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ABSTRACT 

In this paper, we will present methods for camera pose estima-
tion for mixed and diminished reality visualization in FTV ap-
plication.  We first present Viewpoint Generative Learning 
(VGL) based on 3D scene model reconstructed using multiple 
cameras including RGB-D camera.  In VGL, a database of fea-
ture descriptors is generated for the 3D scene model to make the 
pose estimation robust to viewpoint change.  Then we introduce 
an application of VGL to diminished reality.  We also present 
our novel line feature descriptor, LEHF, which is also be applied 
to a line-based SLAM and improving camera pose estimation. 

Index Terms — camera calibration, augmented reality, free 
viewpoint image synthesis, feature descriptor, see-through vision 

1. INTRODUCTION 

Free Viewpoint TV is a framework to provide a functionality of 
controlling/manipulating observation viewpoints when the video 
is observed by users.  One of the early studies  for achieving 
such functionality of free viewpoint observation of videos was 
Virtualized Reality [1].   

FTV is achieved by integrating a lot of computer vi-
sion/computer graphic technologies.  One of the important tech-
nologies of  computer vision for FTV is camera calibration, 
which is a technique to estimate camera poses, and optical pa-
rameters of cameras.  In FTV, 3D structure of the object scene 
should be somehow captured.  In the most of typical way to cap-
ture such 3D structure of the scene is recovering the 3D structure 
based using multiple viewpoint videos.  For 3D recovery with 
multiple views, we should get geometry of all cameras that cap-
tures the scene, otherwise, it is almost impossible to geometrical-
ly merge the different view videos for 3D recovery. 

In most of the early works of FTV [2,3], all the cameras for 
capturing the 3D structure of the scene are assumed to be not 
moving while the scene is captured, so that camera calibration 
can be performed before the capturing of the scene.  However, 
such assumption limits applicability of FTV capturing, because 
we sometimes wish to move the cameras according to the scene 
change and object moving.  Therefore, on-line estimation of 
camera pose is important for more flexible FTV implementation 
[4,5]. 

On-line camera pose estimation is also one of the most im-
portant technology for Mixed and Augmented Reality (MAR).  
One of the pioneer work of on-line camera pose estimation for 
MAR is Toolkit Markers [6].  It is easy-to-use toolkit for realiz-
ing on-line camera pose estimation.  For avoiding to use such 
markers, feature point based camera pose estimation are also 
extensively studied, but a planar pattern should be placed in the 
region of interest.   

We have proposed a method of camera pose estimation for 
MAR using 3D shape and texture of the scene [7].  The 3D pose 
estimation is based on viewpoint generative learning using  3D 

objects.   By having a 3D shape model with surface texture,  we 
virtually generate a number of images of the model from differ-
ent viewpoints, and then select stable keypoints from those pat-
terns.   Our system learns a collection of feature descriptors from 
the stable keypoints.  Finally, we can estimate the pose of a 3D 
object by using these robust features. 

In this paper, the camera pose estimation using the 3D 
shape of the target scene based on Viewpoint Generative Learn-
ing (VGL)[8].  In VGL, a database of feature descriptors is gen-
erated for the 3D scene model to make the pose estimation ro-
bust to viewpoint change.  Then we introduce an application of 
VGL to diminished reality.  Next, we also present our novel line 
feature descriptor, LEHF [9], which is also be applied to a line-
based SLAM and improving camera pose estimation[10]. 

2. CAMERA POSE ESTIMATION BY VIEW 
GENERATIVE LEARNING OF 3D MODEL 

The camera pose estimation is based on view generative learning 
(VGL) [8]using 3D model of the object with texture.  Basic idea 
of VGL is that a number of different viewpoint images of a tar-
get scene are learned for making the camera pose estimation 
robust to view point changes.  For efficient learning of a lot of 
different viewpoint images, descriptors of keypoints (feature 
points) detected from the images are stored in a database of 
keypoint feature descriptors in advance.  By synthesizing the 
different viewpoint images  from a 3D shape model of the target 
scene, 3D position of each keypoint is also stored in the database. 
Here, we only store keypoints which are stably detected in dif-
ferent viewpoint images.  We call those keypoints as stable 
keypoints.  In the database of  feature descriptors, we do not 
store all descriptors for each keypoint, but store only small num-
ber (k) of representative descriptor (for example, K=3) for reduc-
ing the data amount of the database and efficient search at the 
run-time.  The representative descriptors are obtained by k-
means clustering of all descriptors for each keypoint. 
 

 
 

Figure 1. Clustering of Feature Descriptors in VGL 
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Figure 2. Algorithm of VGL for 3D pose estimation. 

