
Augmented Reality System using a Smartphone
Based on Getting a 3D Environment Model
in Real-Time with an RGB-D Camera

Toshihiro Honda, Francois de Sorbier, Hideo Saito
Graduate School of Science and Technology

Keio University, 3–14–1, Hiyoshi, Kouhoku–ku, Yokohama–shi, 223–0061, Japan
Email: {t-honda,fdesorbi,saito}@hvrl.ics.keio.ac.jp

Abstract—In this paper, we propose a system to achieve
Augmented Reality (AR) on a smartphone. In this system, we
assume a fixed RGB-D camera connected to a server is installed in
the environment, and perform AR based on the 3D environment
shape got by the RGB-D camera in real-time. On the smartphone
side, it sends the image captured by its camera, and receives
the output image processed to perform AR by the server. On
the server side, it sends back the image that virtual objects
are superimposed on. At this time, by constructing the 3D
environment model in real-time using the RGB-D camera, it is
possible to calculate the smartphone pose and the interaction
between the virtual objects and the environment properly. It is
also possible to change the lighting virtually. Our experiment
revealed it is possible to superimpose virtual objects on the
smartphone in approximately 8fps.

I. INTRODUCTION

As one of the application technology of computer vision,
augmented reality (AR) has been attracting attention [1]. AR
is a technique to superimpose virtual objects as if they existed
in the real environment. By using the AR technology, it is
possible to add some information which cannot be obtained
just by simply looking at the real environment be attached. In
the past, the system connecting a web camera to a PC [2],
and the system using a head mounted display [3] are often
proposed. However, the AR system which can be achieved
on a mobile device such as a smartphone has been gathering
attention [4]. For example, there is the system to estimate
the pose of a smartphone camera from planar textures and
superimpose virtual objects corresponding to the texture [5],
and to superimpose 3D building models on a paper map if it
is captured by a smartphone [6]. However, these AR systems
are often intended for a planar place.

In this paper, we propose the system to perform AR in
even a rough environment by getting the 3D environment
model using a RGB-D camera, computing the relative position
between the RGB-D camera and a smartphone, and grasping
the 3D environment shape from the smartphone viewpoint. We
assume a Kinect, which is developed by Microsoft, as a RGB-
D camera, is connected to a server and it is fixed. If the area
captured by the Kinect is captured by the smartphone camera,
the relative position between the Kinect and the smartphone
can be computed by matching natural feature points. Then
virtual objects are superimposed on the smartphone screen
considering geometric consistency. To superimpose virtual ob-
jects stably, we track the smartphone camera using its previous

pose. Moreover, since we know the 3D environment shape, it
is possible to observe how the environment changes when a
virtual light source is put.

II. PROPOSED SYSTEM
Figure 1 shows the flow of our proposed method. We

describe the processing performed by the smartphone. The
processing which sends an image to the server connected wire-
lessly to the smartphone starts after the smartphone captures
the image. When the processing finishes, the processing which
receives an output image created by the server starts. After
receiving the output image, the processing which displays it
on the smartphone screen starts. Then the processing which
sends a captured image to the server starts again.

We describe the processing performed by the server. First,
we get a 3D environment model using a 3D point cloud
obtained by the Kinect depth image. Because it takes much
time to perform this processing with only CPU, we use GPU
to reduce the processing time. Then the positions of virtual
objects are computed considering to the gravity and the colli-
sion with the meshes using a physics engine. Unlike the case of
making the 3D environment model in advance, it is possible for
the users to interact with the virtual objects because the model
is created in real-time. Here, by computing normal vectors of
the model, it is also possible to observe how the environment
changes when a virtual light source is put. Next, we extract
natural features of the Kinect color image and the smartphone
image and match those feature points. 2D–3D correspondences
between the smartphone image coordinates and the Kinect
color image coordinates can be computed because the 3D
coordinates of the Kinect feature points can be obtained using
the Kinect depth image. By this 2D–3D correspondences, the
projection matrix which projects the points in the Kinect color
camera coordinate system to the smartphone image coordinate
system is computed. Because it is considered that the user’s
smartphone moves constantly, we track the smartphone camera
using the projection matrix of the previous frame and compute
the matrix of the current frame stably. Virtual objects are
superimposed on the smartphone image using this matrix and
the output image is created.

