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Abstract. In this paper, we present a system for visualizing temperature changes
in a scene using an RGB-D camera coupled with a thermal camera. This sys- 010
tem has applications in the context of maintenance of power equipments where 011
anomalies are detected with temperature changes. We propose a two-stage ap- 012

proach made of an with offline and an online phases. During the first stage, af- 013
ter the calibration, we generate a 3D reconstruction of the scene with the color 014
and the thermal data. We then apply the Viewpoint Generative Learning (VGL) 015

method on the color model for creating a database of descriptors obtained from

features robust to strong viewpoint changes. During the second online phase we
compare the descriptors extracted from the current view against the ones in the
database for estimating the pose of the camera. In this situation, we are also able
to display the current thermal data and compare it with the data saved during the 019
offline phase. This system makes it possible to visualize temperature change by 020

016
017
018

hand-held camera. 021

022
Keywords: thermal camera, 3D model reconstruction, camera tracking, visual- 023
ization, RGB-D camera 024

025
026
027

1 Introduction

Usually, anomalies in power equipments or building structures are detected by lo8K-
ing for variations in the temperature which are difficult to be directly visualized. such’
strong changes will often imply a malfunction or a future problem. A common wagf’o
to evaluate the changes in the temperature state is to fix a camera and to compar83fhl
temperature at two different times. The resolution and the field of view of the therniaf
cameras is, however, quite small which makes difficult to monitor big size objects 6F
large areas. Since the cost of such device is also high, it makes it hard to use sevéfa
cameras to cover a large surface. 035
We then propose a system for detecting abnormalities from temperature changés
in wide areas with a thermal camera coupled with an RGB-D camera. Our approach’is
based on two precomputed 3D reconstructions of the target scene achieved with a RGB-
D camera coupled with the thermal camera as shown in Fig. 1. The first reconstructioh
holds the color information, while the second one holds the thermal information. TH&
colored 3D reconstruction is used with the Viewpoint Generative Learning (VGL) [*
algorithm to detect feature points robust to strong viewpoint changes. We then genetéte
a database with the corresponding 3D positions and descriptors of these featuresFo
comparing the status of the temperature between the reconstruction and the current tiffe
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we accurately estimate the pose of the camera by finding keypoint correspondenges
between the current view and the database. Knowing the pose of the camera, we aredhe
able to compare the thermal 3D reconstruction with the current status of the temperature
from any viewpoint only by hand-held camera. 048
049
050
051
052
053
054
055
056
057
Fig. 1. Our capture system is made of the Microsoft's KINECT and the optris PI160. 058
059
060

061
Since the RGB-D camera and the thermal camera are two distinct devices, we nged

to estimate their relative pose. Here, we propose our own calibration board that makes
easier the pose estimation of the thermal camera in reference to the RGB-D camerag,
The remainder of the paper is organized as follow: After an overview of the coms;
ponents of our system, we describe our calibration process with the introduction of gur
calibration board. Section 4 will detail our reconstruction process based on Kinect Fu-
sion, and in section 5 we will give a reminder about the VGL algorithm. After describing,,
the online phase of our method, we finish by presenting the experiments. 069
In our system, Thermal information is projected onto the current color image, be;
cause that would makes easier to understand where we are looking at, and enhangce
our system [2]. In our knowledge, this is the first work to propose the visualization of,
temperature changes over middle sized areas.

073
074
2 Proposed Method ors
076
Our proposed method consists of two stages. During the first one, we precompute o
3D models of a scene, one with corresponding temperature distribution at the capftife
time and another with the color information. We will refer to this temperature map 4§’
the reference temperature. Kinect Fusion[3] is used to generate uncolored 3D Modél.
This offline phase thus requires a calibration that estimates the relative pose of the tHer-
mal camera in reference to the RGB-D camera. The thermal map will be used later for
the comparison of the reference temperature with the current state. The colored mééfel
is the source of keypoints robust to strong viewpoint changes that will be used to creéte
a database of descriptors and 3D points with the Viewpoint Generative Learning al§6-
rithm. The database will then be available for the online phase for accurately estimatifig
the pose camera. 087
During the second stage, we estimate the pose of the camera and use it to comFar:
the current temperature state with the reference one. The pose of the camera is estimégte
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Fig. 2. System Overview 106

