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Abstract—Usually, relighting techniques require knowledge

about the shape of the target object and the lighting environment.
The quality of the result is highly dependent on the normals
of the object because they are used in the computation of the
illumination. In this paper, we propose a new relighting approach
for arbitrarily shaped objects using an RGB-D camera such as
the Microsoft’s Kinect. The depth map is useful to estimate the
normals of the object, but can be inaccurate because of the
noise such as discrete depth values or missing data. An accurate
segmentation of the target region for relighting is also an open
issue since the boundaries in the depth map does not always
match color’s ones. We focus on the depth map modification to
segment the object region and normal estimation for accurate re-
lighting. In our experiments, we adapted some normal estimation
methods from modified depth map and evaluated the accuracy
of the relighting results. We discuss the effectiveness of relighting
approach for an arbitrarily shaped object and the possibility of
a real time relighting.

I. INTRODUCTION

Relighting is a currently active research topic in computer
vision. It can be applied not only to videos but also to matching
technique that use SIFT or SURF which are weak on change of
illumination conditions. However, getting an accurate relight-
ing result remains a complicated task. Generally, relighting
technique needs the object shape, the reflectance property and
light environments. The accuracy of the results depends on
accuracy of each of these factors.

In previous works, there are some researches focusing
on relighting for a fixed object because of the difficulty of
obtaining the exact shape and the reflectance property in real
time. Debevec proposed to acquire the reflectance field of the
object by using Light Stage [1]. They captured the object under
2048 light directions for estimating the reflectance functions of
the object, so that the high accuracy relighting results can be
obtained by using these functions. This method doesn’t need
to estimate the object normal because the reflectance functions
include not only the object’s diffuse and specular reflectance
but also visibility from all light directions. In contrast, we
propose the relighting system without such a lot of images.
Zhen et al. [2] and Oswald et al. [3] proposed relighting
techniques applied on human face images by using compute
vision techniques. The human face geometry can be estimated
with a morphable model of 3D faces. They obtained the normal
map by using this technique.

Zhen et al. proposed a rate image technique for relighting.
Processing time of this method is fast because they only con-
sidered the diffuse component and approximated the radiance

environment map with Spherical Harmonics (SH) [4]. In our
case, we also use this technique in our proposed relighting
flow. Oswald et al. also estimated the face geometry and
relighted it by considering not only the diffuse component but
also the specular one. However, as mentioned before, these
works treated a stationary object or one image.

In this paper, we proposed arbitrarily shaped objects re-
lighting using an RGB-D camera. Depth sensor can obtain a
scene geometry in real time (more than 30 fps). As far as we
have investigated, such approaches using RGB-D camera have
not been proposed yet. As a first step, we relight arbitrarily
shaped objects from a single color image and depth map.
For arranging the object on to another scene background,
segmentation of the correct object region is important. And,
the object normals significantly affect the accuracy of the
relighting result. However, the boundaries in the depth map
does not always match color’s ones and the depth map has
noisy data such as discrete depth values or missing data.
Because of these, it is not easy to accurately segment and
to estimate the normals from a single depth map. We focus on
these two processes. Firstly, we modify the depth map using
color and the depth information. Thus, we obtain improved
depth map especially in the boundary between the object and
background and the object region is segmented with a simple
depth thresholding. After that, we estimate the normal map
from the modified depth map. Radu et al. proposed normal
estimation based on k nearest neighbor [5] and Stefan et
al. also proposed methods using integral images [6]. In our
experiments, we compare with five normal estimation methods
including the above.

In our flow, we use some processing which are integral
image, kmeans clustering and SH rotation. Recently, parallel
algorithms of these processing are proposed [7], [8], [9]. They
are available for a real time relighting. In Sec.V, we discuss
about the possibility of a real time relighting.

II. RELIGHTING THEORY

A. Spherical Harmonics Lighting

In this section, we explain about a relighting theory. Image
based lighting is very useful for rendering synthetic objects
into real scenes such as in augmented reality. This technique
is also useful for the relighting. We assumed that a light source
come from infinity distance. For considering a point light
source in all directions, we assume that light environment is
distributed on a unit sphere. The irradiance E(x) observed at
a point x = (x, y, z) is given by an integral over the sphere
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Ω.

