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Abstract. In this paper, we present a system for visualizing temperature changes
in a scene using an RGB-D camera coupled with a thermal camera. This sys-
tem has applications in the context of maintenance of power equipments where
anomalies are detected with temperature changes. We propose a two-stage ap-
proach made of an with offline and an online phases. During the first stage, af-
ter the calibration, we generate a 3D reconstruction of the scene with the color
and the thermal data. We then apply the Viewpoint Generative Learning (VGL)
method on the color model for creating a database of descriptors obtained from
features robust to strong viewpoint changes. During the second online phase we
compare the descriptors extracted from the current view against the ones in the
database for estimating the pose of the camera. In this situation, we are also able
to display the current thermal data and compare it with the data saved during the
offline phase. This system makes it possible to visualize temperature change by
hand-held camera.

Keywords: thermal camera, 3D model reconstruction, camera tracking, visual-
ization, RGB-D camera

1 Introduction

Usually, anomalies in power equipments or building structures are detected by look-
ing for variations in the temperature which are difficult to be directly visualized. Such
strong changes will often imply a malfunction or a future problem. A common way
to evaluate the changes in the temperature state is to fix a camera and to compare the
temperature at two different times. The resolution and the field of view of the thermal
cameras is, however, quite small which makes difficult to monitor big size objects or
large areas. Since the cost of such device is also high, it makes it hard to use several
cameras to cover a large surface.

We then propose a system for detecting abnormalities from temperature changes
in wide areas with a thermal camera coupled with an RGB-D camera. Our approach is
based on two precomputed 3D reconstructions of the target scene achieved with a RGB-
D camera coupled with the thermal camera as shown in Fig. 1. The first reconstruction
holds the color information, while the second one holds the thermal information. The
colored 3D reconstruction is used with the Viewpoint Generative Learning (VGL) [1]
algorithm to detect feature points robust to strong viewpoint changes. We then generate
a database with the corresponding 3D positions and descriptors of these features. For
comparing the status of the temperature between the reconstruction and the current time,



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#***

ECCV
#***

2 ECCV-14 submission ID ***

we accurately estimate the pose of the camera by finding keypoint correspondences
between the current view and the database. Knowing the pose of the camera, we are then
able to compare the thermal 3D reconstruction with the current status of the temperature
from any viewpoint only by hand-held camera.

Fig. 1.Our capture system is made of the Microsoft’s KINECT and the optris PI160.

Since the RGB-D camera and the thermal camera are two distinct devices, we need
to estimate their relative pose. Here, we propose our own calibration board that makes
easier the pose estimation of the thermal camera in reference to the RGB-D camera.

The remainder of the paper is organized as follow: After an overview of the com-
ponents of our system, we describe our calibration process with the introduction of our
calibration board. Section 4 will detail our reconstruction process based on Kinect Fu-
sion, and in section 5 we will give a reminder about the VGL algorithm. After describing
the online phase of our method, we finish by presenting the experiments.

In our system, Thermal information is projected onto the current color image, be-
cause that would makes easier to understand where we are looking at, and enhances
our system [2]. In our knowledge, this is the first work to propose the visualization of
temperature changes over middle sized areas.

2 Proposed Method

Our proposed method consists of two stages. During the first one, we precompute two
3D models of a scene, one with corresponding temperature distribution at the capture
time and another with the color information. We will refer to this temperature map as
the reference temperature. Kinect Fusion[3] is used to generate uncolored 3D Model.
This offline phase thus requires a calibration that estimates the relative pose of the ther-
mal camera in reference to the RGB-D camera. The thermal map will be used later for
the comparison of the reference temperature with the current state. The colored model
is the source of keypoints robust to strong viewpoint changes that will be used to create
a database of descriptors and 3D points with the Viewpoint Generative Learning algo-
rithm. The database will then be available for the online phase for accurately estimating
the pose camera.