 
(a) Box shaped object 

 

(b) Cup shaped object 

 

(c) Head shaped object 

Figure 3. 3D shape model recovered with KinectFusion. 

In run-time of camera pose estimation, keypoints are de-
tected for each frame of input video sequence.   Each descriptor 
of each keypoint is matched with the descriptors of the keypoint 
feature descriptor database for obtaining the 3D position of the 
keypoint.  We can expect that the matching can be robust to 
viewpoint changes because the different descriptors for each 
keypoints are stored in the database.  The algorithm flow is 
shown in Figure 2.  

Figure 3 shows example results of camera pose estimation 
using VGL.  In those images, the camera is actually fixed, but 
the objects are moving, so we estimate the relative pose of the 
camera with the object.  The bounding box shape of the object is 
overlaid for indicating the relative pose of the camera with the 
object.  Those results are demonstrating that VGL can success-
fully estimate the pose without any limitation of the object pose.   
We do not use any boundary edges of the object in the image, 
but the keypoint matching for pose estimation.  The results of the 
cup shaped object and the head shaped object demonstrate that 
our method can successfully estimate the pose without any edge 
information which is often used for 3D model based pose 
etimation [11]. 

3. DIMINISHED REALITY 

Diminished Reality (DR) is a technique for visually removing a 
real object from an input image for making see-through image 
by replacing the removed object with a image of occluded area.  
For generating images of DR, the occluded area should be cap-
tured by other cameras placed at different viewpoint from the 
camera that takes the input image.  Since the viewpoints of the 
other cameras that capture the occluded area are different from 
the input camera, the images of the occluded area should be 
transferred to the same viewpoint as the input camera for replac-
ing the removed object in the input image.  The viewpoint trans-
fer can be achieved by applying FTV technologies, which syn-
thesize different viewpoint videos from input videos.  In this 
sense, DR can be regarded as an application of FTV. 

For synthesizing different viewpoint images of the occlud-
ed area, 3D structure of the area should be given. Zokai et al. 
[12] reconstruct a 3D model of the occluded area by multiple 
cameras. Enomoto et al. [13] and Honda et al. [14] assume that 
the occluded area can be approximated as a single planar struc-
ture for achieving on-line DR system.  Hashimoto et al. [15] 
approximate the occluded area with a set of planar structures for 
synthesizing a see-through baseball movie from multi-camera 
systems.  Figure 4 shows an example image of the see-through 
observation of baseball match.  In this case, the pitcher is ap-
proximated as a single plane, and the ground is also approximat-
ed as another single plane.  Based on the structure, the image of 
the occluded area in the center camera is synthesized from the 
corresponding areas of left and right camera.  A limitation of this 
method is that the cameras cannot be moved, but need to be 
placed at fixed positions.   

 

 
Figure 4. An example of the see-through observation of baseball match. 

As indicated in those related works on DR, there are some 
research issues in DR, which are similar as FTV.  The main is-
sues are camera pose estimation for making free-viewpoint ob-
servation of the scene, and 3D structure recovery of the scene.  
For avoiding such difficulties, observing cameras are fixed in 
[15]. The scene is approximated as planar structures in 
[13,14,15].  AR marker is used for avoiding on-line camera pose 
estimation in [13].  Those issues should be solved for expanding 
DR applications. 

4. ON-LINE DIMINISHED REALITY SYSTEM 

In this section, on-line diminished reality system with free-
viewpoint observation for non planar structure scene using VGL 
is presented.  In this system, we capture 3D structure of occluded 
area using RGB-D camera.  For achieving on-line camera 
movement for free viewpoint observation of DR with a 
smartphone, the pose of the camera in the smartphone is estimat-
ed by VGL.  Figure 5 shows the overview of the DR system.  
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This system consists of a smartphone (hand-held PC with a cam-
era) and a server PC.  Those two devices are connected via wire-
less networks, so that  video data can be transferred between the 
devices.  In the server PC, 3D shape model of a target scene and 
its keypoint feature database are stored in advance.  We apply 
KinectFusion [16] for recovering 3D shape model of a target 
scene by taking RGB-D video sequence of the target scene with 
Kinect.  Figure 6 shows an example of 3D shape model recov-
ered by KinectFusion.  This model is represented by a set of 
triangle mesh with texture, so that the viewpoint of synthesizing 
images can arbitrarily be changed. 

 

 
 

Figure 5. System setup for on-line diminished reality. 

 

   
 

Figure 6. 3D shape model recovered with KinectFusion. 

