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ABSTRACT

In this paper, we propose an efficient framework for reduc-

ing noise and holes in depth map captured with an RGB-D

camera. This is performed by applying plane fitting to the

groups of points assimilable to planar structures and filter-

ing the curved surface points. We present a new method for

finding global planar structures in a 3D scene by combining

superpixel segmentation and graph component labeling. The

superpixel segmentation is based on not only color informa-

tion but also depth and normal maps. The labeling process is

carried out by considering each normal in given superpixel’s

clusters. We evaluate the reliability of each plane structure

and apply the plane fitting only to true planar surfaces. As a

result, our system can reduce the noise of the depth map es-

pecially on planar area while preserving curved surfaces. The

process is done in real-time thanks to GPGPU acceleration

via CUDA architecture.

Index Terms— Plane Fitting, Superpixel, RGB-D cam-

era, GPU, Noise Reduction

1. INTRODUCTION

Due to the development of devices for range data, such as

stereo vision cameras, time of flight sensors and structured

light 3D scanners, it has become easier to capture videos

with high frame rate getting not only the color informa-

tion, but also the 3-dimensional geometrical data of the real

world. These systems are increasingly used in many on-going

computer vision research areas including 3D reconstruction,

object recognition and augmented reality. Like recent 3D

sensors, RGB-D cameras, such as the Microsoft Kinect,

have drawn considerable attention among computer vision

researchers for their ease of usability and low-cost. However

these RGB-D cameras do not have the capability to satisfy

the accuracy of the range data required to develop rigorous

3D application because the raw depth data suffer from a

significant amount of noise.

One of the main reasons for this problem is that infrared

light emitted by RGB-D cameras is affected by specular sur-

faces of the objects in a scene. Moreover, the artifacts along

object boundaries and the structural noise that results from

the average noise as well as spontaneous occlusions of the

projected pattern to the physical environment also call for the

use of hole filling methods, interpolating algorithms and some

degree of post-processing to increase the accuracy of the data.

In this paper, we present a framework that reduces the

noise and fill the holes in RGB-D data with a piecewise pla-

nar fitting approach based on normal adaptive segmentation.

As our plane detection is combining normal adaptive super-

pixel segmentation and graph component labeling, the point

clouds are precisely divided into planar surface clusters. Our

plane fitting algorithm discriminates between planar surfaces

and curved surfaces based on the dependability of estimated

local planar surface structure and applies plane fitting to

truly planar distributed area. As a result, we can get smooth

point clouds retaining the shape of uneven surfaces. This

full pipeline can enhance the range data from RGB-D camera

while maintaining high frame rate by utilizing highly parallel

processing capabilities of modern commodity GPUs. In the

following, we will discuss related works in Section 2. After

describing the detail of our system in Section 3, Section 4 will

show the result of experiments and discussion about them.

We finally conclude the paper in Section 5.

2. RELATEDWORKS

In order to enhance the depth data captured by an RGB-D

camera, several approaches have been proposed and can be

divided into two groups. The first one deals with the insta-

bility of depth measurements provided by the RGB-D camera

over different distances [1, 2]. These approaches use several

depth images for reducing variations over each pixel value.

Color images captured at the same time than depth images

are utilized for filling holes in depth image. But these method

can’t cope with huge motion of objects in captured scenes.

The second group of methods applies denoising meth-

ods on only one pair of depth and color images for reducing

structural noise. Among these, Joint Bilateral Filter, a modi-

fied version of bilateral filter, is an edge preserving smooth-

ing filter applied on the depth map that adaptively changes



the spatial kernel according to the intensity differences from

the color image [3]. Another popular method is an optimiza-

tion for depth map denoising based on Markov Random Field

that maximizes a posterior probability of each pixel value

[4]. These methods assume that the edges of color images

and depth images are highly correlated and both of them are

aligned precisely, however depth data near the object bound-

aries are not reliable and edges in the depth image do not

coincide with color image edges because of the drawbacks

mentioned before.

Region Growing Bilateral Filter [5] solved this problem

by ignoring the depth values around the edges in the corre-

sponding color image and by applying region growing. This

method also modifies the joint bilateral filtering to deal with

the error of depth values which increase as a quadratic func-

tion of distance based on the theory of [6].

Milani et al.[7] proposed a method for depth map interpo-

lation using local plane model. They applied Sobel operators

for collecting misalignment between color and range data.

Next they interpolated depth values based on coefficients cal-

culated from polynomial regression of pertinent depth pixels.