III. GETTING A 3D ENVIRONMENT MODEL AND
COMPUTING POSITIONS OF VIRTUAL OBJECTS

We can get a color image and a depth image using a Kinect.
The viewpoint of the camera for capturing the color image

2014 International Workshop on Advanced Image Technology

- 355 -



c{äOqäV

2

Matching feature points

Superimposing virtual objects

Kinect color image

Getting 3D environment model
Computing positions of virtual objects

(Applying virtual light source)

Kinect depth image

Computing projection matrix

Smartphone

Receiving

Sending

Server

Kinect

Smartphone image

Output image

Fig. 1. Flow of the proposed method

and that for capturing the depth image are different, but we
can match these viewpoints using a function included in the
library called OpenNI[7].

A 3D environment model can be created by getting a 3D
point cloud from the depth image and putting meshes on the
point cloud. First, we describe the method to get the 3D point
cloud whose origin is the position of the color camera from
the depth image. Before the processing, we apply a bilateral
filter[8] to the depth image to remove noise. It is possible to
get the focal length f [mm] of the depth camera and the length
l [mm] of the side of one pixel on the image plane at the focal
length. Here, a coefficient a is defined as

a =

l

f

(1)

The coordinate (x

0
, y

0
, z

0
) whose origin is the position of

the color camera can be calculated by

x

0
[m] = a£ z £ x (2)

y

0
[m] = a£ z £ y (3)

z

0
[m] = z (4)

where, (x, y) is a certain coordinate whose origin is the center
of the depth image and z [m] is the depth value. It is possible
to obtain the 3D point cloud by performing this processing
for all pixels of the depth image. The pixels which not store
the depth value are calculated as the depth value is 2m for
convenience. The processing for getting the 3D point cloud is
speeded up by using GPU.

Next, we describe the method to put meshes. As shown in
figure 2, we put triangle meshes by choosing 3 points regularly
as

{(x, y), (x + 1, y), (x, y + 1)} ,

{(x + 1, y), (x, y + 1), (x + 1, y + 1)} ,

{(x + 1, y), (x + 2, y), (x + 1, y + 1)} ,

...

where, (x, y) is a certain coordinate of the depth image.
Meshes can be put fast because the processing is simple. This
processing is speeded up to use the meshes of the previous
frame as they are in the area where the positions of the meshes
are not changed.

2

›ÿ

Kinect

•!

!"# $% !" & '# $%

!"# $ & '%

Fig. 2. Creating meshes

Virtual objects can be superimposed considering geometric
consistency if the 3D environment model can be created
because the collision detection between the virtual objects and
the 3D environment model can be performed. Physics such
as this collision detection and the gravity is performed using
physics engine called Bullet [9].

It is possible to compute the position of the virtual objects
in the world coordinate system whose origin is the color
camera of the Kinect from the above processing.

IV. SUPERIMPOSING VIRTUAL OBJECTS ON A
SMARTPHONE IMAGE

We have to compute where virtual objects in the world
coordinate system correspond in the smartphone image co-
ordinate system. In this system, the projection matrix which
projects the points in the world coordinate system to those in
the smartphone image coordinate system is computed. In this
section, we describe the method to compute this projection
matrix and superimpose virtual objects on a smartphone image.

A. Matching feature points

We match the pixels which represent the same point
between a Kinect color image and a smartphone image to
grasp the positional relationship between the Kinect and the
smartphone. Matching is performed automatically using natu-
ral features. We use BRISK (Binary Robust Invariant Scalable
Keypoints) [10] for the method to extract natural features.
First, natural feature points are detected and describing what
feature they have. Then, descriptors of the Kinect side and the
smartphone side are compared and the most similar feature
points are matched. The shorter the hamming distance is, the
more similar descriptors the feature points have because the
BRISK descriptor is represented as the binary format.

