based on consumer products such

as Kinect that does not provide satisfying quality in terms of

resolution and noise. Our contribution is then to propose a full

pipeline for enhancing the depth maps and finally improving

the quality of the novel viewpoint generated.

Index Terms— Free-viewpoint video, depth camera, up-

sampling, noise reduction, FTV

1. INTRODUCTION

Over the last years, broadcasting companies have been eager

to generate embellished contents for the viewers. Sport or en-

tertaining events can now be displayed with extra information

that help the viewer to clarify the program currently watched.

Now, those companies are focusing on creating more interac-

tive contents to give the viewer freedom to decide, for exam-

ple, the best viewpoint to appreciate a video.

Several researches [1] have proposed solutions for cre-

ating such interactive contents. They are mainly based on

systems made of multiple calibrated color cameras. All the

streams are then processed together in order to generate dis-

parity maps or 3D models. However, such approach requires

high number of cameras, making it difficult to manage (trans-

portation, calibration, synchronisation). Moreover, the qual-

ity of the result is often below the expectations since using

only the color information may not be enough to estimate the

geometry of a scene.

Recently, depth cameras have become very popular be-

cause they can capture the depth information of a scene and

the corresponding color image in real time. The most suc-

cessful one at this moment is Microsoft Kinect based on the

structured light technology. In the context of free viewpoint

videos, using such depth cameras becomes very interesting

since we can reduce the number of devices while increasing

the whole quality of the geometry of the scene. However, de-

vices like Kinect have several limitations. First, the resolution

of the depth and color image are quite low and do not satisfy

the current requirements of HD TV. Also, the depth map cap-

tured by Kinect is degraded by the presence of noise, which

quickly increases if the number of devices aiming at the same

scene is increased. This is caused by the interferences of the

identical patterns projected by multiple devices.

In this paper, we describe a system for generating free

viewpoint videos based on multiple depth and color cameras.

The main contribution is the capability to enhance the depth

maps to increase the quality of the result by performing an

upsampling with reduced amount of noise. The addition of

extra color cameras provides a direct access to high definition

images that can be mapped on the geometry. The rest of paper

is organized as follows: We first introduce several works re-

lated. Then, we give an overview of our capture system with

a step by step description of the process. Finally, before the

concluding, we present and discuss our results.

2. RELATEDWORKS

Even if depth cameras are becoming popular, only few works

are using it in the context of free viewpoint TV. Researches

like [2] are mostly focusing on the use of dataset1 providing

the color image and the corresponding depth image.

Kuster et al. [3] however proposed to combined two depth

cameras with three color cameras to perform a quality fore-

ground reconstruction of a scene. Their main contribution is

to propose a refinement in order to improve the quality of the

novel viewpoint generation. Few other works like [4] can be

mentioned but does not add extra improvements besides in-

creasing the number of depth sensors.

Considering the improvement of the quality of the depth

map, Yongseok et al. proposed a depth image superresolution

algorithm based on RGB image segmentation [5]. The input

depth image is upsampled to the same size as the input color

image using a bicubic interpolation. The edges in the recon-

structed high resolution depth image are refined by forcing

them to match those of high resolution color image and depth

values of the image are enhanced by optimizing an energy

1like the MSR 3D Video dataset



function based on the Markov Random Field. They, however,

apply this approach only to the depth image free of noises

provided by the Middlebury dataset and does not provide any

information about the computational time. Xuequin et al. pre-

sented a simple pipeline to enhance the quality as well as the

spatial resolution of range data in real-time with GPU im-

plementation [6]. Moreover, they upsampled the depth infor-

mation with the data from high resolution video camera and

succeeded in improving the sub-pixel accuracy. But, they ap-

plied their method to time-of-flight based depth camera only.

Although the resolution of the depth map from TOF depth

camera is much lower than RGB image, it includes less noise

compared with Kinect-like depth cameras; Consequently, it

still remains difficult to efficiently upsample the depth data

from depth cameras like Kinect.

In our knowledge, there still is no work focusing on FTV

with depth cameras proposing to reduce the noise of the depth

data and an upsampling.

3. OVERVIEW OF THE SYSTEM

In order to generate quality free viewpoint videos, we propose

to use multiple pairs of depth and high-definition color cam-

eras. We constrain our setup to an indoor environment since

the range of the depth cameras is limited up to 5 meters.