E(x) =
∫

Ω

L(ω)max((ω · n), 0)dω (1)

Note that L(ω) represents the light intensity along the direction
vector ω. (ω · n) is the cosine term and n is a normal vector
at a point x. This model considers only shading model (does
not consider shadow).

We obtain a light environment from captured light
probe [10] and approximate the light environment in SH [4].
Using the notation of [4], the irradiance of point x can be
represented as a linear combination of SH basis functions,

E(x) =
∞∑

l=0

l∑
m=−l

Al(θ)LlmYlm(ω) (2)

For computing E(x) with arbitrary normal vector n, we
compute the rotation of the SH [7] for a term of Al(θ).
Preliminarily, we compute the standard cosine term Astd

l is
equal to Al(0). After normal estimation, we compute SH
rotation from Astd

l to Al(θ). Note that, θ is a elevation angle
corresponding to the normal direction n.

Ramamoorthi and Hanrahan [4] showed that for diffuse
reflectance, only 9 coefficients are needed to approximate the
irradiance function. Assuming Lambertian surface reflectance,
the pixel value of i(u) is written as

i(u) = Rd

2∑
l=0

l∑
m=−l

Al(θ)LlmYlm(ω) (3)

where u = (u, v) represents pixel position corresponding to
point x. Rd is a diffuse reflection parameter of the object
surface. Since lambertian surface uniformly reflects the light
to all directions, Rd is set to a constant value.

B. Relighting in different light environment

In relighting part, we adapt the rate image technique [2].
We need to know two light environments. The first is a scene
captured the object and the other is a scene which light
environment is different from the first one. In this paper, we
call these two scenes Src and Dst respectively. If Src and Dst
light environments and the object normal are known, the pixel
intensity of relighting image is obtained by the ratio of Eq. (2),

idst(u) = isrc(u)
Edst(x)
Esrc(x)

(4)

Note that isrc(u) is an input pixel value and Esrc is calculated
from the Src light environment, idst(u) and Edst are same
representation in the Dst light environment. By computing the
rate of two irradiance functions, the constant value Rd can be
removed. This means that we can obtain the religthing results
without estimating the reflectance property.

III. RELIGHTING USING AN RGB-D CAMERA

In this section, we explain about the proposed relighting
approach. Our relighting flow is shown in Fig. 1. Input images
are Src and Dst light environments, the object color image,
depth map and Dst background image. Light environments
are represented in cube map. For relighting, segmentation of

the object region and normal estimation is very important. In
our strategy, the object region is segmented using a depth
thresholding. However, the boundaries in depth map does
not always match color’s ones because of the noisy depth
map. Therefore, before segmentation, we modify the depth
map around the object boundary. After that, normal map is
estimated using the modified depth map and we compute the
SH rotation for the term of Al(θ). Finally, the relighting result
is obtained by computing Eq. (4) and it is arranged on Dst
background.

The quality of relighting result depends on the normal map
accuracy. There are many methods to estimate the normal from
the depth information. In Sec.V, we apply five normal estima-
tion methods and evaluate the accuracy of results. Following
subsection, we explain about how to modify depth map for
segmentation and five normal estimation methods.

A. Depth Map Modification for Exact Segmentation

The strategy of depth map modification is similar to the
one from Chen et al. [11]. In our case, we only modify the
boundary between the object and background. In the first step,
we set the invalid depth region around the object boundary. In
the second step, the invalid depth is filled by using color and
depth information of the neighbor pixels, as depicted in Fig. 2.

Firstly, we segment the object region by using simple
depth thresholding. Large segmented region which is shown
in Fig. 2 (a) is obtained by applying a dilatation operator.
After that, we compute the invalid depth region by using color
and depth edge information. Both image edges are obtained by
Canny Operator. The depth edge region mask Mder is obtained
by expanding the edge pixels with a square window. Same
operation is adapted in the color image and we obtain the
color edge region mask Mcer. Then, final mask of the invalid
depth region Midr is obtained as follows:

Midr = MderANDMcer (5)

The color edge includes not only the object boundary but also
texture edge in the object or background. Compared with the
color edge, most of the depth edge is detected near the object
boundary because the distance between the object boundary
and background is large. The window size of depth edge should
be larger than color one. By doing this, Midr shown in Fig. 2
(b) includes around the boundary in color image. Note that
the mask region of Midr is replaced color information. Invalid
depth map Di is obtained using the raw depth map with Midr.

