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Abstract—KinectFusion is able to build a 3D reconstruction
in real time and provide a 3D model. KinectFusion uses Iterative
Closest Point (ICP) algorithm for point cloud alignment from the
each camera frame and estimates each camera pose. However,
ICP algorithm has its limits and the camera poses lack in
accuracy. We propose an alignment method which is not only
based on point cloud but also line segments. This method
significantly improve the camera pose accuracy obtained from
KinectFusion and creates better 3D model. In this method, we use
line segment matching by Line-based Eight-directional Histogram
Feature(LEHF). We also propose an improved version of LEHF
for this alignment method. The basic idea is to get a set of 2D-
3D line segment correspondences between 2D line segments on
camera images and 3D line segments of 3D line segment based
models, to solve the PnL problem and to recompute the camera
pose. The experimental result that the camera pose estimated by
our method is more accurate than the original one obtained from
KinectFusion.

I. INTRODUCTION

3D reconstruction has been a hot topic in Computer Vision
for over three decades. Researches on 3D reconstruction are
very useful for many applications, such as augmented reality
(AR) system or self-location estimation and understanding of
environments for robots. Structure from motion (SFM) and
multi-view stereo (MVS) are some of the researches related to
3D reconstruction. Photo explorer[10] which reconstructs 3D
points and viewpoints from collections of photographs uses
SFM approach. Several algorithms about MVS are introduced
in [9]. These methods require computation time. Methods of
real-time 3D reconstruction have recently seen great progress.
Among many online reconstruction methods, KinectFusion[7]
is widely used. KinectFusion uses the Kinect and GPU algo-
rithms to estimate the camera pose and build a dense scene
reconstruction in real time. To achieve 3D model of the scene,
KinectFusion system continually tracks camera pose and fuses
live depth data from the camera into a single global 3D model
in real-time. In the camera tracking phase, the Iterative Closest
Point (ICP) algorithm[1] is used. The camera pose is computed
to closely align the current oriented points with the previous
frame by ICP. However, the depth data from the Kinect has
some noise and ICP algorithm has limitations on alignment
accuracy. Therefore, if we transfer 3D vertices in each frame
of Kinect’s camera coordinate into the world coordinate using
the camera poses estimated by KinectFusion, there are some
misalignments as shown in Fig. 1. This is the problem of
KinectFusion and some papers mentioned this problem. For
instance, Henry et al. uses both ICP and visual information
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Fig. 1. KinectFusion’s misalignment.

for estimating more accurate camera pose[4]. Although many
different approaches has been researched to solve this problem,
the number of methods which use line segments on images are
very few.

To solve this problem about point based alignment, we
propose a method for alignment by using line segments. More
accurate camera pose is estimated by this alignment. In this
proposed method, 3D model is represented as line segment
based model. Then 2D line segments in Kinect RGB images
are matched with the 3D line segments in the 3D model
to obtain 2D-3D line correspondence. We also propose an
improvement of an existing method for line segment matching
by LEHF[5].

The overall structure of this paper is organized as fol-
lows. Section II describes the accuracy of the camera pose
obtained from KinectFusion and then Section III proposes
an improvement of LEHF that is a line segment descriptor
for 2D line segment matching. Section IV provides a detail
of our proposed method for estimating the accurate camera
poses. Experimental result and evaluation of alignment are in
Section V and conclusion is discussed in Section VI.

The KinectFusion which we use in our system is the open-
source Kinfu code in the Point Cloud Library (PCL) from
Willow Garage[8].

II. THE ACCURACY OF CAMERA POSE FROM

KINECTFUSION

Using KinectFusion, we can obtain Kinect’s RGB Image,
Depth Image and the camera pose which translates from Kinect
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Fig. 2. 3D point based model and 3D line segment based model
from 2 images.