In order to estimate pixels used for interpolation, they divided

depth image into segments where the structure of depth map

represents a local plane by adopting the segmentation tech-

nique from [8] and by discriminating reliable depth values.

This approach can apply appropriate interpolation according

to local structure so that it can smooth the planar surface and

fill the holes in depth map, maintaining the curved surface of

complex objects. However, their method is computationally

expensive since they employ global graph-cut algorithm for

initial segmentation and then use k-means in local segment

for post-processing.

Compared with these previous works, we propose a new

noise reduction and hole filling algorithm based on locally

estimated planar structure in real-time.

3. PROPOSED METHOD

3.1. System Overview

Our method is divided in several steps. We first apply joint

bilateral filter to the depth image to reduce the noise while

preserving the edge boundaries of objects. Assuming that the

camera s intrinsic parameters are known, depth data can be

converted into a 3D vertex map defined in the camera s co-

ordinate space. After that, we calculate the normal map by

applying the method proposed by Holzer et al. [9] . Then, we

apply normal-adaptive superpixel segmentation, the modified

version of depth-adaptive superpixels[10], to divide the 3D

point cloud into clusters so that the 3D points in each cluster

represent a planar structure. In order to merge similar clus-

ters, graph component labeling is applied to segmented image

by comparing the normal of each cluster. Then, we compute

normal vector and center point in each cluster to estimate its

Fig. 1. Result of normal estimation. Left: corresponds to the

depth image. Center: normal map estimated with method [9].

Right: normal map calculated from our proposed method.

plane equation. Finally, we project the depth map onto esti-

mated planar surfaces and optimize them based on the reli-

ability of each plane parameter for generating smooth point

clouds retaining the shape of uneven surface.

3.2. Normal Estimation

3.2.1. Joint Bilateral Filter

Joint Bilateral Filter[3] uses not only depth data but also color

image of one scene for depth map filtering. The smoothed

depth value Dfp at the pixel p is computed as

Dfp =

∑

q∈Ω
gs(p− q)gc(Cp − Cq)gd(Dp −Dq)Dq

∑

q∈Ω
gs(p− q)gc(Cp − Cq)gd(Dp −Dq)

(1)

where Ω is the neighborhood of p. gs, gc, gd are Gaussian

functions controlled by the standard deviation parameters σs
σc σd respectively. p − q represents the spatial distance,

Cp−Cq is color similarity andDp−Dq is the depth similarity.

The smoothed depth map is then back-projected into the

3D space using the intrinsic parameters of RGB-D camera.

3.2.2. Real-Time Normal Estimation

After back-projection, we apply the normal estimation tech-

nique from [9] on the 3D points for calculating the normal

map. This method uses integral images to speed-up the com-

putation of the normal for a specific point from the covariance

matrix of its local neighborhood. It then generate a smooth

and accurate normal map at a high frame rate. However, this

method cannot estimate normals in the pixels around the ob-

ject boundaries if there is a large difference between the depth

value and its neighborhood. Therefore, we search for two

close points around these invalid pixel vertices Vp and if we
can find those close points V (pn1

) and V (pn2
), we estimate

the normal n(p) as follows.

n(p) = (V (pn1
)− V (p))× (V (pn2

)− V (p)) (2)

In that case, after normalization, we obtain a normal map as

shown in figure 1. As it can be seen, a smooth normal map

is generated without omitting normal information on object

boundaries.



3.3. Normal Adaptive Segmentation

3.3.1. Normal Adaptive Superpixels

Weikersdorfer et al.[10] proposed a novel oversegmentation

technique for RGB-D images so that the 3D geometry surface

is partitioned into uniformly distributed and equally sized pla-

nar patches. Firstly, this method samples points while guaran-

teeing the blue-noise spectrum property[11] so that the den-

sity of the points around sampled points can be equally dis-

tributed. Then, a clustering algorithm assigns points to su-

perpixels and improves their centers using iterative k-means

algorithms with a distance calculated from the color distance,

the depth value and the direction of normal vector. We also

apply similar technique as depth-adaptive segmentation for

getting granular planar regions in real-time with RGB-D data

and the normal map calculated by our method in 3.2.2 as il-

lustrated in Algorithm 1

Algorithm 1 Normal Adaptive Superpixels

for all pk in all 3D points at each cluster do in parallel

Move its centerCk to adjacent positions with lowest nor-

mal gradient position

end for

for all pi in all 3D points do in parallel

label li ← −1
distance disti ←∞

end for

for all Ck do in parallel

for all pi in 2S x 2S region around Ck do in parallel

calculate distance distk(pi) between Ck and pi
if distk(pi) < disti then
disti ← distk(pi)
li ← k

end if

end for

end for

where the center Ck is defined as the average of the 3D

points in the cluster k. This algorithm is based on gSLIC,

real-time implementation of Simple Linear Iterative Cluster-

ing (SLIC), proposed by [12]. The distance distk(pi) is cal-
culated as follows

distk(pi) =

∑

j wjdistkj
(pi)