The second step is filling the invalid depth. The invalid
depth filling equation is the same as [11]. The estimated depth
value Di(u) of invalid pixel u is calculated as follows:

Dt
i(u) =

1
k(u)

∑
v∈Ωs,Dt−1

i /∈0

gs(u−v)gc(i(u)−i(v))Dt−1
i (v)

(6)
where gs is spatial weight and gc is the color similarity weight.
They are Gaussian function and σs, σc are standard deviation
respectively. Ωs is a square window around an invalid pixel u
and k(u) is a normalizing factor. Di(v) is a valid depth value
of pixel v. u−v and i(u)− i(v) represent Euclidean distance
in image space and color space respectively. Dt

i is obtained
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Fig. 1. Flow of proposed our relighting.

(a) (b) (c) (d) (e)
Fig. 2. Depth modification. (a)large segmented image, (b) depth image, (c) kmeans clustering image, (d) invalid depth mask with color information, (e) depth
modified image.

by computing Eq. (6) t times. By repeating this process with
updating Di, we obtain the modified depth map Dm.

In order to obtain better segmentation results, the depth
value from an invalid pixel in the object region should be
estimated using the valid depth value in the same region.
To satisfy this situation, we compute color segmented image
using Kmeans clustering that is shown in Fig. 2 (c). After
that, each pixel in the color segmented result has a label. The
depth value of u is estimated using neighbor pixels which
label is same with u. The depth modified result is shown in
Fig. 2 (e). Compared with raw depth map shown in Fig. 2
(d), the object boundary is improved by using this process.
However, sometimes Kmeans clustering result has minor label
pixel. It means that the label of interest pixel and neighbor
pixels are different. In such a situation, if the minor label pixel
is invalid depth, our method cannot estimate its depth value.
This behavior depends on kmeans cluster number and iteration
number. In our experiments, we have set the appropriate value
for each parameter. After depth modification, we resegment
the object region using modified depth map.

B. Normal Estimation from Modified Depth Map

After depth map modification and segmentation, we obtain
ideal depth map in the object region. When depth map and the

camera’s intrinsic calibration parameter are known, it can be
converted into 3D vertex map V in the camera’s coordinate
space. After that, we can estimate the normal map from V . In
this section, we explain about five normal estimation methods.

The first one is a very simple approach. Given a vertex map
V , a normal vector of pixel u is computed by using adjacent
pixel vertices as follows: n(u) = (V (u + 1, v) − V (u, v)) ×
(V (u, v + 1) − V (u, v)) after normalization, we get normal
map N = n/||n||.

However, the depth values are discrete and contain noise.
To reduce them and obtain smoothing depth map, we apply
a bilateral filter [12] to the raw depth map before computing
vertex map. The new depth map with reduced noise Db as
follows:

Db(u) =
1

k′(u)

∑
v∈Ωs′

gs′(u−v)gd(Dm(u)−Dm(v))Dm(v)

(7)
k′
(u) are normalizing factor, and gd is the depth similarity

weight. gs′ and gd are Gaussian function with σs′ and σd

respectively. Ωs′ needs appropriate value for smoothing. If
Ωs′ is too large, very smoothed depth map is obtained and
the detail of normal information is lost. In contrast, if Ωs′ is
too small, the normal map is roughness shape. After filtering
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with the appropriate window size, normal map is estimated by
performing the same process as the first method.