107
108

by comparing the descriptors stored in the database with the ones extracted from'the
current view. At this time, we know the pose of the camera, the current state of thé
temperature, and the reference one stored in a 3D model. With the pose estimation e
can then align the thermal 3D model with the current viewpoint. By combining thes&’
data, users are able to visualize thermal changes and can freely move the camera argtn
the scene, but in the limits of the 3D model. An overview of our system is depicted

Fig. 2. 1o
116
117
3 Calibration 118
119
3.1 Our Calibration Board 120

A traditional approach for calibration is to use a planar pattern like a chessboard that an
be easily detected and matched from multiple cameras [4]. If this approach works well
with standard color cameras, it remains difficult to directly apply it with images from &
thermal camera since the temperature on the calibration board is uniform. A comniéh
solution is to heat the board using, for instance, a flood lamp as described by [5] or [6].
We extended this idea by proposing a special calibration board that is visible froft
both color and thermal cameras. Our board is made of two plastic plates generated with
a 3D printer. The first one, the lower plate, is made of a planar surface covered of regifar
bumps corresponding to the black parts of the calibration pattern. The second plat&is
designed to plug onto the first one, it is thus made of a planar surface with holes whete
the black parts of the calibration pattern should appear. At the end, combining béth
plates creates a flat calibration pattern like the ones commonly used. The plates ‘¢an
be observed in Fig. 3(a). To make it visible from the thermal camera, we simply heat
the lower plate while the upper one remains at ambient temperature. This will providé$
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(a) The lower plate is heated while th L
upper one remains at ambient (b) The calibration board captured from 145
the thermal camera

temperature 146
147
148
149
150

Fig. 3. The Board use for calibration the RGB-D and the thermal cameras

enough contrasts in the resulting image to detect the calibration pattern as presented'ir
Fig. 3(b). For our board, we preferred the use of a pattern made of black circles rather
than a checkerboard for two reasons. First, a circle shape makes the plug of the two
plates easier. Second, the detection of the center of the circles remains robust evetf' i
the captured images are blurred or if the heat from the lower plate propagates uniformfy

on the upper plate. 156
157

158
3.2 Estimation of Intrinsic Parameters 159

160
The intrinsic parameters of the thermal camera are evaluated using the Zhang'’s methgd |

We capture several views of our calibration board and evaluate the corresponding fagal
lengths, principal point and aspect ratio. The skew parameter is considered null. Ear
better evaluation of the parameters and since the sensor is slightly different from the
pinhole camera model, we start by fixing the principal point at the center of the image
plane and refined it during the calibration process. 166

167
168
169

The goal of this calibration is to estimate the pose (rigid transformation) of the thermtaf
camera with reference to the RGB-D camera. For this process, we take advantage of the
3D coordinates provided by the depth camera. For each circle’s center from the calibra-
tion board, we can obtain the corresponding 3D position. By finding the corresponditig
pixels in the thermal image, we create a set of 3D/2D correspondences. We then apply
the Efficient Perspective-n-Point algorithm to estimate the extrinsic parameters [7]. 175
However, the depth map generated by the RGB-D camera suffers of noise. We thén
propose to fit the 3D coordinates extracted from the calibration board to a planar sur-
face. The equation of this surface is found by first gathering several sampl€@® (178
3D points) from the target surface around the detected pixels. We then apply a singdlar

3.3 Estimation of Extrinsic Parameters
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value decompositio®/ X'V* on the data and extract the singular vector frbhde- 180
scribing the normal to the plane we are looking for. Finally, each of the 3D coordinates
previously obtained from the center of the circles are projected onto the computed plane
to accurately estimate their position. The resulting points are then used for the calibra-
tion of external parameters. Benefits of this approach will be demonstrated later in the
experiment section. 185
186
187
188
189
190

4 Creation of the 3D Models

4.1 The 3D Models

Kinect Fusion[3] is used to generate uncolored 3D Model. This method estimates the
pose of an RGB-D camera for each frame using a dense version of the Iterative Clo$&st
Point (ICP) algorithm on GPU [8], and integrated the depth information from eact®
frame into a voxel grid using a Truncated Signed Distance Function(TSDF) [9]. 1904
While running Kinect Fusion for generating the uncolored 3D reconstruction of thé®
scene, we also save the pose estimation of the camera and the corresponding color ififor
mation. After finishing the reconstruction, we convert the voxel grid into two meshes”’
Using the pose estimation of the camera, we then map the color images on one me&sh
and the thermal images on the other one. The field of view of the thermal camerads
however smaller than the RGB-D camera’ one and thermal data will not cover all tH&

