
Geolocation for Printed Maps Using Line Segment-Based SIFT-like
Feature Matching

Gautier Minster*

Keio University
Guillaume Moreau†

École Centrale de Nantes
Hideo Saito‡

Keio University

ABSTRACT

This paper presents a method for the geolocation of printed maps.
It enables the registration of unprepared maps with a Geographical
Information System (GIS) database, and can for example be used
as a first step to augment an unknown map.

We define and match local road pattern descriptors, which are
similar to SIFT descriptors [6], but adapted to the case of simple
textureless line segments. Using a processing pipeline commonly
encountered in the feature-point based matching of texture images
— composed of offline description and indexing, followed by an
online description, matching and robust transformation estimation
— we show that local descriptors can successfully register unpre-
pared maps using only geographic features and no texture informa-
tion.

Our method is scale and rotation invariant, and circumvents the
two hurdles that are the level-of-detail, and the changing colormaps
and textures, allowing the processing of large classes of printed
maps.

Keywords: Printed map, geolocation, GIS, local descriptor, map
registration.

Index Terms: I.4.7 [Image Processing and Computer Vision]:
Feature Measurement—Feature Representation I.4.8 [Image Pro-
cessing and Computer Vision]: Scene Analysis—Shape I.5.2 [Pat-
tern Recognition]: Design Methodology—Feature evaluation and
selection

1 INTRODUCTION

Printed maps are the traditional medium for the representation of
geographic information, with ubiquitous use in tourism and urban
planning, amongst other domains. Geographic Information Sys-
tems (GIS) based electronic maps are extensively used as well, yet
do not make it easy to have natural interactions, such as collabora-
tion between multiple users or annotations. Augmented maps [8]
aim to tap into the vast resources of GIS, to dynamically overlay
extra information on traditional printed maps.

Numerous methods have been proposed for this task, following
the common pattern of feature extraction, GIS-registration, and fi-
nally tracking. These algorithms can be split in 3 categories, de-
pending on the sort of maps they operate on: pre-prepared maps
with added markers, unprepared maps with specific texture pat-
terns, and arbitrary unprepared maps.

Methods based on markers require preparing the paper map be-
forehand: Reilly et al. [10] attached RFID tags to the back side,
Schöning et al. [12] added visible ARToolkitPlus [13] markers
around it, and Martedi et al. [7] added a dot pattern on top of it to
perform point-pattern based tracking. SIFT [6] or SIFT-like texture
features have been used by Reitmayr et al. [11] as well as Morrison

*e-mail: gautier+keio@minster.io
†e-mail:guillaume.moreau@ec-nantes.fr
‡e-mail:hs@keio.jp

GIS maps

Printed map

Indexing
Description

Scale
Selection
from metric

from density Matching

offline

City & Positiononline

Figure 1: Overview of the algorithm

et al. [8]. These methods only function on known maps, since the
texture pattern changes arbitrarily between maps.

Finally, Yang et al. [14, 15] proposed registration methods based
on the point-pattern of the road network intersections. Unlike the
previous works, it enables the registration and tracking of arbitrary
unprepared maps, under perspective views. The method lacks ro-
bustness to scale however, and its quadratic time complexity limits
the size of the tracked areas.

In this paper, we propose a method for the registration of printed
maps undergoing similarity transformations, using the line segment
pattern of the road network. The algorithm transposes a texture
matching framework similar to SIFT to textureless road networks.
It can be used as a scalable first step to identify the area depicted
in a printed map, before using one of the aforementioned works for
realtime tracking and augmentation of a small area.

2 REGISTRATION ALGORITHM

The registration will operate on data from two sources: reference
line segment data extracted from a GIS, and test line segment data
extracted from the image of a printed map, for example using [1].
The algorithm is summarized in Figure 1.

2.1 Map representation

Both reference and test data are lists of segment endpoints. Since
the reference segments may be expressed with inconveniently large
and precise coordinates, we condition them to span a reasonable
range for pixel images (e.g. a few thousand units in each dimen-
sion), and create an image representation of the segments at the
chosen resolution.

The descriptor operates on such images, at varied scales. Large
description areas would contain many pixels, so we iteratively
downsample the image (by a factor 2), creating a pyramid. Mul-
tiple roads may overlap on one pixel in the pyramid, so we repre-
sent pixels as multi-sets (i.e. each set item has a counter): in the
initial image, each pixel contains the roads that pass through it (all
the counters equal 1); when downsampling, square blocks of pixels
are merged by adding counters, thus giving roads spanning multiple
pixels larger weights in the multi-sets.