During the second stage, we estimate the pose of the camera and use it to compare
the current temperature state with the reference one. The pose of the camera is estimated
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1

Camera Tracking

Off-line

3D Color, Thermal 
Model Generation

Viewpoint Generative Learning

On-line

Calibration

Temperature Change 
Visualization

Current Temperature  
Rendering

Fig. 2.System Overview

by comparing the descriptors stored in the database with the ones extracted from the
current view. At this time, we know the pose of the camera, the current state of the
temperature, and the reference one stored in a 3D model. With the pose estimation we
can then align the thermal 3D model with the current viewpoint. By combining these
data, users are able to visualize thermal changes and can freely move the camera around
the scene, but in the limits of the 3D model. An overview of our system is depicted in
Fig. 2.

3 Calibration

3.1 Our Calibration Board

A traditional approach for calibration is to use a planar pattern like a chessboard that can
be easily detected and matched from multiple cameras [4]. If this approach works well
with standard color cameras, it remains difficult to directly apply it with images from a
thermal camera since the temperature on the calibration board is uniform. A common
solution is to heat the board using, for instance, a flood lamp as described by [5] or [6].

We extended this idea by proposing a special calibration board that is visible from
both color and thermal cameras. Our board is made of two plastic plates generated with
a 3D printer. The first one, the lower plate, is made of a planar surface covered of regular
bumps corresponding to the black parts of the calibration pattern. The second plate is
designed to plug onto the first one, it is thus made of a planar surface with holes where
the black parts of the calibration pattern should appear. At the end, combining both
plates creates a flat calibration pattern like the ones commonly used. The plates can
be observed in Fig. 3(a). To make it visible from the thermal camera, we simply heat
the lower plate while the upper one remains at ambient temperature. This will provides



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#***

ECCV
#***

4 ECCV-14 submission ID ***

(a) The lower plate is heated while the
upper one remains at ambient

temperature

(b) The calibration board captured from
the thermal camera

Fig. 3.The Board use for calibration the RGB-D and the thermal cameras

enough contrasts in the resulting image to detect the calibration pattern as presented in
Fig. 3(b). For our board, we preferred the use of a pattern made of black circles rather
than a checkerboard for two reasons. First, a circle shape makes the plug of the two
plates easier. Second, the detection of the center of the circles remains robust even if
the captured images are blurred or if the heat from the lower plate propagates uniformly
on the upper plate.

3.2 Estimation of Intrinsic Parameters

The intrinsic parameters of the thermal camera are evaluated using the Zhang’s method [4].
We capture several views of our calibration board and evaluate the corresponding focal
lengths, principal point and aspect ratio. The skew parameter is considered null. For
better evaluation of the parameters and since the sensor is slightly different from the
pinhole camera model, we start by fixing the principal point at the center of the image
plane and refined it during the calibration process.

3.3 Estimation of Extrinsic Parameters

The goal of this calibration is to estimate the pose (rigid transformation) of the thermal
camera with reference to the RGB-D camera. For this process, we take advantage of the
3D coordinates provided by the depth camera. For each circle’s center from the calibra-
tion board, we can obtain the corresponding 3D position. By finding the corresponding
pixels in the thermal image, we create a set of 3D/2D correspondences. We then apply
the Efficient Perspective-n-Point algorithm to estimate the extrinsic parameters [7].

However, the depth map generated by the RGB-D camera suffers of noise. We then
propose to fit the 3D coordinates extracted from the calibration board to a planar sur-
face. The equation of this surface is found by first gathering several samples (∼400
3D points) from the target surface around the detected pixels. We then apply a singular
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value decompositionUΣV ∗ on the data and extract the singular vector fromU de-
scribing the normal to the plane we are looking for. Finally, each of the 3D coordinates
previously obtained from the center of the circles are projected onto the computed plane
to accurately estimate their position. The resulting points are then used for the calibra-
tion of external parameters. Benefits of this approach will be demonstrated later in the
experiment section.

4 Creation of the 3D Models

4.1 The 3D Models

Kinect Fusion[3] is used to generate uncolored 3D Model. This method estimates the
pose of an RGB-D camera for each frame using a dense version of the Iterative Closest
Point (ICP) algorithm on GPU [8], and integrated the depth information from each
frame into a voxel grid using a Truncated Signed Distance Function(TSDF) [9].