Fig. 3. 3D point based model in the world coordinate.

camera coordinates to world coordinates in each frame. This
camera pose at time i is a transform matrix RTi

cw = [Ri|ti]
containing a 3 × 3 rotation matrix (Ri) and 3D translation
vector (ti). KinectFusion aligns the point cloud models using
ICP algorithm and computes the camera poses. Suppose we
have N RGB Images {INrgb}, N Depth Images {INd } and N

camera poses {RTN
cw} from KinectFusion, we can create 3D

point based model and 3D line segment based model. Fig. 2
shows the two kinds of models from 2 RGB images on the left
side. The models on the center of the figure are 3D point based
and the right side ones are 3D line segment based. We explain
how to create 3D line segment based model in Sec.IV. These 2
RGB images are obtained from KinecFusion, therefore we can
also get the camera poses. If we transform the 3D models into
the world coordinate, corresponded points and line segments
are supposed to overlap, and Fig. 3 and Fig. 4 show the two 3D
models in the world coordinate. The corresponded points and
lines segments do not overlap. This result shows there are some
errors in {RTN

cw}. With that, our goal is to compute accurate
camera poses, {correctedRTN

cw}, by using line segments.

III. IMPROVING LEHF

As we will explain in a later part of this paper, we use
line segment matching for our proposed method. To properly
match line segments, we adopt Line-based Eight-directional
Histogram Feature (LEHF) which is a fast feature descriptor
for line segments. Although LEHF is very efficient, it still
poses one problem. LEHF has no concept of line segment
direction. It does not define which edge point on the line
segment is start point or end point. Therefore, LEHF is
designed symmetrically and we need to compute two distances.
One is between LEHFs that both of LEHF vectors are same

Fig. 4. 3D line segment based model in the world coordinate.

direction and another is between LEHFs that one LEHF vector
is inverted. (See [5] for more details.)

To solve this problem, we add directional information to
line segments. In other words, we choose start point and end
point of line segments. To decide direction of a line segment
is to decide the side of a line segment. Using the method
discussed in [2], we define the side of a line. In this method,
the side is defined by the image intensities gradient of line,
which is defined as the average gradient of all the points on
the line. The side which located on the region directed by the
gradient of line is right side of the line, and the other is left
side.

By using this method, we can define the right side and
left side of line segments. Therefore, we can also define the
start point and the end point of line segments as Fig. 5(a).
Given the direction of line segment, we do not need to design
LEHF symmetrically. Therefore we can define directed LEHF
(Fig. 5(b)) and redefine d which is shown as eq.5 in [5] as

d = (h1,0, · · · , h1,7, h2,0, · · · , h2,7, h3,0, · · · , h3,7,

h4,0, · · · , h4,7, h5,0, · · · , h5,7), (1)

in which we assume that Si = 5, 5 eight-directional gradient
histograms (hi = (hi,0, · · · , hi,7)) are obtained because we
do not count the center hi twice. Thus, the distance need not
to compute twice in LEHF matching. Hereafter, we use this
directed LEHF.

Here, we demonstrate the performance of the directed
LEHF by comparing with the performance of the original
LEHF. We built a simple synthetic environment that shown
in Fig. 6. Then 100 sequential images were generated with
perfectly known camera poses. In this experiment, the camera
pose was estimated by the tracking method explained in [5]
and calculated errors between the estimated camera pose and
ground truth in each case that we use the original LEHF and
the directed LEHF. The error of translation vector from the
camera pose was computed by Euclidean distance and the error
of rotation matrix is computed by Eq. (2).

d(P,Q) =

√√√√4π

3

3∑
i,j=1

|Pij −Qij|2, (2)

in which P is rotation matrix form the estimated camera pose
and Q is ground truth. The experimental results are shown in
Fig. 7 and Fig. 8. These result show the camera pose with
the directed LEHF is more accurate than that with the original
LEHF.
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Fig. 5. Improvment of LEHF. (a) The relation of edge points
and side of a line segment, (b) Overview of directed LEHF.

Fig. 6. Constructed synthetic environment.