Each element of the system is independent, meaning that

after the calibration stage, each stream is processed and the re-

sults are combined to render a 3D reconstruction of the scene.

The goal of the processing is first to reduce the noise from the

depth maps, then to increase their resolution by applying an

upsampling. All these stages will be described in the follow-

ing sections.

4. CALIBRATION OF THE DEVICES

We are using multiple devices, which requires estimating the

pose of each of them according to a common referential. We

are making two assumptions: the cameras are fixed, and the

origin of the referential is the position of one of the depth

camera, considering that fixed cameras allows pre-computing

the pose of each device without the constraint of real time.

Our approach is then to use a calibration pattern to estimate

the pose of color and depth cameras.

The pattern is placed in the overlapping fields of view of

a pair of devices. For handling two Kinect-like depth cam-

eras, we detect the pattern in the color image and get the 3D

position for from the depth information. We then obtain a set

of 3D-3D correspondences. The pose is estimated by comput-

ing the rigid transformation as described in [7] and minimized

with RANSAC. In the case of a depth camera and a color cam-

era, we process in the same manner to detect the calibration

pattern and obtain 3D-2D correspondences. The pose is ob-

tained with a Perspective-n-Point camera pose estimation and

also minimized with RANSAC.

Fig. 1. Result of the calibration of two depth cameras using

3D-3D rigid transformation estimation.

Fig. 2. Result of the calibration of a depth camera with a color

camera using the Perspective-n-Point pose estimation. The

red parts defined the areas not covered by the color camera.

When using two depth cameras like Kinect simultane-

ously, the aforementioned interferences degrade the accuracy

of the depth estimation. This can be a problem when esti-

mating the rigid transformation between two depth cameras.

Since the calibration is an offline process, we suggest to de-

tect and capture depth information at two different moments.

While one camera is capturing, the infrared emitter of the

other is blocked and vice versa. Two results of the calibra-

tion process are presented in Figures 1 and 2.

5. ENHANCEMENT OF THE DEPTH MAPS

As previously described, depth maps obtained with Kinect-

like depth cameras have two main drawbacks: the noise, and

the low resolution2. We then propose a processing flow that

jointly reduce the noise of the depth map and upsample it to

higher resolutions.

5.1. Noise Reduction

In the captured depth maps we can distinguish two kinds of

noise. One is a noise produced by the average accuracy and

temporal instability of the depth map estimated by the device,

denoted as structural noise. The other appears when more

than one depth camera is concurrently used, that we call in-

terference noise. Our goal is then to reduce both kinds of

noise in order to improve the quality of the depth map before

performing the upsampling.

2VGA resolution for Kinect



We propose to reduce the structural noise by applying

an accumulation buffer. Each new depth frame is integrated

in the buffer based on weights. The data already integrated

within the buffer are weighted more. However, if the differ-

ence between the previous and the incoming depth is over a

given threshold, we consider that the the position of the ob-

ject in the scene has changed, and replaces the corresponding

older data.

The interference noise is reduced by applying a planar fit-

ting method to the point cloud. This approach will be de-

scribed in the following section since it is also used for the

upsampling.

5.2. Upsampling of the depth map

The overall resolution of the depth maps needs to be increased

to correspond, for example, to the higher resolution of the

neighbouring color cameras. We propose an upsampling ap-

proach of the depth map based on a segmentation of the color

information and assuming a locally planar geometry in each

segmented cluster. All these steps are described in the follow-

ing sub-sections.

5.2.1. Color image segmentation

The color image segmentation is an important stage since it

defines the clusters that will be considered as planar surfaces.

In the color image, we assume that a region with smaller gra-

dient corresponds to a potential planar structure of the en-

vironment. To find such a region in an efficient manner, a

GPU-implementation, with slight modification, of SLIC by

Radhakrishna. et al [8] , is used because of its capability to

cluster images into regions that conform to the sharp edges

of the RGB image, with reasonably uniform distribution and

size. Our implementation handles clusters in massively par-

allel manner thanks to low-cost GPU threads, resulting in

throughput boost. An algorithmic modification we made from

the original SLIC is that our implementation is single-pass,

whereas the original is multi-pass to adjust the cluster cen-

ters and guarantee the segmentation of entire image pixels.