surface of the 3D model. 201
202

203
4.2 Resolution of occlusions with the thermal images 504

As described in the previous subsection, we generate the colored 3D model and’the
thermal 3D model in similar ways. But, the RGB-D camera and the thermal camera
are located at two slightly separate positions which implies that we need to apply fhe
rigid transformation computed in Sec.3.3) to compensate this difference and correéﬂ@
performing the mapping. Also, since the viewpoints are different, we need to deal with
occlusions on the 3D reconstruction during the mapping stage as observed in Fig. 4(&).
Our solution is to perform a depth test by projecting depth and color pixels from the'
RGB-D camera onto the thermal image plane. First, the 3D points corresponding to the
pixels from the depth image are projected onto the thermal image, and are discarded’if
the projection is outside of the thermal image plane. Since we are dealing with occitf*
sions, a pixel of the thermal image can correspond to multiple depth/color values frém
the RGB-D image. Our goal is then to conserve the candidate with the smallest depth'in
the thermal image. This pixel will finally represent the surfaces visible from the thermal’
camera viewpoint. 218
At this point, several pixels of the thermal camera can still be incorrectly display&é®
in the color image, especially if the field of view of the cameras are strongly differerf£®
In our case, the RGB-D camera has a vertical fov of @hile the thermal camera’s 22!
field of view is 3P. So, when projecting a RGB-D pixel onto the thermal image, i£22
will overlap multiple thermal pixels and not a single one. We resolved this issue By?
computing the average of the values inside 8fa3 pixel area (empirically estimated) 224
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236
Fig. 4. Example of occlusion processing, almost all of the occlusion areas are removed by &gt
depth test approach. 238
239
240

(a) Before the processing (b) After the occlusion removal

centered on the projected color pixel and by replacing the neighbors pixels with a stroan
absolute difference with average of this area.

Finally, for each pixel of the RGB-D image, we can find or not (in case of occlusions’
or if the projection is outside of the thermal image) a correspondence in the therral

. . . . . 24
image. An example of our occlusion removal process is presented in Fig. 4 (b). °
246

247
5 Viewpoint Generative Learning for tracking 248

249
During the online phase, in order to estimate the pose of the RGB-D camera with the

scene captured for the 3D model, we need a tracking algorithm that can be robust agains
strong viewpoint changes and occlusions. Our solution is to use the Viewpoint Gengt-
ative Learning (VGL) [1]. The first step requires, during the offline phase, to gener

a database of descriptors from visual features with high repeatability. The idea is tggp
to capture the reconstructed 3D model of the scene from several different views

ing the OpenGL rendering process as illustrated in Fig. 6. For each image obtained, e
detect the features with SIFT [10]. We aggregate these features in the 3D space and %;n
serve only the ones that can be detected over multiple views. We define these feature:
with high repeatability as stable keypoints and extract the corresponding descriptors. 9t
this state, however, the amount of data is too high for expecting a fast traversal of

database. We then decided to cluster the descriptors of a stable keypoints by appl mg
k-means++ [11] on them. Finally, we store in the database the clustered descnptors and

the 3D position of each stable keypoint. .

. 264
6 Online phase 265

. 266
6.1 Camera Tracking 67

During the online phase, we want to display the actual temperatures of the scene @Ad
make comparisons with the reference temperature mapped on the 3D thermal model.
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Fig. 5.3D models of a scene occupied by server machines 291
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This means that we need to find correspondences between the pixels of the current view
and the 3D coordinates and descriptors of the 3D model stored in the VGL databasegs

The tracking algorithm consists of two phase, the first one consists in initializireg”
the pose of the camera by comparing the current view with the database. The seconc
phase uses the initialization for performing a frame to frame tracking. This approach
appears to be faster since requesting the database is slow. Also, we can only useadde
scriptors stored in database, so if good features are detected in current frame, we end
up discarding those if we don’t have corresponding stable keypoints in database. 302

In the first frame, we start by detecting features in the currentimage captured by the
RGB-D image and extract their descriptors. We look for the two most similar descrip+
tors inside of the database using the Fast Library for Approximate Nearest Neighb®¥s
(FLANN) algorithm. We then evaluate the Euclidean distance ratio between the des
scriptors from the current view and these two nearest neighbors from the databaseQ’If
the ratio is under a given threshold, we then verify the established correspondence, oth-
erwise the correspondence is considered as incorrect. Using these results, we are able
generate a set of 3D/3D correspondences with the 3D position stored in the databasean
RGB-D current view. The pose of the RGB-D camera is finally deduced with a singulan
value decomposition associated to RANSAC for excluding wrong correspondencessi2