IV. PROPOSED METHOD

In this section, we explain the method to compute more
accurate camera pose. Fig. 9 shows system overview of our
proposed method. In this method, {INrgb}, {INd } and {RTN

cw}
are inputs and accurate camera poses, {correctedRTN

cw} are
outputs. From top to bottom, we obtain a matching of 2D
line segments in each RGB images with the directed LEHF.
Then, we create 3D line segment based model and obtain
correspondences between 2D and 3D line segments. From
then on, using the 2D-3D line correspondences, we solve the
Perspective-n-Lines (PnL) problem and finally obtain accurate
camera poses. In the following subsection, we explain how
to compute correctedRT i

cw(i ≥ 1). Note that our proposed
method uses RT 0

cw as the base because KinectFusion computes
other camera poses based on the camera pose from first frame.
KinectFusion decides that the 3D translation vector of the first
frame camera pose (t0) is (1.5, 1.5,−0.3)t. Therefore, we can
define correctedRT 0

cw as

correctedRT 0
cw = RT 0

cw =

[
1 0 0 1.5
0 1 0 1.5
0 0 1 −0.3

]
. (3)

A. Obtain 2D line segment matching

First, 2D line segments are extracted from RGB images.
In this line segment extraction, a fast line segment detector
(LSD)[11] is applied. Using LSD, we obtain edge points of
2D line segment. Given two sets of line segments extracted

from Ii−1
rgb and Iirgb by LSD, Li−1 = {l1i−1, l

2
i−1, · · · , lMi−1

i−1 }
and Li = {l1i , l2i , · · · , lMi

i }, respectively, we search for 2D
line segment matching with Li−1 and Li by using the di-
rected LEHF matching. The resulting set of matching 2D line

Fig. 7. The error of rotation matrix.

Fig. 8. The error of translation vector.

segments is represented as

LMi = {(lg(j)i−1 , l
f(j)
i ), j = 1, 2, · · · , N i}, (4)

in which (l
g(j)
i−1 , l

f(j)
i ) represents a pair of matching 2D lines

and g(j) ∈ [1,Mi−1], f(j) ∈ [1,Mi]. (Fig. 10)

B. Create 3D line segment based model

2D line segment’s start point and end point are trans-
lated from Image coordinates to Kinect camera coordinates
using Depth Image. Therefore, connecting these two 3D edge
points, we obtain a 3D line segment. Each line segment
in Li−1 and Li is transformed to 3D line segment by this

procedure and we obtain Ai−1 = {L1
i−1, L

2
i−1, · · · , LMi−1

i−1 }
and Ai = {L1

i , L
2
i , · · · , LMi

i }. Ai−1 and Ai are 3D
line segment based models in each of the Kinect cam-
era coordinate. Then Ai−1 and Ai are translated into the
world coordinates by RT i−1

cw and RT i
cw. Therefore we can

get Li−1
3D = {L1

w,i−1, L
2
w,i−1, · · · , LMi−1

w,i−1} and Li
3D =

{L1
w,i, L

2
w,i, · · · , LMi

w,i}, where Lw,i is translated from Li into

the world coordinate by RT i
cw. Because we have 2D line

segment matching, LMi from Li−1 and Li, we can also obtain
3D line segment matching from Li−1

3D and Li
3D. The set of

matching 3D line segments is represented as

LMi
3D = {(Lg(j)

w,i−1, L
f(j)
w,i ), j = 1, 2, · · · , N i}, (5)

in which (L
g(j)
w,i−1, L

f(j)
w,i ) represents a pair of matching 3D

lines and g(j) ∈ [1,Mi−1], f(j) ∈ [1,Mi].(Fig. 11)
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Fig. 9. System overview of our proposed method.

Fig. 10. 2D line segment matching by LEHF.