These two methods are simple normal estimations. Other
three methods are novel approaches proposed by Radu et
al. [5] and Stefan et al. [6]. Radu et al. estimated the normal
vector using k nearest neighbor (kNN) based approach which
is described in [5]. To apply this method, vertex map V
needs to be integrated into a kD-tree. When the query point
is given, k neighbor points are searched and the normal
vector is estimated by performing a Principal Component
Analysis on the neighborhood’s covariance matrix. Stefan et
al. proposed two normal estimation methods using integral
images which are also described in [6]. The first is based
on conventional matrix (CM). It creates nine integral images
to compute the normal for specific point from the covariance
matrix of its local neighborhood. The other method based on
smoothed depth changes (SDC). It also computes six integral
images and smoothing area map for estimating normal. In
these two methods, the input vertex form is same as the
first and second methods. Computation times of them are
faster than [5] because of vertex data doesn’t need to change
its form. However, this method cannot estimate the normal
around the boundary if it has a large difference of depth value.
Therefore, we replace the invalid normal with the results of
second method. We use bilateral filtered depth map Db(u) as
an input in these three methods. In our experiments, we call
all methods as RAW, BILATERAL, kNN, CM+BILATERAL
and SDC+BILATERAL respectively.

IV. IMPLEMENTATION

In our experiments, the RGB-D camera was the Microsoft’s
Kinect. All the input data reported in this paper are captured
by it. Before the relighting, we captured the Src and Dst light
probes [10] and Dst background. Also, we recorded the color
and depth information over 10 seconds. After that, we relighted
the three hundred frames. We used two objects of different
shape Mannequin and Duck. The first type is human shape,
the other is toy type includes specular reflectance. Background
images and light environments are shown in Fig. 3. In the
experiment of Mannequin, Src environment is Room1 and
Dst one is Room2. As well as Mannequin, Src environment
is Room3 and Dst one is Room4 in the experiment of Duck.
The objects are fixed while capturing Src and Dst environments
for evaluating Ground Truth. Implementation parameters of
Mannequin are shown in Table.I. The resolution of input is
640x480 image, and all processes are computed on a PC with
Intel Core i7-3940XM 3.00GHz and 32.0GB memory. In the
next section, we discuss the relighting results and processing
time.

V. EXPERIMENTAL RESULTS

Fig. 5 and Fig. 6 show the normal map represented in color
space and the relighting results. The upper side of first column
is input image and the lower side is Ground Truth, from second
to last columns show normal map and relighting results.

First we discuss about the results of Mannequin. In
the light environment of Room1 shown in Fig. 3 (a), two
fluorescent lights are placed the left and right sides of the
ceiling. Therefore, the object shading shown in the upper side

(a)
　

(c)

(b)
　

(d)
Fig. 3. Background images and light environments using our experiments.
(a) Room1, (b) Room2, (c) Room3, (d) Room4. For evaluation, Room1
and Room2 are captured with same camera pose and position but light
environments are different. Room3 and Room4 are captured another camera
pose and position under two different light conditions.

TABLE I. PARAMETERS ABOUT EXPERIMENT OF Mannequin

Processing parameter value
Invalid depth mask Window size of Mder 10 × 10

Window size of Mcer 6 × 6
Invalid depth filling σs 1.4

σc 1.2
Ωs 6 × 6
t 40

Kmeans clustering k 10
Iteration number 10

Bilateral filter σs′ 150
σd 60
Ωs′ 9 × 9

of Fig. 5 (a) is bright overall without the shadow observed in
the neck and under the chest. On the other hand, in Room2
shown in Fig. 3 (b), one fluorescent light is placed the right
side of the ceiling. The object captured in Room2 is shown
in the lower side of Fig. 5 (a). The right side of the object is
bright and the left side is dark. The goal of this experiment is
that to create a image same as Ground Truth by relighting the
input image. The columns (b)-(f) in Fig. 5 are normal maps
arranged in the upper side and relighting results arranged in the
lower side. The object region is exact segmented by using our
proposed depth map modification. Thus, the object is naturally
arranged on Dst background. All relighting results except for
RAW are similar with Ground Truth. The result of RAW is
observed dark or bright pixels partially and is unnatural image.
The cause of this is noisy depth map. The raw depth map has
discrete values and the vertex map in the object isn’t smooth.
Thus, normal direction becomes same in some regions. This
is seen from that the same pixel value is observed partially in
the normal map image. Compared with RAW, BILATERAL
result are better smooth shading. After filtering process, the
depth map is smoothed without lose of edge information. But
Smoothness of the normal map is rough because of outliers
of depth value. As we mentioned before, the raw depth map
has noise such as outliers compared with neighbor pixel. In
filtering process, such data is also included and thus the vertex
map and normal map becomes rough. The relighting result is
observed unnatural dark or bright shading in the part of body.
kNN result seems to be the most similar with Ground Truth in
all methods. kNN method discards the outliers when estimate
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Fig. 4. Evaluation of Mannequin. (a) RMSE, (b) Std. dev., (c) Maximum (Max) value of the absolute difference between the results and Ground Truth.

