Visualization of Dynamic Hidden Areas by Real-
Time 3D Structure Acquistion Using RGB-D Camera

Siim Meerits and Hideo Saito
Department of Information and Computer Science
Keio University
Yokohama, Japan

Abstract—We present a system that can accurately visualize
changing (dynamic) areas captured by an RGB-D camera at an
alternative viewpoint. Our system does not make assumptions about
the scene 3D structure and works in real time.

Keywords-free-viewpoint video; RGB-D camera

l. INTRODUCTION

In recent years, mediated reality research has become
increasingly active within the field of computer vision. One of
the subfields of mediated reality is diminished reality (DR),
which is concerned with removing i.e. diminishing objects
from scenes. Various possible applications exist for such
systems in TV broadcasting [1], smartphone applications [2]
and robotics [3].

To remove an object from image, one must overlay it with
its background image. Hence, the core issue with DR systems
is how to visualize the backgrounds of objects being
diminished. Most systems in DR research rely on color
cameras to gather information about the scene where objects
are to be made invisible.

RGB-D cameras have become increasingly popular among
computer vision researchers in recent years. Some industry
projects, such as Microsoft Kinect are being used in consumer
living rooms. New projects, such as Google Tango, are
bringing the technology to smartphones and tablets.

An RGB-D camera enables us to observe the 3D structure
of a scene in real-time. With fast and accurate 3D
reconstruction and rendering it is possible to visualize the scene
at a different camera viewpoint.

We present a general method of visualizing hidden areas
using an RGB-D camera. This system could be used in specific
diminished reality applications to hide objects. Conceptual
overview of the proposed system for a sample scene from the
system setup to the final results can be seen in Fig. 1.

Il. RELATED WORKS

Numerous different systems in the field of diminished
reality have attempted to achieve goals similar to ours. The
approaches, however, have varied wildly from work to work.
The most closely related methods use multiple cameras at
different viewpoints to hide objects in real time.

Hidden %
area p

RSy Marker
I for pose
estimation

3 28 i

Figure 1. Proposed system overview. The diagram shows how an occluding
object, in this case a beige calendar, is hidden from a scene. Final system
result without the calendar is shown in bottom left corner.

Most multi-camera methods require the scene background
behind objects to be made invisible to be planar [1-2] or
piecewise planar [4]. This is a rather strong requirement and
excludes any scenes where objects move in the background.
Nevertheless, some interesting applications have been
presented. For example [2] demonstrated method to make
human writing on a whiteboard to disappear. Because the



whiteboard was planar and remained same in the structure, the
system worked. Hence the system was capable of handling
color changes, but not structure changes in the scene.

Couple systems not making planar background assumption
have also been published. [5] made use of multiple color
cameras to remove colorful objects in limited size. Their
approach used plane sweep algorithm to get a coarse
reconstruction of a scene. With a reconstructed 3D model of a
scene it is easy to define a region of space, which will not be
included in rendering the scene model and effectively hides all
objects in the region. Unfortunately, the utilized reconstruction
method is both computationally expensive and has quality
issues. This is not surprising as the more general scene
reconstruction using multi-view stereo is also computationally
very expensive.

One way of solving the scene reconstruction issues is to use
depth-sensing RGB-D cameras to help in the reconstruction
process. One such method using three RGB-D cameras to hide
a robotic hand of a rescue robot was demonstrated in [3]. This
work does not attempt to completely hide objects, but leaves
them half-visible. Additionally, this work requires multiple
RGB-D cameras to be placed in a rigid configuration.

I1l. PROPOSED METHOD

The system diagram has been given in Fig. 1. As previously
mentioned, our system uses two cameras. First one is an RGB
camera and the second is an RGB-D camera. The overall
objective is to use the RGB-D camera to see some hidden areas
not visible in color camera.

After estimating the pose of cameras we reconstruct the
scene seen from the RGB-D at the color camera viewpoint. The
reconstruction is then used together with color camera image in
compositing step to get the final system result.