2.2 Descriptor position and scale

Describing the local road pattern in a map region implies finding
answers to several questions. Where are the distinctive road seg-
ment patterns? At what scale is a pattern relevant? How do we
describe the pattern to make the description robust to the variations
in different map sources?

2015 IEEE International Symposium on Mixed and Augmented Reality Workshops

978-1-4673-8471-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMARW.2015.24

88

We first explore the selection of description scales, followed by
the positioning of descriptors, and finally the actual description
method.

2.2.1 Scale selection
In the feature-point matching of texture images, keypoints can
present perceptually important scales, such as the radius of a cir-
cle when the keypoint is its center. Keypoint detectors devise al-
gorithms to determine such scales, using for example difference-
of-Gaussians in scale-space [2, 5]. In the case of road segments
however, this has no direct equivalent, and changes in the level-of-
detail of the maps, combined with the potential fragmentation of
even long roads, makes the problem nontrivial.

Instead of choosing the scales, we simply sample them: we de-
termine, for each map to be described, a range of reasonable de-
scription scales, and use descriptor sizes in this range.

Metric information-based When dealing with data from a
GIS, metric information is available: a range of scales expressed
in world units is set (in the experiments, 100m to 500m of descrip-
tor radius), and the corresponding pixel dimensions used.

Density-based For printed maps with unknown scales, no
scale can be assumed a priori: depending on the image source
(camera phone, scanned map, . . .), and on the pictured region, we
may process a small image with very concentrated roads, or a large
image with spaced-out ones. We opt to compute a sort of pixel den-
sity, as a function of the region size: for a scale s (in pixels), let
G(s) be a square grid of cells of size s× s. We define the density as
follows:

density(s) =
1
t
· max
C∈G(s)

Card({non-empty pixels in C}) (1)

where t is the total number of non-empty pixels in the image.
The range of description scales is determined by specifying a

range of densities (in the experiments, 5% to 40%), and finding
using binary-search scales s which best correspond to the two den-
sities. Note that since the density is computed by taking the maxi-
mum value across cells of a grid, instead of iterating over all possi-
ble regions of size s, this is only an approximation of the real den-
sity, and as such may not even be monotonously increasing with s.
It is, however, sufficient for our purpose.

2.2.2 Descriptor grid
Lacking a reliable method to choose the locations of the descriptors,
we instead opt to produce a dense sampling of the map, in both
space and scale.

Let smin and smax be the extremal scales obtained from the scale
selection process. We want to obtain a list of description radii to
sample the range [smin,smax]. Each radius r should therefore be in
[smin/2,smax/2]. Given a minimum description radius rmin (equal
to 20 pixels in the experiments), the set of description radii is:

R =
{

r = rmin ·2l+i/k,∀l ∈ N, i ∈ [0,k[
∣∣∣smin ≤ 2 · r ≤ smax

}
(2)

where l specifies the octave (as defined in [6]), and k ≤ rmin is the
number of intermediate descriptors per octave (k = 3 in the experi-
ments). Each octave (i.e. admissible value of l) will correspond to
a certain downsampling of the original map (as described in 2.1),
and will be described using at most k different description radii. k is
discussed in section 3.2, but rmin is merely a performance trade-off
between large descriptor regions and large multi-sets that has little
influence on the overall algorithm. Figure 2a shows an example of
R, computed using density information for a printed map.

For each radius in R (the description scales/radii), we densely
sample the map in the two space dimensions: the descriptors are
computed over a square grid, of spacing equal to the description
radius, such that an overlap exists between descriptor regions.

(a) Set R of description radii for a sam-
ple printed map (k = 3, rmin = 20). Each
color represents a different scale oc-
tave. Note how the each doubling of the
description radius involves a differently
sampled multi-set segment image.

(b) A descriptor representation; in white,
the road segments, in yellow, the re-
gion center, in red, the central Gaus-
sian (represented only as a circle), and in
green, the N×N histogram grid (assum-
ing are f = 0)

Figure 2: Scale sampling and descriptor histogram grid

2.3 Local Road Pattern Descriptor
For each of the selected radii, at each grid position, in the appropri-
ate downsampled map image, we describe the local pattern of road
segments using histograms of segment orientations. The process is
largely inspired by the SIFT [6] descriptor.

2.3.1 Descriptor orientation
To be able to match maps with arbitrary orientations, we aim to
describe regions in a rotation-invariant manner. This is achieved by
assigning each region a reference orientation, and computing the
descriptor relative to that orientation.