∑

j wj

(3)

with the subscript j consecutively representing the spatial(s),
color(c), depth(d) and normal(n) terms. ws, wc, wd and

wn are empirically defined weights of spatial, color, depth

and normal distances, respectively represented as distks
(pi),

distkc
(pi), distkd

(pi) and distkn
(pi).

3.3.2. Representation of Planar Structure

The result of the normal adaptive segmentation gives for each

cluster its centerCk(Xc, Yc, Zc) and its representative normal
nk(a, b, c). Considering a cluster as a locally planar surface,
each of its point Vkp

(Xkp
, Ykp

, Zkp
) can be defined as follows

aXkp
+ bYkp

+ cZkp
= dk (4)

where dk is the distance between the plane and the origin.

Considering that Ck is located on the planar surface, we com-

pute dk as follows.

dk = aXc + bYc + cZc (5)

3.4. Merging Superpixels

The result of normal adaptive superpixels is illustrated in fig-

ure 2, where the scene is divided into homogeneous regions in

terms of color, depth and normal vector. Due to the overseg-

mentaion procedure, post-processing is required to find the

global planar structures. Therefore, we discriminate whether

cluster l is in the same planar structure than adjacent clusters
k or not, by calculating θkl and dkl as follows

dkl = |dk − dl| (6)

θkl = arccos(nk × nl) (7)

and if dkl < α and θkl < β, cluster l is merged into clus-

ter k via the graph component labeling proposed by Hawick
et al. [13]. They present several algorithms for performing

graph component labelling with GPUs and CUDA. Among

their proposed algorithms, we chose the ”Equivalence list”

algorithm because it does not require a large equivalence ma-

trix which uses too much memory. This results in a chain of

pixel labels similar to the conventional linked list structure,

but this chain is quickly refined thanks to parallel processing.

Finally, the center and the representative normal vector

of each cluster are calculated again by taking the average of

normals and 3D coordinates of the points in each cluster.

Fig. 2. Result of normal adaptive segmentation and connected

component labeling. Left: corresponding RGB image. Cen-

ter: Normal Adaptive Superpixels. Right: Result of con-

nected component labeling.



3.5. Plane Based Projection and Optimization

By using the equation(4), the relationship between normal-

ized image coordinates un(xn, yn) and the corresponding 3D
coordinates Vkp

(Xkp
, Ykp

, Zkp
) is represented as follows

Zkp
=

dk
axn + byn + c

,Xkp
= xnZkp

, Ykp
= ynZkp

(8)

Since some clusters may not necessarily contain a planar

structure, we detect which are planar ones by evaluating the

reliability of the plane model calculated during the previous

step. By using the 3D point Vfp computed from the Joint

Bilateral Filter in section 3.2.1 and the variance of normal

vectors ψk obtained in section 3.4, we can get the optimized

point Vop as follows

Vop =

{

Vfp (|Vfp − Vkp
| > γVkp

or ψk > δ)

Vkp
cosψk + Vfp(1.0− cosψk) (otherwise)

(9)

where γ and δ are the adaptively changing threshold specif-
ically chosen for a given scene for rejecting unreliable plane

model. After this optimization, we apply ordinary bilateral

filter to Vop for smoothing the artifacts around boundaries.

4. EXPERIMENTS

In order to evaluate the performance of our method, we

applied it on two different scenes and compared our re-

sult(PROPOSED) with previous works, Joint Bilateral Fil-

ter(JBF), Markov Random Field(MRF) and Region Growing

Bilateral Filter(RGBF) in terms of runtime and accuracy.

Moreover, we calculated an average depth data by accumu-

lating 1,000 frames of data and taking the average for com-

paring our method with frame accumulation. To evaluate the

accuracy of our method, we generate the groundtruth depth

data with a scene generated via OpenGL and obtained depth

data by adding noise to the groundtruth data based on the

RGB-D camera noise model from [6]. Table 3 illustrates the

root-mean-square-error(RMSE) between ground-truth depth

3D points and processed depth 3D points. Our full pipeline

is implemented on a system equipped with Intel Core i7-

4770K, NVIDIA GeForce GTX 780, and 16.0GB of memory.