the normal and thus the high accuracy result can be obtained.
Relighting result isn’t appeared unnatural shading like RAW
and BILATERAL. On the other hand, CM+BILATERAL and
SDC＋ BILATERAL seem to be almost same result and sim-
ilar with Ground Truth. Compared with BILTERAL, normal
maps and relighting results are smooth. using adjacent pixel
vertices While the normal is estimated by using adjacent pixel
vertices in BILATERAL, CM and SDC consider the neighbor
pixel with changing the window size. Observing the results
more carefully, normal maps of CM+BILATERAL and SDC
＋ BILATERAL are slightly rough especially in hip and left
shoulder. The window size is small around the object boundary
because the window size is defined by considering depth
changing. Therefore, such a roughness are observed in these
results.

Next, we discuss about results of Duck shown in Fig. 6.
Arrangement of images is same as Fig. 5. In case of Duck, we
relighted the object shading from under the Room3 to Room4.
These environments are shown in Fig. 3 (c) and (d). It seems to
be almost the same quality as case of Mannequin. Differences
of Mannequin are that Duck has a specular reflection notably
and shadow is observed on the green table in Ground Truth.
We only consider the diffuse component and thus these results
do not take into account the specular reflection and shadow
that seen in Ground Truth. To obtain more accurate results,
we need to consider the visibility between the object and the
light positions and to consider the specular reflection model.
From our experiments, our method is useful for these simple
object. If the target object shape is complex such as a tree,
it is impossible to relight because obtaining its correct shape
from Kinect is quite difficult.

Again, we discuss about evaluation of Mannequin. We
relighted 300 images which are captured in advance and
evaluated the relighting results of them. All result images
are compared with Ground Truth. Quantitative evaluation of
Mannequin is shown in Fig. 4. It shows the RMSE and
Std. dev., Maximum (Max) value of the absolute difference
between the results and Ground Truth. Result of RAW is the
worst in all evaluation and this method may not be useful.
BILATERAL, CM+BILATERAL and SDC+BILATERAL are
quite same in Max and BILATERAL is slight worse than
the rest two methods in RMSE and Std. dev.. This result is
caused by the roughness of each normal map, that is mentioned
above. kNN is the best accuracy, especially, Max is very low
compared with other methods. It means that the relighting

result and Ground Truth are the closest.
TABLE II. COMPUTATION TIME OF Mannequin

Processing time (msec)
Depth map modification 158.87
RAW 10.87
BILATERAL 393.9
kNN 1409.46
CM+BILATERAL 467.64
SDC+BILATERAL 432.63

Computation time of Mannequin is shown in Table.II.
This table shows only depth map modification and normal
estimation methods. Considering the accuracy and processing
time, RAW and BILATERAL are smaller processing time
but accuracy isn’t better than the others. On the other hand,
kNN takes a large time, but the accuracy is the best in all
methods. CM+BILATERAL and SDC+BILATERAL take a
time a little more than BILATERAL. However the relighting
results are better. As we mentioned in Sec.I, parallel processing
algorithms [7], [8], [9] are possible in these two methods and
our relighitng flow, so that all processes can be implemented
in GPU for faster processing time. So, it is possible to perform
a real time relighting by accelerating the proposed method.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the novel relighting method
using an RGB-D camera. The difficulty of relighting from
the raw depth map is mainly caused by depth data. To solve
this problem, we proposed the depth map modification for
exact segmentation and compared the five normal estimation
methods from such a noisy depth data. To solve this problem,
we proposed a method for the depth map modification for
exact segmentation of the object region. We then compared
five normal estimation methods from such a noisy depth data.
In our experiments, we showed the relighting results for two
objects of different shape. The object region were segmented
exactly using our proposed method, so that we can obtain
relighitng results similar with Ground Truth. We discussed the
accuracy of them and computation time and mentioned about
the possibility of expansion to a real time relighting.
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