B. Computing projection matrix

It is possible to get the 3D coordinates of the feature
points of the Kinect side corresponded to the feature points
of the smartphone side because the alignment between the
Kinect depth image and the Kinect color image is performed.
Therefore, 2D–3D correspondences between the smartphone
image coordinates and the Kinect color camera coordinates
are obtained. The rotation matrix R and the translation vector
t which convert the world coordinate system to the smartphone
camera coordinate system can be computed using the library
called OpenCV [11] from 6 or more corresponding points and
the intrinsic parameters A of the smartphone camera which
are measured in advance. Specifically, corresponding points

2014 International Workshop on Advanced Image Technology

- 356 -



which are used to compute R, t are selected by RANSAC
(Random Sample Consensus) [12] to compute R, t robustly if
there are false corresponding points. Then, R, t are computed
by DLT (Direct Linear Transformation) method [13] using
the corresponding points. The projection matrix P can be
computed by

P = A (R|t) (5)

Virtual objects in the world coordinate system can be
projected to the smartphone image coordinate using this P.
This processing is performed by the library called OpenGL
[14]. It is possible to superimpose virtual objects considering
the occlusion because OpenGL can draw polygons using Z–
buffer (memory area for storing the distance between the
camera and the object).

C. Tracking smartphone camera

In this system, the smartphone camera is tracked to com-
pute the projection matrix P stably. The processing is divided
into two cases, one is the key frame which is the starting point
of the tracking and the other is the frame except for the key
frame.

We describe the processing of the key frame. First, the 3D
coordinates of the feature points and the descriptors are saved
after extracting BRISK features from the Kinect color image.
This is because it is believed that the descriptors of the Kinect
which are extracted in the key frame can be used as they are in
the frame except for the key frame because the Kinect is fixed.
Then, the calculation of the desctiptor distance between one
of the feature points of the Kinect side and all of the feature
points of the smartphone side is performed, and the Kinect side
point is matched to the smartphone side point whose distance
is the shortest. P is computed by the corresponding points.

We describe the processing of the frame except for the
key frame. First, the features of the smartphone image are
extracted. We make a look-up table which store the number
of the feature point in the pixel which has a feature point and
-1 in the pixel which has no feature point in order to speed
up the processing. Next, the feature points of the Kinect side
which are saved before are projected to the smartphone image
coordinates by P of the previous frame. The calculation of the
descriptor distance is performed only to the feature points of
the smartphone side surrounding the projected coordinate be-
cause it is believed that the smartphone camera does not move
too much during one frame. In this system, we confirmed by
experiments that P can be computed correctly by performing
the calculation of the descriptor distance to the feature points
in the range of 61 pixels square whose center is the projected
point. We use 512 bits binary format descriptor, and the pair
whose hamming distance is 200 or more is removed.

Figure 3 shows the state of the matching in the case of
tracking a smartphone camera and not. The left side is a
smartphone image and the right side is a Kinect color image,
and corresponding points are connected by a line. As shown
in figure 3, there are more correct pairs in the case of tracking
a smartphone camera. We calculated the average number of
the pairs which are actually used to compute P for some 10
frames when we applied RANSAC to 50 pairs whose hamming
distance is short. It was 44.2 pairs in the case of tracking the

smartphone camera, whereas it was 32.7 pairs in the case of not
tracking. Therefore, it was shown quantitatively that tracking
smartphone camera is effective.

(a) Tracking smartphone camera

(b) Not tracking smartphone camera
Fig. 3. Comparison of matching in the case of tracking smartphone camera
and not

D. Evaluation of reprojection error

After computing a projection matrix P, the evaluation of
reprojection error of saved feature points of the Kinect side
is performed using this P. In this system, each feature point
of the Kinect side keeps 5 BRISK descriptors and the value
which judges whether to be used for computing P in the next
frame or not. The evaluation of reprojection error updates these
parameters.