We used OpenCV for trivial visualizations of color and depth

images as well as data manipulations, and PointCloudLibrary

for 3-dimensional visualization. Microsoft Kinect was ac-

cessed via Prime Sense drivers. All GPGPU implementations

were done with CUDA version 5.0.

4.1. Discussion

Table 1 shows the parameters for each experiment. For in-

stance, we adjust the number of clusters for the superpixel

segmentation so that we can obtain a smooth point clouds.

If the number of clusters is too big, the clusters will start to

suffer from the noise of point clouds or if it is too small, we

will loose geometrical details. As shown in figure 4, our sys-

tem can reproduce smooth depth data from bumpy raw depth

data from Kinect(INPUT), especially in planar structure area.

MRF, JBF and RGBF suffer from noisy data because these

methods estimate a pixel depth value from its neighborhood.

However, remodeling based on the planar structures is inde-

pendent of the input depth readings once the planar model

has been found, we can completely replace the inevitably dis-

cretized representations of smooth flat surface with true flat

representation as shown in figures 5 and 8. Even in a scene

which contains curved surface objects, we can get smooth 3D

points while preserving complex structure of input data as

shown in figure 7 and figure 8, since our system checks the

reliability of each plane structure and applies optimization as

we discussed in section 3.5. Moreover, as our algorithm can

interpolate the depth map according to the plane structures,

our method can fill the holes of the point clouds. If the size

of the hole is over the filter size,MRF, JBF and RGBF can’t

cope with the holes and AVERAGE can’t fill the hole which

is observed frequently in several frames.

Apart from visual assessments, we also conducted numer-

ical analysis of the results. Table 2 shows that our method is

slower than MRF and JBF but it can still work in real-time

because of parallel computation capability of GPU. Table 3

shows results of our pipeline close from the ground-truth be-

cause our method totally replaces the input points in plane

areas with plane fitted points and applies joint bilateral filter

to curved surface area. Since other methods use the original

pixel value for estimating the filtered pixel value, the esti-

mated value is contaminated with noise of the data. As figure

9 shows, the proposed method can reduce the noise of input

point clouds and produce smooth point clouds especially in

planar area.

Table 2. Runtime
Method Corner msec Complex msec

JBF 3.0 3.0

MRF 5.0 5.0

RGBF 45.0 45.0

PROPOSED 21.0 21.0

5. CONCLUSIONS

In this paper, we proposed an efficient pipeline that reduces

noise and interpolates depth values by fitting the points to

estimated planar structures. In order to detect planar struc-

tures, we combined normal adaptive superpixels and graph

component labeling by using color image, depth data and nor-

mal map simultaneously. As a result, we can produce smooth

depth map form bumpy and noisy raw depth data while pre-



Table 1. parameters for experiment

Method Parameters Corner Complex Accuracy Evaluation

Joint Bilateral Filter σs, σc, σd 70, 50 , 20 70, 50 , 20 70, 50 , 20
Superpixel Segmentation ws, wc, wd, wn 100, 30 , 50, 150 80, 30 , 70, 150 10, 50 , 50, 150

iteration, clusters 1, 300 1, 300 1, 300
Merging Superpixels α, β 140mm, π/8 30mm, π/12 150mm, π/8
Optimization γ, δ 0.1, π/8 0.01, π/8 0.01, π/8

Fig. 3. RGB: normals: superpixels: merging superpixels

Fig. 4. Corner

Fig. 5. Corner(zoom)

serving curved objects surfaces compared with other state-of-

the-art algorithms. Since the whole procedure can be par-

allelized, our system is implemented in GPU and maintains

high frame rate.

Fig. 6. RGB: normals: superpixels: merging superpixels

Fig. 7. Complex

Fig. 8. Complex(zoom)

Our system can be further enhanced by using new meth-

ods. For example, using superpixel segmentation and labeling

for detecting planar area sometimes fails to merge small plane

clusters into the large plane which these clusters locate. This



can be avoided by merging these small clusters into adjacent

large cluster after the labeling. Another possibility is to use

curved surface fitting to non-planar area so that our method

can not only reduce noise but fill holes in curved surface ar-

eas.

Fig. 9. Result of accuracy evaluation. left Ground Truth

from OpenGL. center point cloud with noise. right proposed

method.

Table 3. Accuracy

Method RMSE mm

point cloud with noise 38.93

JBF 12.16

MRF 18.04

RGBF 12.09

PROPOSED 10.98
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