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Abstract—We present a system that can accurately visualize 

changing (dynamic) areas captured by an RGB-D camera at an 

alternative viewpoint. Our system does not make assumptions about 

the scene 3D structure and works in real time. 
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I. INTRODUCTION 

In recent years, mediated reality research has become 
increasingly active within the field of computer vision. One of 
the subfields of mediated reality is diminished reality (DR), 
which is concerned with removing i.e. diminishing objects 
from scenes. Various possible applications exist for such 
systems in TV broadcasting [1], smartphone applications [2] 
and robotics [3]. 

To remove an object from image, one must overlay it with 
its background image. Hence, the core issue with DR systems 
is how to visualize the backgrounds of objects being 
diminished. Most systems in DR research rely on color 
cameras to gather information about the scene where objects 
are to be made invisible. 

RGB-D cameras have become increasingly popular among 
computer vision researchers in recent years. Some industry 
projects, such as Microsoft Kinect are being used in consumer 
living rooms. New projects, such as Google Tango, are 
bringing the technology to smartphones and tablets. 

An RGB-D camera enables us to observe the 3D structure 
of a scene in real-time. With fast and accurate 3D 
reconstruction and rendering it is possible to visualize the scene 
at a different camera viewpoint. 

We present a general method of visualizing hidden areas 
using an RGB-D camera. This system could be used in specific 
diminished reality applications to hide objects. Conceptual 
overview of the proposed system for a sample scene from the 
system setup to the final results can be seen in Fig. 1. 

II. RELATED WORKS 

Numerous different systems in the field of diminished 
reality have attempted to achieve goals similar to ours. The 
approaches, however, have varied wildly from work to work. 
The most closely related methods use multiple cameras at 
different viewpoints to hide objects in real time. 

Most multi-camera methods require the scene background 
behind objects to be made invisible to be planar [1-2] or 
piecewise planar [4]. This is a rather strong requirement and 
excludes any scenes where objects move in the background. 
Nevertheless, some interesting applications have been 
presented. For example [2] demonstrated method to make 
human writing on a whiteboard to disappear. Because the 

 
Figure 1. Proposed system overview. The diagram shows how an occluding 

object, in this case a beige calendar, is hidden from a scene. Final system 

result without the calendar is shown in bottom left corner. 



whiteboard was planar and remained same in the structure, the 
system worked. Hence the system was capable of handling 
color changes, but not structure changes in the scene. 

Couple systems not making planar background assumption 
have also been published. [5] made use of multiple color 
cameras to remove colorful objects in limited size. Their 
approach used plane sweep algorithm to get a coarse 
reconstruction of a scene. With a reconstructed 3D model of a 
scene it is easy to define a region of space, which will not be 
included in rendering the scene model and effectively hides all 
objects in the region. Unfortunately, the utilized reconstruction 
method is both computationally expensive and has quality 
issues. This is not surprising as the more general scene 
reconstruction using multi-view stereo is also computationally 
very expensive.  

One way of solving the scene reconstruction issues is to use 
depth-sensing RGB-D cameras to help in the reconstruction 
process. One such method using three RGB-D cameras to hide 
a robotic hand of a rescue robot was demonstrated in [3]. This 
work does not attempt to completely hide objects, but leaves 
them half-visible. Additionally, this work requires multiple 
RGB-D cameras to be placed in a rigid configuration. 

III. PROPOSED METHOD 

The system diagram has been given in Fig. 1. As previously 
mentioned, our system uses two cameras. First one is an RGB 
camera and the second is an RGB-D camera. The overall 
objective is to use the RGB-D camera to see some hidden areas 
not visible in color camera.  

After estimating the pose of cameras we reconstruct the 
scene seen from the RGB-D at the color camera viewpoint. The 
reconstruction is then used together with color camera image in 
compositing step to get the final system result. 

A. Camera Pose Estimation and Hidden Area Detection 

We need to determine pose of the cameras in relation to 
each other. In our demonstrations we utilize AR markers for 
this task, but generally it does not matter what method is used 
as long as we can retrieve rotation and translation information 

between cameras. With markers, both cameras estimate the 
pose to the marker object. We combine the coordinate space 
transformation from RGB-D camera to the AR marker with the 
inverse transformation from the marker to color camera to get 
the needed RGB-D camera – color camera pose relation. 

Second thing that needs to be done before scene 
reconstruction is to figure out the outlines of (occluding) 
objects that should be hidden in the scene. The method of 
figuring out those areas depends on particular application. For 
example we can track known objects with attached markers or 
find objects with known shape and color. 

The outlines should be specified in all camera images. In 
the case of the RGB-D camera, the object outline defines an 
image region that should be excluded from scene 
reconstruction. Technically we just set the RGB-D camera 
depth map pixels to invalid values, which are correctly ignored 
in reconstruction phase. Object outline in color camera frame 
selects the image region that should be overlaid with scene 
background. The exact process is later described in the 
compositing section. 

Illustration of the pose estimation and hidden area detection 
can be seen in Fig. 2.  

B. Scene Reconstruction 

The scene visible from an RGB-D camera must be 
reconstructed, rotated and translated to target camera viewpoint, 
and finally rendered. Since we wanted to develop a real-time 
system, we had to choose our approach accordingly. 