First, all of the feature points of the Kinect side are
projected to the smartphone image coordinates by P. The
feature point of the smartphone side located in the nearest
neighbor of each projected point is searched. The nearest
neighbor means not the descriptor distance, but the Euclidean
distance between the feature points in the image space. The
reprojection error E [pixels] is the Euclidean distance to the
nearest neighbor point. The feature point of the Kinect side
is judged as an outlier if E is more than the threshold
Eth [pixels], and not used for computing P in the next frame.
We define Eth = 5.0 in this system. The feature point judged
an outlier continuously for 4 or more frames is removed and
not used for computing P any more. The feature points of
the Kinect side are updated with the BRISK descriptors of the
nearest neighbor points using FIFO (First In, First Out) method
if P is judged to be accurate according to the result of the
evaluation of reprojection error and a fixed frame has passed
since the feature points of the Kinect side were updated. This
update enables the fixed Kinect to keep the BRISK descriptors
of multiple viewpoints in a pseudo manner, and it can be
expected to improve the matching accuracy. P is judged to
be accurate if the number of E < 1.0 pairs is 50 or more,

2014 International Workshop on Advanced Image Technology

- 357 -



and the update is performed after 10 or more frames since the
previous update.

V. SENDING AND RECEIVING AN IMAGE BETWEEN A
SMARTPHONE AND A SERVER

Figure 4 shows the flow of processing in a smartphone and
a server. There are the thread which receives an image from
the smartphone and sends an image to the smartphone and
the thread which performs AR in the server, and each thread
runs independently. In the thread which sends and receives an
image, the function to receive an image is called first, and then
the thread enters standby state. The image is received when
the function to send an image is called, and an input image
is updated. At this time, the updated input image is used in
the next frame if the thread which performs AR is in progress.
An output image is sent if the function to send an image is
called in the server side and the function to receive an image is
called in the smartphone side. At this time, the output image
of the previous frame is sent if the thread which performs
AR is in progress. We calculated the 10 frames average time
from calling the function to send and receive an image to
actually finishing sending and receiving the image for each of
the smartphone and the server. The experimental platform was
implemented on 1.0GHz MSM8255 smartphone with 512MB
RAM and 2.5GHz Intel Core i7-2860QM and GeForce GTX
560M laptop with 16.0GB RAM. The smartphone image size
is 320£240pixels. Table I shows the result. The time from
starting to receive image data to finishing receiving them
was 15.5ms for the smartphone and 14.3ms for the server.
Therefore, as shown in Figure 4, standby time occurs before
receiving an image for both the server and the smartphone.
In other words, the receiving function of the server is called
before the sending function of the smartphone and the sending
function of the server is called after the receiving function of
the smartphone.

3

Smartphone

Server : 
Sending and 
receiving image thread

Server : 
AR processing thread

Send

SendReceive

Receive

Input Output

Update input image

Update output image

Stop

Stop

Input image Output image

Fig. 4. Flow of processing of smartphone and server

TABLE I. TIME TO SEND AND RECEIVE AN IMAGE FOR SMARTPHONE
AND SERVER [ms]

Receiving Sending
Smartphone 33.4 1.2
Server 100.2 3.0

VI. EXPERIMENTS

Figure 5 shows the experiment environment. A fixed Kinect
is connected to a server and a user has a smartphone. The

experimental platform was the same as section V. The smart-
phone image size is 320£240pixels and the Kinect color and
depth image size are 640£480pixels.

!Ç

4

Ï!@/!+""V¤" ¯ÁÔ¯›˛Ú!‹
GläVc7ÅV˜GÁfl!gÂ*ˆ‘+¤

Server

Kinect

Smartphone

User
Real environment

Fig. 5. Experimental environment

Figure 6 shows the result in the case of dropping virtual
spheres from above and the case of installing a virtual white
light source. The virtual light source is located at the 5m left
from the user.