This modification makes it possible to leave some pixels to

be orphaned, but greatly improves the overall runtime of the

system. A result of the segmentation is presented in Figure 3

5.2.2. Locally planar surface estimation

After segmenting the color image, we project each 3D data

from the depth map onto the segmented image by using the

rigid transformation obtained during the calibration stage. For

each cluster, we assume a locally planar surface, meaning that

the depth values within each cluster of a color image can fit a

plane.

For each cluster, we then compute the plane equation. The

normal associated with the cluster is estimated by getting the

outer product of eigenvectors calculated from the principal

(a) Original color image (b) Result of the segmentation

Fig. 3. Result of the color based segmentation for defining

the potential planar surfaces.

component analysis(PCA) of the 3D points belonging to the

cluster. Finally, the planar equation is resolved by using the

average of the points inside of the cluster.

5.2.3. Upsampling

For upsampling the depth map, we use the projected 3D data

from the previous stage. After this projection onto the seg-

mented color image, some pixels are left missing the corre-

sponding 3D information because of the difference of reso-

lution. We fill those holes by applying the planar equation

related to the cluster. Finally all the points are transformed

back in order to obtain the upsampled version of the original

depth map.

However, it is possible that some clusters don’t necessar-

ily contain planar structures, because a depth discontinuity

can still occur without corresponding intensity change. We

therefore perform a sanity check of the fitted plane by look-

ing at its eigenvalue obtained by performing PCA, and if it is

larger than a threshold, the cluster is thought to be non-planar

and we simply apply a linear upsampling based on the origi-

nal data.

6. RENDERING OF THE FREE VIEWPOINT VIDEO

We base our rendering on OpenGL to take advantage of the

capabilities of the GPU for faster performances. Each 3D data

related to a depth map is transferred onto the graphic card via

a specific data structure and rendered. For correctly display-

ing the multiple meshes, we apply the transformation com-

puted during the calibration stage as follows: X
′
= K ×

M × X where K is the OpenGL projection matrix, M the

rigid transformation and X the input 3D point.

The color information is mapped onto the mesh with pro-

jective textures using GLSL shaders. The advantage of this

is that the color is not interpolated between the vertices, but

defined for each pixel. Consequently, the quality of the color

information is preserved.



7. RESULTS AND DISCUSSION

For our experiments, we captured the depth information from

two Kinect sensors and two PointGrey cameras with a resolu-

tion of 1280x960. The computation is done on a 3.2GHz’s Pc

with 32GB of memory. We also constrained the captured en-

vironment to a closed indoor scene since the range of Kinect

is limited and the sensor is sensitive to sunlight.

(a) The raw depth map. (b) The upsampled depth map

Fig. 4. Result of the upsampling of the depth map.

7.1. Results

Figure 4 presents one example of result of our upsampling

algorithm. We can notice that planar surfaces contain less

amount of noise. However, some artefacts are present and

will be discussed in the next section.

7.2. Discussion

In the different presented results we can notice some erro-

neously upsampled depth map, resulting from using linearly

interpolated input image as a backup data for planar-fitting

method.This can be avoided by using not only linear plane-

fitting but also non-linear plane fittings that can represent

multi-dimensional data spread. Also a possibility is to use

depth-adaptive segmentation algorithm, instead of RGB-only

segmentation. Doing so is expected to result in reduced

number of plane fitting failure.

Another drawback of our approach is that it is not in real-

time. Even if most of the parts have been coded with CUDA

to take advantage of the parallelized architecture, processing

multiple streams is still slow. A solution could be to dedicate

a processing unit to each stream and another one for the final

rendering stage.

8. CONCLUSIONS

We proposed a method for generating free viewpoint videos

based on multiple depth and color cameras. We also intro-

duced a technique for upsampling depth data for matching

the resolution of TV standard. We also proposed to reduce

the noise from depth data to improve the quality of the result.

For future works, we will focus not only on resolving the

problems related to artefacts when creating the upsampled

version of the depth map, but also on improving the overall

quality of the rendering stage. We will also perform more

experiments with increasing the number of devices.
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