The reference is obtained from a region-wide orientation his-
togram H = (h0, . . . ,hB−1) of B bins (in the experiments, B = 9),
representing angles in [0,π[(the segments are not oriented). The
histogram is built by iterating over the pixels (pi)i of the region, and
computing the contribution of each segment in the pixel multi-sets.
We weigh the contribution of a pixel pi by a factor w(i)

g following a
2D Gaussian distribution centered on the region center, of standard
deviation the region radius, to give more importance to center pix-
els. In pi, a segment s j with counter c(i)j is weighted proportionally
to the total size of the pi multi-set. Let h+s j

(resp. h−s j
) be the bin

above (resp. below) the orientation of s j, and d+
s j

(resp. 1− d+
s j

)
the distance in bin units between h+s j

(resp. h−s j
) and the orientation.

Summarizing, a segment s j in a pixel pi makes a contribution W (i)
j :

W (i)
j = w(i)

g ·
c(i)j

∑k c(i)k

·

{
1−d+

s j
to h+s j

d+
s j

to h−s j

(3)

Once the global histogram is computed, the reference orientation
is determined by finding the bin with largest value, and refining the
estimated angle (since the bins can be fairly wide, 20◦ for B = 9)
by fitting a 2nd order polynomial to the the maximal bin and its
2 neighbors. We thus achieve sub-bin accuracy for the reference
orientation.

The obtained reference is an angle are f in [0,π[, which is not
enough for a full rotation-invariance. Indeed, a rotation of the
map by π leaves the global histogram unchanged, and consequently
yields the same reference orientation. A solution is proposed in sec-
tion 2.3.3, once all the descriptor data is computed.

2.3.2 Descriptor
The actual descriptor is an array of histograms, as shown in Fig-
ure 2b: the described region, rotated by the reference orientation,
is divided into a N×N grid (in the experiments, N = 4), with one
histogram per grid cell.

89

The computation of the histogram grid is essentially identical
to the computation of the global histogram, with a minor addition:
to avoid boundary effects (large, sudden changes in the descriptor
when the road data varies slightly), the contribution of each pixel
does not go solely to the closest histogram cell, but to the 4 closest
cells, using bilinear interpolation to split the contribution.

The resulting descriptor is thus a set of N2 histograms of size B.

2.3.3 π-rotation ambiguity
While the global orientation histogram is left unchanged by a π-
rotation, the grid of histograms is not. This ambiguity can be re-
solved in different ways, for example by:

• avoiding the problem altogether by yielding 2 descriptors for
each region, one oriented using are f , one using are f + π .
This doubles the number of descriptors, which might be pro-
hibitively expensive, given the dense sampling in space and
scale that we use for map description.

• making the descriptor truly π-rotation invariant, by averag-
ing the two possible descriptors. While the true invariance
sounds appealing, the descriptor loses significant discrimina-
tive power.

• devising a method to choose between the two possibilities.
This preserves the discriminative power and the number of de-
scriptors, but depends heavily on the consistency of the choice
method.

We choose this final option. The decision criterion we use is the
following: for each half of the histogram grid, upper and lower,
we sum the values of the 0-th bins (i.e. the bins corresponding to
the reference angle), and compare them. We choose (arbitrarily)
that the upper half should have the largest sum. If this is not the
case after the computations of section 2.3.2, the grid undergoes a
rotation by π , which simply translates to a reverse ordering of the
cells in a flattened indexing of the grid.

The consistency of this method is discussed in Section 3.2 and
Figure 4.

2.3.4 Capping and normalization
The obtained descriptor is finalized by a two-step process, again
inspired from [6].

The first step aims at making the descriptor more descriptive in
regions where a repetitive pattern dominates: the vector (i.e. the
concatenation of the histograms from the grid) is normalized, and
a cap c is applied to all its elements (in the experiments, c = 0.15).
Experimentally, this helps make the lesser orientations stand out
more, and have more influence on the distance between descrip-
tors. This also helps match maps with different levels-of-details
(the same road can be represented as multiple distinct segments, or
a single one, depending on the map).

The second step is a re-normalization, to make descriptors com-
parable, and make a map where each segment is doubled (which
can happen for separated highways and the like) have identical de-
scriptors.

The final descriptor is a unit L2-norm vector of RB·N2
, which

means that in the experiments, where B = 9 and N = 4, the descrip-
tors are of size 144.

