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Abstract. Conventional local features such as SIFT or SURF are robust
to scale and rotation changes but sensitive to large perspective change.
Because perspective change always occurs when 3D object moves, using
these features to estimate the pose of a 3D object is a challenging task. In
this paper, we extend one of our previous works on viewpoint generative
learning to 3D objects. Given a model of a textured object, we virtually
generate several patterns of the model from different viewpoints and
select stable keypoints from those patterns. Then our system learns a
collection of feature descriptors from the stable keypoints. Finally, we are
able to estimate the pose of a 3D object by using these robust features.
In our experimental results, we demonstrate that our system is robust
against large viewpoint change and even under partial occlusion.

Keywords: pose estimation, generative learning, stable keypoint.

1 Introduction

The problem of 3D pose estimation of rigid objects has been studied for several
decades because estimating the pose (position and orientation) of a known ob-
ject in an unknown scene is a significant issue in the fields of Computer Vision
and Augmented Reality. So far, a number of model-based methods have con-
ventionally been proposed in order to solve this problem. Most of them can be
classified into two categories based on reference object as follows: planar model-
based methods [12], and 3D model-based methods [3/4]. Both have different
pose estimation processes. Planar model-based methods are to estimate a ho-
mography which defines perspective transformation between a reference object
and an input image. On the contrary, 3D object-based methods are to recover
all six degrees of freedom of a reference object with respect to the scene.
Keypoint matching is one of the most important technologies to achieve good
performance of pose estimation for both categories of the above methods. Typi-
cally, local features, such as SIFT [5] or SURF [6], are widely used to estimate a
homography for a planar surface because of their own scale and rotation invari-
ance. However, they often fail when a reference object is moved because these
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features are sensitive to large perspective change. Therefore, for a 3D object
where perspective changes always occur when moving it, the keypoint matching
using the original processes of SIFT or SURF is not enough to estimate its pose.
An additional learning process is a compulsory task to handle large perspective
change problems.

Improving these features to estimate the pose of a 3D object is our main
objective. In our previous work, Yoshida et al. [7] presented a stable keypoint
matching method which is robust even under strong perspective changes. We
used viewpoint generative learning to train our system before the beginning of
the keypoint matching. After the learning, our system is able to effectively esti-
mate the pose of an object based on keypoint matching. As a result, our learning
method can handle the large perspective change problem; however, it was lim-
ited to only planar surfaces. In this paper, we propose a 3D pose estimation
method which extends this previous work on viewpoint generative learning to
3D object. Given a model of a textured 3D object, we virtually generate several
patterns from different viewpoints of the model and collect feature descriptors
from those patterns. Only the feature descriptors of keypoints, which can be
detected repeatedly in different poses of generated patterns, are collected. After
the learning, our system is able to estimate the pose of a 3D object based on 3D-
to-2D keypoint matching. To sum up, these conventional local features are able
to estimate the pose of a 3D object by using our viewpoint generative learning
method.

2 Related Works

Apart from using keypoints as local features, 3D object pose estimation can be
done by several approaches. Some approaches use more than one local feature.
For example, in [§], both edges and vertices of the 3D model were utilized to
estimate the pose of a 3D object. Moreover, by combining with information of the
external system such as magnetic sensor or vision marker, the accuracy and the
robustness under rapid camera movement can be improved. However, edge-based
methods are not suitable for round objects or objects with hard-to-detect edges.
Nowadays, depth camera is an alternative option to use in 3D pose estimation
and tracking [9]. Moreover, due to an existence of depth cameras, point cloud-
based methods also became popular in 3D recognition and pose estimation [10].
Although there are many advantages of depth information, depth camera is not
a convenient tool. If depth information is not available, keypoint matching is still
a powerful technique to estimate the pose of a 3D object by using only images
from an RGB camera.

Recently, improving conventional local features such as SIFT or SURF in
order to handle large perspective change for automatic 3D object pose estimation
has become a considerable interest. Because our method focuses on using these
features to estimate the pose of a 3D object, we discuss in this section about other
methods which focus on the same goal as follows: Randomized Trees [11] and
Gravity-Aware [12]. Both of them are keypoint-based learning methods which
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can recognize keypoints and estimate the pose of 3D object by using generative
learning.

Randomized Trees is a generative learning method that considered keypoint
matching problem as a patch classification problem. It applies affine transforma-
tions to image patches around detected stable keypoints to train the randomized
trees. It recognizes the corresponding patches based on intensity comparison.

Gravity-Aware is a camera localization method. This method creates synthetic
views from a reference image and creates descriptors for them. The system selects
the most representative subset of the descriptors, which is used in online feature
matching. After finish the learning, it recognizes the corresponding keypoints by
comparing descriptors from an input image with all representative descriptors.
Furthermore, a gravity orientation from inertial sensors can be used to increase
the accuracy of camera localization.