In the frame-to-frame tracking, we also extract descriptors from current RGB-B3
frame. It then searches in local neighborhood for correspondences with the feature féém

(b) The thermal model



315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

8 ECCV-14 submission ID ***

315
316
317
318
319
320
321
322
323
324
325
326
Fig. 6. lllustration of the multiple view rendering used in VGL 327
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Fig. 7. Examples showing two different states of the temperature distribution of the scene

the previous frame assuming a small displacement. The matching pairs are evalu%ﬁec

based on Euclidean distance, and keep the closest one as matching pair. The pose [

finally deduced with a singular value decomposition. s
Fig. 7 shows an example of visualization of the reference temperature on the currgpt

captured view and of the current temperature. 250

351
352
6.2 Online Thermal Image Rendering 353
354

During the online processing, we project the thermal information from thermal came¥a
onto the color image of the RGB-D camera using previously estimated intrinsic afd
extrinsic parameters of the camera. Occlusions are resolved in the same manner thafbth
algorithm we mentioned in Sec.4.2, and applied on GPU with CUDA. The processifg
time will be presented in the experiment section. 359
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7 Experiment 360

361
7.1 Calibration Accuracy 362

In order to evaluate our calibration accuracy, we estimated the field of view of the thét2
mal camera, which is calculated using intrinsic parameter from our calibration methgé’,
and compare it with the one written in technical description of thermal camera. We usée
two kinds of thermal camera in the experiment. One is NEC Agd@hermal Shot F30 366
with a resolution ofi60 x 120 and a framerate 8 img/s. The other one is optris’s P116Q¢7
with a resolution oft60 x 120 and a framerate 120 img/s. Vertical/Horizontal values of3¢8
the field of view of the 30 is 3%/41°. Vertical/Horizontal values of the field of view of 369
the P1160 is 21/28°. We estimated those parameter of the F30 to 2021856, and 370
P1160 to 41.6398630.9459. We can safely say that our intrinsic parameters are correét?
while assuming that the principal point is close from the center of the image. 372
The accuracy of the extrinsic parameters are evaluated based on a re-projection €rro
computation. In this experiment, we compare the average of re-projection error with
the planar approximation and without it. By using the extrinsic matrix and the intrinsics
matrices of the RGB-D and thermal cameras, we projected the centers of the circle from
our calibration pattern from the color image onto the thermal image that we define as the
"projected point”. We then compute the re-projection error as the sum of the distances
between the projected points and the detected centers of the circles in thermal image
Table.1 depicts the accuracy of our calibration process with and without the planar
fitting approach. this result demonstrates that the calibration process is more accurate
when we use planar approximation for reducing the noise from the depth image. Ehe
Thermal Camera is the Thermal Shot F30 with a resolutidr60f 120 and a framerate 333
8 img/s. 384
385
386
387

Table 1. Extrinsic Calibration Accuracy Comparison

Thermal Camer@laner ApproximatiofReprojection Error(pixel) 388

Use 5.05 389

F30 Don't Use 5.46 390

Use 2.84 391

PI160 Don't Use 2.92 392

393

394

395

396

7.2 Overall System Evaluation 397

In this experiment, we precomputed a two 3D models as shown in Fig. 8. In Scene1/Stén
we demonstrate that proposed system is effectiveness against small/big objects. In sé&n
we also compute the processing time. The system was executed on a PC with 16.06GB
of Ram, a Core i7-4800MQ CPU and a Nvidia Geforce GTX 780M graphic card. TH&!
RGB-D camera is Microsoft Kinect with a resolutiéd0 x 480 and a framerate of 30 402
img/s. 403
In scenel we used the Thermo Shot F30, and scene2 we used optris PI160. 404
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Processing time The processing time of our system is presented in Table.2. We conmws
puted the processing time on an average of 100 frames. We can observe 50% ofithe
time is dedicated to the tracking. The reason is that we use SIFT [10] as local features,
which is computationally expensive to extract. This might be improved by defining news
descriptors which is a combination of local feature(computationally cheap one suchias
FAST [12]) and the depth information. 410
411
412