2.4 Matching and Geolocation
We now describe the offline indexing of reference maps, and online
matching of test ones.

2.4.1 Offline description and indexing
The offline process is detailed in Algorithm 1. Reference maps
r ∈Mre f are described by densely sampling both scale and space
as summarized in Function Describe, and an index is built from
the descriptor data to allow for fast matching using nearest-neigbor

Function Describe(m, Rm): densely describe a map
Input: A map m, a set of radii Rm
Output: Set D of descriptors of m (position, scale,

orientation, and vector data)

1 D ←∅
2 for r in Rm:
3 Gr← 2D grid on m, of spacing r
4 for Cell center p in Gr:
5 o,d← Descriptor(m, p,r) (compute orientation o

and descriptor data d)
6 D ←D ∪ (p, r, o, d)

7 return D

Algorithm 1: Offline part of the registration (training)
Input: A set Mre f of reference maps, as lists of segments
Output: A FLANN index F of reference descriptors

1 F ←∅
2 for reference map r in Mre f :
3 Imgr← MultiSetImage(r)
4 Rr← ScalesFromMetric(Imgr)
5 Dr← Describe(Imgr, Rr)
6 AddToIndex(F ,Dr)

7 return F

queries. The experiments use the Fast Library for Approximate
Nearest Neighbors, FLANN [9].

2.4.2 Online registration

Algorithm 2 shows the online processing: the test printed map is
densely described just like reference maps, the model estimated and
refined, and the final identification performed.

Matching The matching process goes as follows: for each de-
scriptor of the test map (of keypoint kt = (pt ,st ,ot ,dt), where pt
is the location, st the scale in pixels, ot the orientation, and dt
the descriptor vector), the two nearest neighbors kpr1 and kpr2 in
the index (i.e. the two most similar descriptors from the reference
maps) are retrieved. Let dist1 (resp. dist2) be the distance between
dt and the descriptor of kpr1 (resp. kpr2). We define a threshold tsnn
(threshold second nearest neighbor, set to 0.98 in the experiments)
on the ratio of dist1 over dist2, under which a match (kpt ,kpr1) is
kept.

The rationale behind this threshold is that test keypoints which
may correspond to multiple reference keypoints are not very de-
scriptive, and should therefore be discarded.

This process yields sets of raw matches (Rr)r∈Mre f .

Random model estimation Transformation models between
the test map and reference maps are estimated using the
RANSAC [3] algorithm. More specifically, a random model fitting
is repeated (up to a maximum number of iterations, itmax = 2000
in the experiments), in which a reference map is chosen using a
weighted random choice, the weight of a reference map r being the
proportion wr of raw matches it produced:

wr =
Card(Rr)

∑u∈Mre f
Card(Ru)

(4)

Once the reference r has been chosen, a pair of matches from
Rr is randomly selected, and a similarity (rotation, scaling, and
translation, 4 degrees of freedom) is computed from the 2 matches.

90

Algorithm 2: Online part of the registration
Input: A list of segments representing a test printed map m, a

FLANN index F
Output: A list of plausible reference map matches, i.e. pairs

(Cr, Mr)r of confidence indices and transformation
models for each reference map r

1 Imgm← MultiSetImage(m)
2 Rm← ScalesFromDensity(Imgm)
3 Dm← Describe(Imgm, Rm)
4 (Rr)r← nearest-neigbor keypoint matches of Dm in F ,

filtered by the second nearest-neigbor ratio threshold tsnn,
grouped by reference map r

5 (Ĩr,M̃r)r← RANSAC((Rr)r) (inlier matches and transform
model for each mr)

6 (Ir,Mr)r← RefineModels((Rr, Ĩr)r) (iterative refinement
using least-squares estimations)

7 (Cr)r← Identify((Ir,Mr)r) (final decision making)
8 return (Cr,Mr)r

Function RefineModels((Rr, Ĩr)r): refine initial estimates

Input: Raw matches, initial inliers (Rr, Ĩr)r
Output: Refined inliers and models (Ir,Mr)r

1 for each reference map r:
2 Ir,Mr← Ĩr,None
3 while Mr = None or Ir ̸= Ĩr:
4 Ĩr← Ir
5 Mr← WeightedLeastSquaresModelFit(Ĩr)
6 Ir← FindInliers(Rr,Mr,εa,εd)

7 return (Ir,Mr)r

Using this estimated model, we iterate over the rest of the matches
for r, and add those which fit the model to a set of inliers.

The exact definition of those which fit is the following: two tol-
erances are defined, an angle tolerance εa on the difference of ori-
entations (set to 5% in the experiments), and a distance tolerance εd
on the symmetric transfer error [4] between the model and the con-
sidered match. The angle tolerance is first used as a cheap way of
eliminating wrong matches, and the more expensive distance tol-
erance is only used if the angle fits. Note that when performing
computations that involve both reference and test maps, all the dis-
tances are pre-conditioned (divided by the map size), so that they
are comparable. The value of εd was set to 70% of the keypoint
scale in the experiments, see the discussion in 3.2 for more details.