3 Overview

In this section, we discuss the overview and the structure of our pose estimation
system. It can be divided into two phases: learning phase and detecting phase.
A 3D object is used as a reference. First of all, we assume that a 3D model with
texture of the object has been reconstructed and the intrinsic parameters of the
camera are obtained. In the learning phase, we modify the viewpoint generative
learning for planar surface [7] to train our system. The feature descriptors from
stable keypoints obtained during the learning phase are stored in a database. In
the detecting phase, we utilize this database to match stable keypoints from an
input image, and then estimate the pose of the reference object. The structure
of our system is illustrated in Fig. [0l
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Fig.1. Overview of our proposed method which is divided into learning phase and
detecting phase
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4 Viewpoint Generative Learning

Viewpoint generative learning is a key method during the learning phase. By
using this method, our system is able to learn various features from patterns
which are virtually generated from several viewpoints. First, we generate pat-
terns of the model from various viewpoints. Then we detect stable keypoints
from the generated patterns and create a database of feature descriptors. After
the learning stage, the model and an input image can be matched by comparing
their features using this database.

4.1 Generation of Various Patterns

We now present a method for virtually generating the patterns as illustrated in
Fig. 2l It consists of pre-captured textured 3D model of the reference object lo-
cated at the center of the sphere, and a virtual camera at a point on the surface
of the sphere. We simply apply perspective transformations in order to generate
all the patterns. For each generated viewpoint, we collect not only the patterns
but also the depth and viewpoint information. Note that our method does not
apply any transformation to any single image patch but apply perspective trans-
formation with the purpose of moving a virtual camera around the model. As
a result, the generated patterns are images of the reference model captured by
the virtual camera from multiple viewpoints.

Fig. 2. Our method virtually captures the 3D model for generating several patterns
from different viewpoints

The parameters § and ¢ respectively describe the rotation around the X-
axis and the rotation around the Y-axis of the virtual camera. The parameter w
defines the spin of the virtual camera. The rotation matrix R and the translation
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vector ¢ are shown in (), where d is the distance between the virtual camera
and the model.

cosw —sinw 0 cos¢p Osing| [1 O 0 0
R = |sinw cosw 0 0 1 0 0cosf —sinf| ,t= |0 (1)
0 0 1| |—sin¢Ocos¢| |0sinh cosb d

In order to collect data from every single viewpoints of the model, we set the
rotation ranges as, € [—90°;90°] and ¢ € [0°;360°]. Thanks to the rotation
invariance, the parameter w that describes the spin of the virtual camera is
constant. Besides, because of the scale invariance, the distance d between the
virtual camera and the model is also constant.

4.2 Selecting Stable Keypoints

Stable keypoints are defined as the keypoints that can be detected repeatedly
in different poses of generated patterns at the corresponding locations. First,
in order to select the stable keypoints, we detect keypoints for every generated
pattern with a local feature detector. Then, all detected keypoints are projected
from pixel coordinate system to 3D coordinate system by using the collected
depth information and viewpoint information of each generated pattern. We
search for the closest keypoint in the 3D coordinate system by measuring Eu-
clidean distance. If the Euclidean distance between the keypoint and the closet
keypoint is lower than a threshold, we consider those keypoints as the same
keypoint and then increase its repeatability. On the other hand, if no keypoint
is found around the projected position of the keypoint, we conveniently create
a new keypoint at that position in the 3D coordinate system. Figure [3] shows
examples of keypoint projection to 3D coordinate system and stable keypoint
selection. When all generated patterns are processed, the keypoints with the
highest repeatability are selected as stable keypoints. In summary, we select a
set of stable keypoints based on repeatability of detection among the generated
patterns.

Our method is able to cover all keypoints which can be detected on generated
patterns because it detects keypoints not on a single reference image but on the
entire set of generated patterns.

4.3 Creating Database of Feature Descriptors

When keypoints are detected on the generated patterns, we also collect the
descriptors of each keypoint. As a result of selecting stable keypoints, the number
of descriptors for each keypoint is equal to the number of patterns in which the
keypoint was detected. This would result in a huge database which slows down
the matching process, therefore the number of descriptors has to be decreased.
A clustering algorithm, k-means++ [13], is used to cluster the set of collected
descriptors for each stable keypoint. Then, we collect the barycenter of the set
of descriptors of each stable keypoint into a database. As a result, the database
contains N x K feature descriptors, where N is the number of stable keypoints
and K is the number of clusters.
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Fig.3. We select the keypoints with the highest repeatability among the patterns
generated from our pre-computed textured 3D model