A. Camera Pose Estimation and Hidden Area Detection

We need to determine pose of the cameras in relation to
each other. In our demonstrations we utilize AR markers for
this task, but generally it does not matter what method is used
as long as we can retrieve rotation and translation information

Bager]
BRz IV Bsze I3 BN (O
BNz=-]

] BRge-§i Basue §

e
3
2z
%%

cal

by

(=%
=3
o
T

(a) Color image frame

between cameras. With markers, both cameras estimate the
pose to the marker object. We combine the coordinate space
transformation from RGB-D camera to the AR marker with the
inverse transformation from the marker to color camera to get
the needed RGB-D camera — color camera pose relation.

Second thing that needs to be done before scene
reconstruction is to figure out the outlines of (occluding)
objects that should be hidden in the scene. The method of
figuring out those areas depends on particular application. For
example we can track known objects with attached markers or
find objects with known shape and color.

The outlines should be specified in all camera images. In
the case of the RGB-D camera, the object outline defines an
image region that should be excluded from scene
reconstruction. Technically we just set the RGB-D camera
depth map pixels to invalid values, which are correctly ignored
in reconstruction phase. Object outline in color camera frame
selects the image region that should be overlaid with scene
background. The exact process is later described in the
compositing section.

Ilustration of the pose estimation and hidden area detection
can be seen in Fig. 2.

B. Scene Reconstruction

The scene visible from an RGB-D camera must be
reconstructed, rotated and translated to target camera viewpoint,
and finally rendered. Since we wanted to develop a real-time
system, we had to choose our approach accordingly.

The core concept for scene reconstruction is adapted from
step discontinuity constrained triangulation (SDCT) method [6].
SDCT can directly be applied to depth maps to get a triangle
mesh of scene background without using any point cloud data
structures. Additionally, the method is very fast and well
parallelizable. SDCT works by forming triangles between
neighboring depth pixels. This process is illustrated in Fig. 3.
There are some issues that need to be considered with this
approach.

One issue is that separate objects in the scene should not be

(b) RGB-D image fram .

Figure 2. Example of camera pose estimation and hidden area detection. The white box in (a) shows occluding object contour that should be hidden in the final
system result. Both images (a) and (b) also show coordinate axes drawn on top of the pose estimation marker. The red, green and blue lines correspond to X, Y

and Z axes of a marker centric coordinate system.



Figure 3. lllustration of triangular mesh generation in scene reconstruction.
Depth map from the RGB-D camera is shown in the top-left corner. Small
16x16 pixel region has been cut out of the depth map and is shown in the top-
right red box. Neighboring depth pixels are turned into triangles as shown in
the bottom image.

joined together by triangles. The solution is to exclude any
triangles that connect depth pixels with depth value differences
larger than some constant value. Empirical experiments
showed that 5 cm is a good choice for such segmentation in
indoor scenes.

Second issue is to deal with invalid depth pixels from the
RGB-D camera. This can be handled in the similar manner as
the previous case by removing any triangles connected to
invalid pixels.

In some cases our depth image might include regions of
scenes that should not be rendered at the target camera
viewpoint. For example the source camera partially sees some
object and that region ends up being the object back side when
looked from target camera viewpoint. To avoid rendering such
scene parts, we carry out triangle orientation checking. At the
start of reconstruction, all triangle vertices are oriented in
clockwise manner. After scene rotation and translation, the
invalid triangles end up having vertices in counter-clockwise
order which makes them easy to detect and remove.

C. GPU Acceleration

In our system, both scene reconstruction and rendering
process has been implemented in OpenGL shaders to speed up
calculation on GPU. Only standard features from OpenGL
version 3 core profile were used. In the following we describe
the vertex, geometry and fragment shader steps in detail.