The core concept for scene reconstruction is adapted from 
step discontinuity constrained triangulation (SDCT) method [6]. 
SDCT can directly be applied to depth maps to get a triangle 
mesh of scene background without using any point cloud data 
structures. Additionally, the method is very fast and well 
parallelizable. SDCT works by forming triangles between 
neighboring depth pixels. This process is illustrated in Fig. 3. 
There are some issues that need to be considered with this 
approach. 

One issue is that separate objects in the scene should not be 

 

 
(a) Color image frame 

 

 
(b) RGB-D image frame 

Figure 2. Example of camera pose estimation and hidden area detection. The white box in (a) shows occluding object contour that should be hidden in the final 
system result. Both images (a) and (b) also show coordinate axes drawn on top of the pose estimation marker. The red, green and blue lines correspond to X, Y 

and Z axes of a marker centric coordinate system. 



joined together by triangles. The solution is to exclude any 
triangles that connect depth pixels with depth value differences 
larger than some constant value. Empirical experiments 
showed that 5 cm is a good choice for such segmentation in 
indoor scenes. 

Second issue is to deal with invalid depth pixels from the 
RGB-D camera. This can be handled in the similar manner as 
the previous case by removing any triangles connected to 
invalid pixels.  

In some cases our depth image might include regions of 
scenes that should not be rendered at the target camera 
viewpoint. For example the source camera partially sees some 
object and that region ends up being the object back side when 
looked from target camera viewpoint. To avoid rendering such 
scene parts, we carry out triangle orientation checking. At the 
start of reconstruction, all triangle vertices are oriented in 
clockwise manner. After scene rotation and translation, the 
invalid triangles end up having vertices in counter-clockwise 
order which makes them easy to detect and remove. 

C. GPU Acceleration 

In our system, both scene reconstruction and rendering 
process has been implemented in OpenGL shaders to speed up 
calculation on GPU. Only standard features from OpenGL 
version 3 core profile were used. In the following we describe 
the vertex, geometry and fragment shader steps in detail. 

As a first step in processing every frame, the depth map 
from source camera is uploaded to the GPU memory. Every 
depth pixel is to be considered as a vertex to be processed with 

vertex shader. To achieve better computational efficiency, we 
do scene reconstruction and its transformation to target camera 
viewpoint in reverse order i.e. we start from rotation and 
translation transformation and then move to reconstruction and 
rendering. Hence the first step in vertex shader is to use the 
previously estimated pose between cameras to calculate the 
position of every vertex in target camera viewpoint. 
Additionally, we calculate the corresponding source camera 
color frame coordinates for every vertex and store them for 
later processing. 

The geometry shader is responsible for forming triangles 
between vertices. The shader takes in a set of vertex indices 
corresponding to any possible triangles and outputs all triangles 
deemed valid. The validation process follows rules outlined in 
the previous scene reconstruction section. 

Finally, the generated triangles are rendered using fragment 
shader. This process is very straightforward as we only need to 
load texture values in triangles using texture coordinates 
calculated in the vertex shader step. Texture coordinate 
interpolation between triangle vertices and depth testing is 
taken care by built-in OpenGL functionality.  

D. Compositing 

The last task left to us is to compose the final result from 
color camera image and the scene reconstruction image. Both 
input images should align exactly as long as camera poses were 
correctly estimated. Hence the compositing process just selects 
pixels from either image depending on the occluding object 
contour as previously discussed. This process is shown in 
Fig. 4. 

 
Figure 3. Illustration of triangular mesh generation in scene reconstruction. 

Depth map from the RGB-D camera is shown in the top-left corner. Small 

16x16 pixel region has been cut out of the depth map and is shown in the top-
right red box. Neighboring depth pixels are turned into triangles as shown in 

the bottom image. 

 
Figure 4. Illustration of the compositing process. Initial image for the result is 
copied from color camera view. The region of the occluding object is 

highlighted in red boxes. The red box content from reconstruction is copied to 

the final result image. 



IV. EXPERIMENTAL RESULTS 

We tested our system in a scene called “calendar”. In this 
scene, the objective was to hide a calendar object from user 
view. Since estimating the calendar region on the screen just 
from known color can be unreliable, we fixed an extra AR 
marker on top of this calendar. The dimensions of the calendar 
were known so the occluded object region could be calculated 
just by knowing the pose of the fixed marker. 

All illustrations in this paper show frames taken from this 
calendar scene. Additional result images taken from recorded 
experiment video can be seen in Fig. 5. 

Tests showed similar performance characteristics across 
different scenes. In the case of calendar scene, the pose 
estimation of AR markers took 8.2ms on average. The scene 
reconstruction took 12.8ms and compositing had negligible 
computational cost somewhere in the millisecond range. The 
whole process was fast enough to run in real time and was 
limited by camera frame rates to 30fps. 

V. CONCLUSION 

This paper presented a novel method of visualizing hidden 
areas behind objects. Our method requires minimal setup and 

can work even with a single color and single RGB-D camera. 
Importantly non-planar scene backgrounds are supported and 
movement in hidden area is immediately visible in system 
output. 
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Figure 5. Video outtakes from the calendar scene experiment. Top row shows frames from color camera and the bottom row shows corresponding frames after 

processing by the system. 