C. Get 2D-3D line correspondences

In an ideal situation, L
g(j)
w,i−1 and L

f(j)
w,i are supposed to

overlap each other in the world coordinates. However, as we
saw in Fig. 4, they do not overlap because of the error in
RT i

cw. 2D lines from Li and 3D lines from Li−1
3D brought to

correspondence to align Li
3D with Li−1

3D , so that the camera
pose can be computed from the 2D-3D line correspondences.
The set of 2D-3D line correspondences is represented as

LCi = {(Lg(j)
w,i−1, l

f(j)
i ), j = 1, 2, · · · , N i}, (6)

in which (L
g(j)
w,i−1, l

f(j)
i ) represents a pair of 2D-3D line cor-

respondences and g(j) ∈ [1,Mi−1], f(j) ∈ [1,Mi].(Fig. 12)

D. solve the PnL problem

If we had 2D-3D point correspondences, we would solve
the PnP problem and obtain the camera pose. However, this
method uses line segments, therefore we must solve not the
PnP problem but the PnL problem. Given a set of 2D-3D line
correspondences, we can solve the PnL problem to recompute
the camera pose by using RPnL[12]. In practice, because there
might be mismatches of line correspondences, we show how
to solve the PnL problem with an algorithm like RANSAC[3].

Suppose we have LCi which is N i sets of 2D-3D line
correspondences, we randomly select four 2D-3D line corre-
spondences from LCi because the program of RPnL needs
at least four correspondences. Let the four set of 2D-3D line
correspondences be represented as

LCifour = {(La(k)
w,i−1, l

b(k)
i ), k = 1, 2, 3, 4}, (7)

Fig. 11. 3D line segment matching

Fig. 12. 2D-3D line correspondences.

in which (L
a(k)
w,i−1, l

b(k)
i ) represents four pairs of 2D-3D line

correspondences and a(k) ∈ [1,Mi−1], b(k) ∈ [1,Mi].
Moreover, the rest of (N i − 4) 2D-3D line correspondences
are represented as

LCirest = {(Lg(j)
w,i−1, l

f(j)
i )|1 ≤ j ≤ N i,

g(j) �= a(k), f(j) �= b(k), k = 1, 2, 3, 4}. (8)

With LCifour, we solve the PnL problem using RPnL and

estimate the camera pose. Then, each 2D line segment, l
f(j)
i

from LCirest, is translated to 3D line segment in the world

coordinates, L′f(j)i , by using depth value and estimated camera

pose. We calculate the error, e(j), between L
g(j)
w,i−1 from LCirest

and L′f(j)i . Let e(j) be e(j) = S(j)/(lengthw,i−1+ lengthi),
where S(j) is an area of rectangle obtained by connecting

four edge points of L
g(j)
w,i−1 and L′f(j)i , lengthw,i−1 is length

of L
g(j)
w,i−1, and lengthi is length of L′f(j)i . The total of e(j)

is defined as error of the estimated camera pose and its unit
is pixel.
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Fig. 13. compute correctedRT i
cw.

We also randomly select another four sets of LCifour and
repeat the steps explained above NRANSAC times to estimate
the camera pose. We choose the estimated camera pose which
has the smallest total of e(j) as a tentative camera pose.
Next, using this tentative camera pose and depth value, we

translate each 2D line segment, l
f(j)
i to 3D line segment in

the world coordinates, L′f(j)i . We calculate e(j) and if e(j) is
less than threshold (THe), we save the 2D-3D line segment
correspondence as inlier.

Finally, we compute the camera pose which aligns Li
3D

with Li−1
3D by another algorithm for the PnL problem proposed

by Kumar and Hnson[6]. This algorithm estimates the camera
pose iteratively and needs a set of 2D-3D line segment
correspondence and initial camera pose as inputs. We take
the inlier and the tentative camera pose as inputs and obtain
an improved camera pose, improvedRT i

cw as output of the
algorithm.

The procedure discussed above solves the PnL problem
with a RANSAC[3] like algorithm and this solution gives us
improvedRT i

cw. Note that improvedRT i
cw is a camera pose

that translates Ai from the Kinect camera coordinate to Ai
w in

the world coordinates and Ai
w is aligned to Li−1

3D .