Table 2. Evaluation of Processing Time i1

processing time(sec) 414

Tracking 0.110 415

Render on-line thermal image 0.008 416
Visualization 0.084 417

Total 0.202 418

419
420
421
422

Experiment with small objects For this experiment, we used different small target423
objects such as a mannequin’s head (manually heated), a laptop, a projector andkar
electric kettle. The objects can be seen in Fig. 9 with also the reference temperature‘anc
the current temperature states. We can visually notice that the thermal data matchithe
3D corresponding objects. For evaluating our system, we computed the average ewor
between the depth values from the 3D model and the current captured depth map.4We
compared only pixels located in the area covered by the thermal data in the current view.
In the left side of Table.3, we present the average error in terms of depth for each.af
our target objects. For objects with a relatively simple shape such as the projector,4he
error becomes less than 1cm. On the other hand, with more complex objects like the
mannequin’s head and the electric kettle, the error varies from 1cm to 3cm. However,
with the laptop PC even if its shape is simple, the error is the largest one, becauseats
material properties increase the noise in the depth map. By observing the results swe
can then conclude that our system is stable to many kinds of small objects, and thatthe
tracking and calibration are accurate enough for our purpose. 437
438

Experiment with large object For this experiment, we used an air-conditioner as &
large target object. We evaluated in the same manner as for small objects. Accuracy/'is
evaluated from different view points(front, side, under, behind). The result is shown i
Fig. 10, and the right side of Table.3. We can visually notice that the thermal data matth
the 3D corresponding objects. Average of depth error fi@ile’, ”Under’, ”Behind®  44°
viewpoints is under 3cm. We can then assume that the current view of the temperattife
is correctly projected on the reference model. Average of depth error fromFaodf 44>
viewpoint is over 4cm and is larger compared to the one from other viewpoints. 446
For”Front’ viewpoint, images were captured from far, that is why camera tracking’
by matching descriptors would be a difficult task, and also depth accuracy with RGB4E
camera would become low. 449
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Fig. 8.3D Color and Thermal Models used in experiment. The top row is a relatively small scenes
filled with several small target objects captured with NEC Avio’s Thermo Shot F30. The bottoma4
row is large scene which target object is air-conditioner captured with Optris Pl 160. Target
objects are emphasized with yellow lines. 476

(d)

477
478

For these reasons, about result froRront’ viewpoint, we can say result is accept- o

. I . 480
able. We can then conclude that our system is robust to strong viewpoint changes gnd
works for large object which we need to see temperature changes from many viewpomJts
to detect abnormalities. (For example, temperature change of outlet of cold air can ojnzli/

be seen from front viewpoint.)
484

485
8 Conclusion 486

487
In this paper, we proposed a system for visualizing temperature changes of a givén
scene using a RGB-D camera coupled with a thermal camera. During an offline phase,
we reconstruct a 3D model of the scene and save the poses of the camera with the’€or
responding color and thermal images. During the online phase, using the Viewpdifit
Generative Learning method applied on the 3D reconstruction of the scene, we ‘@re
able to know the pose of the camera and compare the current status of the tempera#ér
compared with the reference one. With our experiments, we have shown that we can‘ac-
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Fig. 9. Thermal image with the reference temperature on the left column and the current tefg,
perature state in the right column. Mannequin, notebook PC, projector, electric kettle from top
to bottom The size of the thermal information is smaller in the right column because left oneS'gs9
generated by rendering precomputed 3D thermal model from the estimated camera pose.
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576
577
578
579

580
(9) 581

Fig. 10. Thermal image of normal state and abnormalities detecting time. Target object is air~
conditioner and images are captured from front, side, under, behind against target object fronPtop
to bottom 584
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Table 3. Overall System Evaluation

585 585
°86 Scenel | Scene2 °86
587 Target ObjecfAverage Error of Depth(mmnyiewpointAverage Error of Depth(mm) o87
588 Mannequin 13.63 Front 48.5208 588
589 Note-PC 43.88 Side 9.08713 589
590 Projector 6.39 Under 25.7105 590
591 Electric Kettlg 23.48 Behind 26.9239 591
592 592
593 593
594 594
sos  Curately calibrate our capture system and visualize the differences between current.anc
06 reference temperatures. In future works, we would like to optimize the tracking by us;
o7 ing new descriptors that could be a combination of local feature and depth informatiop,
so8 and focus on single objects tracking rather than a whole scene. so8
599 599
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