At on-line phase, the observer captures the scene, where the 
occluding object is hiding the occluded area, using the 
smartphone.  By applying the pose estimation by VGL, the pose 
of the camera (smartphone) can be estimated on-line.  Images of 
the occluded area that should be observed from the estimated 
viewpoint is synthesized based on the 3D structure that is also 
captured by the RGB-D camera.  The image of the occluded area 
is overlaid onto the smartphone image for generating an image 
without the occluding object. 

In diminished reality applications, we also need to detect 
the area of occlusion.  Figure 7 (a) represents an example image 
of captured image with the smartphone.  In this case, the box in 
the center of the image is hiding the scene behind the box, which 
can easily be recognized by human, but it is not easy to be de-
tected by the system automatically.  In the presented system, we 
make the user select occluding objects by touching the display of 
the smartphone.  Figure 7(c) shows example of result image of 
diminished reality, in which the occluding object is removed 
from the input image, Figure 7(a).  Figure 7 (b) shows an image 
captured from the same viewpoint as Figure 7 (a) without the 
occluding box-shaped object, which can be regarded as the im-
age that we wish to synthesize by diminished reality techniques.  
Figure 7 (c) is almost same as Figure 7 (b), which is demonstrat-
ing the effectiveness of the presented system. 

Figure 8 represents a DR visualization example, in which 
the occluded area is moving.  In this case, the 3D shape of the 
occluded area is captured by a Kinect, which provides the image 
of the occluded area from the viewpoint of the observing 
smartphone. 
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Figure 7.  Diminished reality output image. 

 
 

Figure 8.  Example of diminished reality. 

5. LINE FEATURES FOR CAMERA POSE ESTIMATION 

In the previous sections, we have presented methods of camera 
pose estimation based on keypoints (feature points) captured in 
input image sequences.  In input images, we can also consider 
line features as key-features for camera pose estimation.  For 
taking into account such line features, we have already proposed 
a line feature descriptor called as Line-based Eight-directional 
Histogram Feature (LEHF) [9].  The line segments can be de-
tected by using LSD [17], which is an efficient line feature de-
tector. Figure 9 demonstrates the performance of LEHF.  Almost 
all line features are correctly matched even though some lines 
segments are detected in different positions and orientations with 
different length.  

Using the line feature descriptor LEHF, we have proposed a 
novel method for SLAM (Simultaneously Localization and 
Mapping).  In this method,  the line segments are detected by 
LSD from  each frame of input image sequence, then matched 
with the line segments detected in the different frames according 
to the similarity of LEHF descriptors.  Then 3D poses and posi-
tions of the detected line segments are estimated, while the pose 
of camera at each frame is also estimated simultaneously.  Fig-
ure 10 shows an example of mixed reality visualization in which 
a 3D CG model is overlaid at the fixed position onto the desk. 

 

 
(a) Correct matching 73,  wrong matching 0. 

 

  (b) Correct matching 80,  wrong matching 3. 

Figure 9. Example of line segments matching using LEHF.  
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(a) Mixed reality visualization   (b) SLAM result 

Figure 10. Example of mixed reality visualization by camera pose esti-
mated by SLAM using line segment features. 

We have recently proposed a novel method for improving 
accuracy of camera pose estimation based on the line features 
[10].   This method is designed for improving the accuracy of 
camera pose estimation of KinectFusion, which can provide 3D 
model of a target scene by capturing the scene using a RGB-D 
camera.  In KinectFusion, the camera pose estimation is mainly 
performed by ICP algorithm, which aligns the camera pose be-
tween the different frames based on 3D point matching.   How-
ever,  3D points captured by a RGB-D camera often affected by 
errors of the depth measurement.  To solve this problem about 
point based alignment, we propose a method for alignment by 
using line segments.  For the alignment based on line segments, 
we represent a 3D model of target scene with 3D line segments.  
Then 2D line segments in RGB images are matched with the 3D 
line segments in the 3D model using LEHF descriptor to obtain 
2D-3D line correspondence. 

6. CONCLUSION 

Mixed and augmented reality, and diminished reality visualiza-
tion are applications of FTV technology with a promising future.  
In those applications on-line camera pose estimation is a signifi-
cant basic technology, in which 3D computer vision techniques 
can play a great roles.  In this article, we introduced our recent 
challenges using VGL and line segment features, which make 
the on-line camera pose estimation stable and robust.  Future 
work will be a hybrid use of line features and point features in 
VGL framework.  
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(a) Without improvement by LEHF (b) With improvement by LEHF 

Figure 11. KinectFusion recovers the 3D model of the scene.  (a) Origi-
nal 3D model represented by line segments (upper row) and colored 

point cloud (lower row).  (b) Improved 3D model recovered with accu-
rately estimated camera poses using LEHF matching. 
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