While running Kinect Fusion for generating the uncolored 3D reconstruction of the
scene, we also save the pose estimation of the camera and the corresponding color infor-
mation. After finishing the reconstruction, we convert the voxel grid into two meshes.
Using the pose estimation of the camera, we then map the color images on one mesh,
and the thermal images on the other one. The field of view of the thermal camera is
however smaller than the RGB-D camera’ one and thermal data will not cover all the
surface of the 3D model.

4.2 Resolution of occlusions with the thermal images

As described in the previous subsection, we generate the colored 3D model and the
thermal 3D model in similar ways. But, the RGB-D camera and the thermal camera
are located at two slightly separate positions which implies that we need to apply the
rigid transformation computed in Sec.3.3) to compensate this difference and correctly
performing the mapping. Also, since the viewpoints are different, we need to deal with
occlusions on the 3D reconstruction during the mapping stage as observed in Fig. 4(a).

Our solution is to perform a depth test by projecting depth and color pixels from the
RGB-D camera onto the thermal image plane. First, the 3D points corresponding to the
pixels from the depth image are projected onto the thermal image, and are discarded if
the projection is outside of the thermal image plane. Since we are dealing with occlu-
sions, a pixel of the thermal image can correspond to multiple depth/color values from
the RGB-D image. Our goal is then to conserve the candidate with the smallest depth in
the thermal image. This pixel will finally represent the surfaces visible from the thermal
camera viewpoint.

At this point, several pixels of the thermal camera can still be incorrectly displayed
in the color image, especially if the field of view of the cameras are strongly different.
In our case, the RGB-D camera has a vertical fov of 45◦ while the thermal camera’s
field of view is 31◦. So, when projecting a RGB-D pixel onto the thermal image, it
will overlap multiple thermal pixels and not a single one. We resolved this issue by
computing the average of the values inside of a3× 3 pixel area (empirically estimated)
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(a) Before the processing (b) After the occlusion removal

Fig. 4. Example of occlusion processing, almost all of the occlusion areas are removed by our
depth test approach.

centered on the projected color pixel and by replacing the neighbors pixels with a strong
absolute difference with average of this area.

Finally, for each pixel of the RGB-D image, we can find or not (in case of occlusions
or if the projection is outside of the thermal image) a correspondence in the thermal
image. An example of our occlusion removal process is presented in Fig. 4 (b).

5 Viewpoint Generative Learning for tracking

During the online phase, in order to estimate the pose of the RGB-D camera with the
scene captured for the 3D model, we need a tracking algorithm that can be robust against
strong viewpoint changes and occlusions. Our solution is to use the Viewpoint Gener-
ative Learning (VGL) [1]. The first step requires, during the offline phase, to generate
a database of descriptors from visual features with high repeatability. The idea is then
to capture the reconstructed 3D model of the scene from several different views us-
ing the OpenGL rendering process as illustrated in Fig. 6. For each image obtained, we
detect the features with SIFT [10]. We aggregate these features in the 3D space and con-
serve only the ones that can be detected over multiple views. We define these features
with high repeatability as stable keypoints and extract the corresponding descriptors. At
this state, however, the amount of data is too high for expecting a fast traversal of the
database. We then decided to cluster the descriptors of a stable keypoints by applying
k-means++ [11] on them. Finally, we store in the database the clustered descriptors and
the 3D position of each stable keypoint.

6 Online phase

6.1 Camera Tracking

During the online phase, we want to display the actual temperatures of the scene and
make comparisons with the reference temperature mapped on the 3D thermal model.
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(a) The colored model (b) The thermal model

Fig. 5.3D models of a scene occupied by server machines

This means that we need to find correspondences between the pixels of the current view
and the 3D coordinates and descriptors of the 3D model stored in the VGL database.

The tracking algorithm consists of two phase, the first one consists in initializing
the pose of the camera by comparing the current view with the database. The second
phase uses the initialization for performing a frame to frame tracking. This approach
appears to be faster since requesting the database is slow. Also, we can only use de-
scriptors stored in database, so if good features are detected in current frame, we ends
up discarding those if we don’t have corresponding stable keypoints in database.