E. compute correctedRT i
cw

After computing improvedRT i
cw, we can obtain Ai

w.
Then we translate Ai

w from the world coordinate to (i-
1)th Kinect camera coordinate by RT i−1

wc , where RT i−1
wc =

(RT i−1
cw )−1. Lastly, this translated Ai

w in the (i-1)th Kinect
camera coordinates is translated into the world coordinates by
correctedRT i−1

cw and aligned to the 3D line segment based
model of the first frame. (Fig. 13) To summarize these steps,
we can represent correctedRT i

cw as

correctedRT i
cw=correctedRT i−1

cw ·RT i−1
wc ·improvedRT i

cw(i≥1). (9)

Therefore, we can obtain accurate 3D line segment models
in the world coordinates by using correctedRT i

cw instead of
RT i

cw. Fig. 14 shows the result of correctedRT i
cw’s transla-

tion of the two 3D line segment based model from Fig. 2.
Compared with Fig. 4, the two models in Fig. 14 overlap.

V. EVALUATION

In this section, we try to evaluate the accuracy of the
camera poses which are computed by our proposed method.

Fig. 14. Aligned 3D line segment based model from 2 images
using our proposed method.

(a) (b)

Fig. 15. The alignment result of the two 3D line segment based
model. (a) using ICP, (b) using our method.

To evaluate it, we experiment creating 3D line segment based
model. In this experiment, we set NRANSAC to 2000 and THe

to 0.003.

A. Comparison of ICP and proposed method

Suppose we had two 3D line segment based models in
world coordinates as shown in Fig. 4, we tried to align the
two models by using ICP and our proposed method. We used
points on the line segments of models for ICP. Fig. 15 shows
the results of alignment. Fig. 15(a) is an alignment result by
ICP and (b) is by our proposed method. Our method aligned
the models more accurately.

B. The accuracy of object shape reconstruction

Moreover, we evaluate the accuracy of object shape re-
construction using the camera pose estimated by our method.
Fig. 16 shows 10 RGB Images from KinectFusion. Fig. 16(a)
is the base image of alignment and Fig. 16(b) shows other 9
RGB Images. We used these 10 RGB Images, Depth Images
and camera poses which KinectFusion estimated as Inputs for
our system, and estimated the accurate camera poses. Using
these camera poses, we reconstructed object shape. Fig. 17
and Fig. 18 show the result of reconstruction. Fig. 17 is the
virtual view images generated by the camera poses which
KinectFusion estimated, and Fig. 18 is the one generated by
the camera pose estimated by our proposed method.This result
shows the virtual view images from our proposed method are
more accurate than the one from KinectFusion because the
parts of object overlap perfectly. Next, we represented the
object shape as point cloud model in each frame and compute
the distances between points from the base frame’s model and
points from the ith frame’s model. (1 ≤ i ≤ 9) The result
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of this evaluation is showed in Fig. 19. This graph shows
that the distances between points from models reconstructed
by our method are smaller than the distances between points
from models reconstructed by KinectFusion. This means our
method estimated more accurate camera pose and obtained
more accurate object shape.

(a) (b)

Fig. 16. Input images (a) the base image, (b) other images.

Fig. 17. Result of object shape reconstruction by KinectFusion.

Fig. 18. Result of object shape reconstruction by proposed
method.

VI. CONCLUSION

KinectFusion estimates the camera pose by ICP algorithm
in real time. However, the estimated camera pose lack in accu-
racy. Although a number of approach has been done to solve
this problem, very few methods use line segment matching
for estimating the camera pose. In this paper, we propose a
method for improving the accuracy of camera pose estimation
for KinectFusion by using line segment correspondents. We
also propose an improve version of the line matching method,
LEHF. Our proposed method firstly obtains 2D line matching
and then create 3D line segments. Next, 2D-3D line segment
correspondents are obtained and we estimate the accurate

Fig. 19. The distances between points in each frame.

camera pose by solving the PnL problem with an algorithm
like RANSAC. We showed that the estimated camera poses
have more accuracy than the original ones.
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