As a first step in processing every frame, the depth map
from source camera is uploaded to the GPU memory. Every
depth pixel is to be considered as a vertex to be processed with

Color camera view

Reconstruction

Final result

Figure 4. lllustration of the compositing process. Initial image for the result is
copied from color camera view. The region of the occluding object is
highlighted in red boxes. The red box content from reconstruction is copied to

the final result image.

vertex shader. To achieve better computational efficiency, we
do scene reconstruction and its transformation to target camera
viewpoint in reverse order i.e. we start from rotation and
translation transformation and then move to reconstruction and
rendering. Hence the first step in vertex shader is to use the
previously estimated pose between cameras to calculate the
position of every vertex in target camera viewpoint.
Additionally, we calculate the corresponding source camera
color frame coordinates for every vertex and store them for
later processing.

The geometry shader is responsible for forming triangles
between vertices. The shader takes in a set of vertex indices
corresponding to any possible triangles and outputs all triangles
deemed valid. The validation process follows rules outlined in
the previous scene reconstruction section.

Finally, the generated triangles are rendered using fragment
shader. This process is very straightforward as we only need to
load texture values in triangles using texture coordinates
calculated in the vertex shader step. Texture coordinate
interpolation between triangle vertices and depth testing is
taken care by built-in OpenGL functionality.

D. Compositing

The last task left to us is to compose the final result from
color camera image and the scene reconstruction image. Both
input images should align exactly as long as camera poses were
correctly estimated. Hence the compositing process just selects
pixels from either image depending on the occluding object
contour as previously discussed. This process is shown in
Fig. 4.



ndrier-calendar:

Figure 5. Video outtakes from the calendar scene experiment. Top row shows frames from color camera and the bottom row shows corresponding frames after

processing by the system.

1V. EXPERIMENTAL RESULTS

We tested our system in a scene called “calendar”. In this
scene, the objective was to hide a calendar object from user
view. Since estimating the calendar region on the screen just
from known color can be unreliable, we fixed an extra AR
marker on top of this calendar. The dimensions of the calendar
were known so the occluded object region could be calculated
just by knowing the pose of the fixed marker.

All illustrations in this paper show frames taken from this
calendar scene. Additional result images taken from recorded
experiment video can be seen in Fig. 5.

Tests showed similar performance characteristics across
different scenes. In the case of calendar scene, the pose
estimation of AR markers took 8.2ms on average. The scene
reconstruction took 12.8ms and compositing had negligible
computational cost somewhere in the millisecond range. The
whole process was fast enough to run in real time and was
limited by camera frame rates to 30fps.

V. CONCLUSION

This paper presented a novel method of visualizing hidden
areas behind objects. Our method requires minimal setup and

can work even with a single color and single RGB-D camera.
Importantly non-planar scene backgrounds are supported and
movement in hidden area is immediately visible in system
output.

REFERENCES

[1] T. Hashimoto, Y. Uematsu, H. Saito, “Generation of see-through
baseball movie from multi-camera views,” International Workshop on
Multimedia Signal Processing (MMSP2010), pp.432-437, 2010.

[2] A. Enomoto, H. Saito, “Diminished Reality using Multiple Handheld
Cameras,” ACCV’07 Workshop on Multidimensional and Multiview
Image Processing, pp.130-135, 2007.

[3] K. Sugimoto, H. Fujii, A. Yamashita, and H. Asama, “Half-diminished
reality image using three rgb-d sensors for remote control robots,”
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), pp. 1-6, 2014.

[4] S. Zokai, J. Esteve, Y. Genc and N. Navab, “Multiview Paraperspective
Projection Model for Diminished Reality,” International Symposium on
Mixed and Augmented Reality (ISMAR 2003), pp. 217 - 226, 2003.

[5] S. Jarusirisawad, T. Hosokawa, and H. Saito, “Diminished reality using
plane-sweep algorithm with weakly-calibrated cameras,” Progress in
Informatics, vol. 7, pp. 11-20, 2010.

[6] A. Hilton, AJ. Stoddart, J. Illingworth and T. Windeatt, “Reliable

surface reconstruction from multiple range images,” Computer Vision
(ECCV'96), Springer Berlin Heidelberg, pp. 117-126, 1996.