In the first frame, we start by detecting features in the current image captured by the
RGB-D image and extract their descriptors. We look for the two most similar descrip-
tors inside of the database using the Fast Library for Approximate Nearest Neighbors
(FLANN) algorithm. We then evaluate the Euclidean distance ratio between the de-
scriptors from the current view and these two nearest neighbors from the database. If
the ratio is under a given threshold, we then verify the established correspondence, oth-
erwise the correspondence is considered as incorrect. Using these results, we are able to
generate a set of 3D/3D correspondences with the 3D position stored in the database and
RGB-D current view. The pose of the RGB-D camera is finally deduced with a singular
value decomposition associated to RANSAC for excluding wrong correspondences.

In the frame-to-frame tracking, we also extract descriptors from current RGB-D
frame. It then searches in local neighborhood for correspondences with the feature from



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#***

ECCV
#***

8 ECCV-14 submission ID ***

Fig. 6. Illustration of the multiple view rendering used in VGL

(a) Reference temperature (b) Actual temperature

Fig. 7.Examples showing two different states of the temperature distribution of the scene

the previous frame assuming a small displacement. The matching pairs are evaluated
based on Euclidean distance, and keep the closest one as matching pair. The pose is
finally deduced with a singular value decomposition.

Fig. 7 shows an example of visualization of the reference temperature on the current
captured view and of the current temperature.

6.2 Online Thermal Image Rendering

During the online processing, we project the thermal information from thermal camera
onto the color image of the RGB-D camera using previously estimated intrinsic and
extrinsic parameters of the camera. Occlusions are resolved in the same manner than the
algorithm we mentioned in Sec.4.2, and applied on GPU with CUDA. The processing
time will be presented in the experiment section.
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7 Experiment

7.1 Calibration Accuracy

In order to evaluate our calibration accuracy, we estimated the field of view of the ther-
mal camera, which is calculated using intrinsic parameter from our calibration method,
and compare it with the one written in technical description of thermal camera. We used
two kinds of thermal camera in the experiment. One is NEC Avio’s Thermal Shot F30
with a resolution of160× 120 and a framerate 8 img/s. The other one is optris’s PI160
with a resolution of160× 120 and a framerate 120 img/s. Vertical/Horizontal values of
the field of view of the f30 is 31◦/41◦. Vertical/Horizontal values of the field of view of
the PI160 is 21◦/28◦. We estimated those parameter of the F30 to 20.18◦/27.56◦, and
PI160 to 41.6396◦/30.9459◦. We can safely say that our intrinsic parameters are correct
while assuming that the principal point is close from the center of the image.

The accuracy of the extrinsic parameters are evaluated based on a re-projection error
computation. In this experiment, we compare the average of re-projection error with
the planar approximation and without it. By using the extrinsic matrix and the intrinsic
matrices of the RGB-D and thermal cameras, we projected the centers of the circle from
our calibration pattern from the color image onto the thermal image that we define as the
”projected point”. We then compute the re-projection error as the sum of the distances
between the projected points and the detected centers of the circles in thermal image.
Table.1 depicts the accuracy of our calibration process with and without the planar
fitting approach. this result demonstrates that the calibration process is more accurate
when we use planar approximation for reducing the noise from the depth image. The
Thermal Camera is the Thermal Shot F30 with a resolution of160×120 and a framerate
8 img/s.

Table 1.Extrinsic Calibration Accuracy Comparison

Thermal CameraPlaner ApproximationReprojection Error(pixel)

F30
Use 5.05

Don’t Use 5.46

PI160
Use 2.84

Don’t Use 2.92

7.2 Overall System Evaluation

In this experiment, we precomputed a two 3D models as shown in Fig. 8. In Scene1/Scene2,
we demonstrate that proposed system is effectiveness against small/big objects. In scene1,
we also compute the processing time. The system was executed on a PC with 16.0GB
of Ram, a Core i7-4800MQ CPU and a Nvidia Geforce GTX 780M graphic card. The
RGB-D camera is Microsoft Kinect with a resolution640× 480 and a framerate of 30
img/s.

In scene1 we used the Thermo Shot F30, and scene2 we used optris PI160.