5 Keypoint Recognition and Pose Estimation

After finishing the learning, our system can detect a reference object and es-
timate its pose by keypoint matching. In the detecting phase, we first acquire
an input image from a camera with known intrinsic parameters. We detect key-
points and compute feature descriptors from the input image. Then we compare
the obtained descriptors with descriptors in the generated database by comput-
ing Fuclidean distance of their high dimensional value. We validate the matching
result by applying nearest-neighbor distance ratio [14] to the distance ratio be-
tween the nearest-neighbor feature descriptors and the second nearest-neighbor
feature descriptors. As a result, we can identify the correspondences between the
stable keypoints on the model in 3D and the keypoints on the input image in
2D. These correspondences, together with the intrinsic parameters of the cam-
era, are used to estimate the pose of the reference object by solving the related
Perspective-n-Point (PnP) problem [15] with a robust estimator RANSAC.

6 Experimental Results

In order to evaluate the performance of our method, we implemented a 3D
pose estimation system based on our proposed method. We used a Logitech
Webcam Pro 9000 to capture input images with a resolution of 640 x 480 pixels.
Before starting any experiment, we estimated the intrinsic parameters of the
camera and reconstructed the reference object in advance. We created textures
of the reference object by pasting Graffiti images [16] on the reference object
and applied the texture information of the reference object to the 3D model.
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During the pattern generation process, the angular distances (6, ¢) between any
two consecutive patterns were set to (20°,0°) or (0°,20°). This resulted in 162
different generated patterns under the condition of scale and rotation invariance.

To verify the effectiveness of our proposed method, we demonstrate the re-
sults of stable keypoint matching by drawing lines that show stable keypoint
correspondences, without outlier removal, between input images and their most
similar generated patterns as shown in Fig. @l We also demonstrate the results of
3D pose estimation after using RANSAC by superimposing the bounding boxes
of the reference object onto the input images with geometrical consistency. A
box-shaped object was used as a reference object due to ease of modeling and a
cylinder-shaped object was also used as a reference object to demonstrate that
our method can relax planar constraint. As shown in the result images in Fig.
Bl our system can estimate the pose accurately even under partial occlusion.

Fig. 4. Result images of stable keypoint matching without outlier removal and pose
estimation after using RANSAC. (a) Using SIFT as feature. (b) Using SURF as feature.

6.1 Evaluation of Robustness

In this experiment, the robustness of our system was defined as a pose estimation
success rate on sample images. Since the robustness of our system depends on
the number of stable keypoints N and the number of clusters K, we conducted
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Fig. 5. Result images with partial occlusion. (a) Using SIFT as feature. (b) Using
SURF as feature.
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Fig. 6. The graphs represent the relation among the robustness, the number of stable
keypoints, and the number of clusters. (a) Using SIFT as feature. (b) Using SURF as
feature.

an experiment to find the relation between them. We estimated the pose of the
object on 151 images as sample data by using our method. Both SIFT and SURF
were used as local features in this experiment. The results of the sample data
were classified into successful cases and failure cases. Based on the results in
Fig. [6l we can summarize that the success rate varies directly with both the
number of stable keypoints and the number of clusters. Besides, by having the
same number of stable keypoints and the same number of clusters, it was shown
that SIFT is more robust than SURF to estimate the pose of the object.
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6.2 Evaluation of Accuracy

We also calculated the pose estimation errors in order to measure the accuracy
of the system. To calculate the pose estimation errors, we computed the distance
traveled by the reference object between two images captured by a stationary
camera. Then, we compared the obtained distance with the groundtruth value
measured by a motion capture system. In this experiment, 20 pairs of frames
were used as input data. The parameters are set as follows: N = 3000 and K = 8.
The result is shown in Fig. [, and the mean error came out to be 1.85mm and
2.99mm using SIFT and SURF as local features respectively.

Errors (mm) Pose estimating failed

0 - ( \""l‘—ié at these frames I—

—o—-SIFT
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Fig. 7. The graph represents pose estimation errors between each pair of frames

7 Conclusion and Future Works

Viewpoint generative learning was successfully extended to estimate the pose
of 3D object. Just giving only a textured model of an object is enough for
our method to learn a set of feature descriptors from stable keypoints. After the
learning, we can use conventional local feature such as SIF'T or SURF to estimate
the pose of a 3D object. The experimental results confirmed that our method is
robust against large perspective change and even under partial occlusion.

In the future, it is possible to increase the speed of the system; most of the
computation time results from comparing the descriptors, but since the descrip-
tors are independent of each other, GPU-based parallel computing could be an
interesting solution to speed up the process. Moreover, pose information of previ-
ous frame is one alternative method to decrease the computation time. Another
topic that we are aware of is the problem that can be caused by the illumination
changes; it is known that SIFT and SURF are only partially invariant to illumi-
nation variations. If the texture on the model and the input image are captured
from different lighting environments, the keypoint matching might fail.
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