(a), (b) show it is possible to superimpose the virtual
objects at the correct positions considering the 3D shape of
the real environment. (d) shows the back side of the human
in the image is bright, and the ventral side is dark. Therefore,
it can be said that it is possible to compute the effect of the
virtual light source considering the 3D shape. However, the
positions of the virtual objects are still not stable when viewed
as a movie although tracking the smartphone camera improves
the stability. The method to compute the relative positional
relationship between the Kinect and the smartphone accurately
except for tracking the smartphone camera is needed. In
addition, the surface is rough when the virtual light source
is applied. This is because the depth image is coarse, so
it is needed to improve. Table II shows the average time
spent in the main processing for 10 frames. The frame rate
is approximately 8 fps for superimposing virtual objects and
2 fps for applying a virtual light source. The time from taking
an image with the smartphone to being displayed on the
smartphone via the AR processing is about 170ms–350ms.

TABLE II. TIME SPENT IN THE MAIN PROCESSING [ms]

Processing Time
Create a 3D environment model 51.2

Compute positions of virtual objects <1
Extract features of the Kinect side 31.3

Extract features of the smartphone side 6.5
Match feature points 13.8

Compute projection matrix 47.7
Evaluation of reprojection error <1

VII. CONCLUSION
In this paper, we proposed the system to achieve AR on

a smartphone in even a rough environment by getting a 3D
environment model using a Kinect and computing the relative
positional relationship between the Kinect and the smartphone
by matching feature points.

As for our future work, we are planning to make the
method to compute the relative positional relationship accu-
rately. For example, use sensor information such as a gyro
sensor and an acceleration sensor inside the smartphone,
or track smartphone itself by capturing it with the camera

2014 International Workshop on Advanced Image Technology

- 358 -



(a) Input image (b) Output image which vir-
tual objects are superim-
posed on

(c) Input image (d) Output image which a
virtual light source is applied
to

Fig. 6. Result of the experiments

calibrated to the Kinect. In addition, we are also planning to
improve a depth image. For example, approximate the area
which can be approximated as a plane as the plane.

REFERENCES
[1] D. Van Krevelen, and R. Poelman, “A survey of augmented reality tech-

nologies, applications and limitations”, International Journal of Virtual
Reality, vol. 9, no. 2, pp. 1–20, 2010.

[2] J. Fischer, M. Neff, D. Freudenstein, and D. Bartz, “Medical Augmented
Reality based on Commercial Image Guided Surgery”, Proceedings of
the 10th Eurographics Symposium on Virtual Environments, pp. 83–86,
2004.

[3] H. Kato, and M. Billinghurst, “Marker Tracking and HMD Calibration
for a Video-based Augmented Reality Conferencing System”, Proceed-
ings of the 2nd International Workshop on Augmented Reality, pp. 85–94,
1999.

[4] M. Gervautz, and D. Schmalstieg, “Anywhere Interfaces Using Handheld
Augmented Reality”, Computer, vol. 45, no. 7, pp. 26–31, 2012.

[5] N. Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst, “Shape recognition
and pose estimation for mobile augmented reality”, IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 10, pp. 1369–1379,
2011.

[6] S. Martedi, and H. Saito, “Augmented Fly-through using Shared Ge-
ographical Data”, International Conference on Artificial Reality and
Teleexistence, pp. 47–52, 2011.

[7] Open Natural Interaction Library, http://www.openni.org/
[8] C. Tomasi, and R. Manduchi, “Bilateral Filtering for Gray and Color

Images”, International Conference on Computer Vision, pp. 839–846,
1998.

[9] Bullet Physics Library, http://bulletphysics.org/wordpress/
[10] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust

Invariant Scalable Keypoints”, International Conference on Computer
Vision, pp. 2548–2555, 2011.

[11] Open Computer Vision Library, http://sourceforge.net/projects/
opencvlibrary/

[12] M.A. Fischler, and R.C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography”, Communications of the ACM, vol. 24, pp. 381–395, 1981.

[13] R. Hartley and A. Zisserman, “Multiple view geometry in computer
vision 2nd edition”, Cambridge University Press, pp. 88–93, 2003.

[14] Open Graphics Library, http://www.opengl.org/

2014 International Workshop on Advanced Image Technology

- 359 -