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#***

ECCV
#***

10 ECCV-14 submission ID ***

Processing time The processing time of our system is presented in Table.2. We com-
puted the processing time on an average of 100 frames. We can observe 50% of the
time is dedicated to the tracking. The reason is that we use SIFT [10] as local features,
which is computationally expensive to extract. This might be improved by defining new
descriptors which is a combination of local feature(computationally cheap one such as
FAST [12]) and the depth information.

Table 2.Evaluation of Processing Time

processing time(sec)
Tracking 0.110

Render on-line thermal image 0.008
Visualization 0.084

Total 0.202

Experiment with small objects For this experiment, we used different small target
objects such as a mannequin’s head (manually heated), a laptop, a projector and an
electric kettle. The objects can be seen in Fig. 9 with also the reference temperature and
the current temperature states. We can visually notice that the thermal data match the
3D corresponding objects. For evaluating our system, we computed the average error
between the depth values from the 3D model and the current captured depth map. We
compared only pixels located in the area covered by the thermal data in the current view.

In the left side of Table.3, we present the average error in terms of depth for each of
our target objects. For objects with a relatively simple shape such as the projector, the
error becomes less than 1cm. On the other hand, with more complex objects like the
mannequin’s head and the electric kettle, the error varies from 1cm to 3cm. However,
with the laptop PC even if its shape is simple, the error is the largest one, because its
material properties increase the noise in the depth map. By observing the results, we
can then conclude that our system is stable to many kinds of small objects, and that the
tracking and calibration are accurate enough for our purpose.

Experiment with large object For this experiment, we used an air-conditioner as a
large target object. We evaluated in the same manner as for small objects. Accuracy is
evaluated from different view points(front, side, under, behind). The result is shown in
Fig. 10, and the right side of Table.3. We can visually notice that the thermal data match
the 3D corresponding objects. Average of depth error from”Side”, ”Under”, ”Behind”
viewpoints is under 3cm. We can then assume that the current view of the temperature
is correctly projected on the reference model. Average of depth error from and”Front”
viewpoint is over 4cm and is larger compared to the one from other viewpoints.

For”Front” viewpoint, images were captured from far, that is why camera tracking
by matching descriptors would be a difficult task, and also depth accuracy with RGB-D
camera would become low.
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(a) (b)

(c) (d)

Fig. 8.3D Color and Thermal Models used in experiment. The top row is a relatively small scene
filled with several small target objects captured with NEC Avio’s Thermo Shot F30. The bottom
row is large scene which target object is air-conditioner captured with Optris PI 160. Target
objects are emphasized with yellow lines.

For these reasons, about result from”Front” viewpoint, we can say result is accept-
able. We can then conclude that our system is robust to strong viewpoint changes and
works for large object which we need to see temperature changes from many viewpoints
to detect abnormalities. (For example, temperature change of outlet of cold air can only
be seen from front viewpoint.)

8 Conclusion

In this paper, we proposed a system for visualizing temperature changes of a given
scene using a RGB-D camera coupled with a thermal camera. During an offline phase,
we reconstruct a 3D model of the scene and save the poses of the camera with the cor-
responding color and thermal images. During the online phase, using the Viewpoint
Generative Learning method applied on the 3D reconstruction of the scene, we are
able to know the pose of the camera and compare the current status of the temperature
compared with the reference one. With our experiments, we have shown that we can ac-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Thermal image with the reference temperature on the left column and the current tem-
perature state in the right column. Mannequin, notebook PC, projector, electric kettle from top
to bottom The size of the thermal information is smaller in the right column because left one is
generated by rendering precomputed 3D thermal model from the estimated camera pose.
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Fig. 10. Thermal image of normal state and abnormalities detecting time. Target object is air-
conditioner and images are captured from front, side, under, behind against target object from top
to bottom
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Table 3.Overall System Evaluation

Scene1 Scene2
Target ObjectAverage Error of Depth(mm)Viewpoint Average Error of Depth(mm)
Mannequin 13.63 Front 48.5208
Note-PC 43.88 Side 9.08713
Projector 6.39 Under 25.7105

Electric Kettle 23.48 Behind 26.9239

curately calibrate our capture system and visualize the differences between current and
reference temperatures. In future works, we would like to optimize the tracking by us-
ing new descriptors that could be a combination of local feature and depth information,
and focus on single objects tracking rather than a whole scene.
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