The best models (compared via the number of inliers) are stored
and used in the next step. Additionally, when a computed set of
inliers is larger than a preset threshold tinliers (20 to 30 in the ex-
periments), the model is automatically accepted, and the random
iterations aborted.

Model refinement The model refinement loop is detailed in
Function RefineModels. The weights in the least-squares estima-
tion are based on the inverse keypoint (conditioned) scales, to make
inaccurate matches of large-scale keypoints less influential. This
refinement step (similar ideas are in [4, 14]) increases the quality of
the model estimation, and gets rid of accidentally accepted outliers.

Identification This final step uses the refined inliers and mod-
els, and identifies which references (there might be multiple) the
test map originates from, assigning confidence indices to its choices
(the sum of confidences is 1). The process is fairly straightforward:

(a) Belfast reference, 14464 segments (b) Edinburgh reference, 12604 segments

(c) Glasgow reference, 58050 segments
(d) Edinburgh test map, 306 segments. In
blue, the manually selected segments.

Figure 3: Reference maps, imaged at 500px resolution (resolution
in experiments is 2000px), and sample test data

1. reject reference maps with not enough inliers (10 in the exper-
iments)

2. reject models which produce absurdly small or large test map
scales (< 200m, or > 10km in the experiments)

3. retain only the reference maps which have within t f 2o =
60% of the maximum number of inliers found (first-to-others
threshold)

4. return the remaining reference maps, with the proportion of
the total number of inliers that they hold as a confidence index

3 EXPERIMENTS

This section will show and discuss experimental results and bench-
marks.

3.1 Experiment data and code
All our experiments were conducted on data from the cities of
Belfast, Edinburgh, and Glasgow, the metric coordinates in meters
on the Ordnance Survey National Grid reference system (projected
from the OSGB36 datum). The reference maps used in the exper-
iments were all obtained from OpenStreetMap1. Raw XML data
was then filtered using OpenJUMP2 to retain only polylines, which
were then broken down into individual segments. Figures 3a, 3b
and 3c show the reference data. The test maps (e.g. Figure 3d)
are tourist maps found on the internet, from which the segments
were manually selected (in lieu of a road detection algorithm). They
contain between 300 and 800 segments, and are of resolutions be-
tween 300 hundred pixels and 2000 pixels. The code was written
in Python, using Numpy, Scipy, and OpenCV’s Python interface.
The source is available online3. Code performance was not a major
concern, but for reference, reference maps were processed in 30s to
3min, test maps in about 5s, and matching performed in about 5s
too.

3.2 Algorithm parameters
Here we discuss some parameters of the algorithm, their trade-offs
and influence.

1http://www.openstreetmap.org/
2http://www.openjump.org/
3https://github.com/GautierMinster/lrpd-geolocation

91

0.0 0.2 0.4 0.6 0.8 1.0

1

Figure 4: Ratio of smaller sum over larger sum for the halves of
19235 descriptors (all reference and test maps). 10th, 25th, 50th,
75th and 90th percentiles are shown, red dot is the mean.

(a) The 47 computed inliers. The red rect-
angle represents the region we estimated
to be shown on the test map.

(b) OSM reference segments overlaid on
the test map. The accuracy of the esti-
mated position is about 10 meters.

Figure 5: Matching of the map in Figure 3d

Intermediate scales in octaves k: k controls how dense the
scale sampling is, and has a direct impact on computational com-
plexity and the number of descriptors. As can be expected, the
number of inliers grows with k, but surprisingly, performance does
not seem to degrade with high values (k = rmin or close to it): we
could indeed imagine that the very dense scale sampling would get
in the way of matching by yielding too many similar descriptors,
but it is not the case. A possible factor is that as the description
radius changes, the whole grid of descriptors scales and shifts, so
that keypoint locations are not identical. k = 3 was chosen, it gives
good results at a relatively cheap computational cost. Note that k is
not fixed: it can be chosen on a per map basis (reference or printed).

Number of histogram bins B: B can be computed from an
error model for the test segments. Let X be a random variable,
the angular error between test map and real orientations, and as-
sume X follows a Gaussian distribution N(0,σ). We want the er-
ror to be within half a bin (= π/2B), with probability p (to con-
tribute to at least one correct bin). This yields a constraint on B,
B ≤ π

2
√

2σ erf-1(p)
. Taking σ = 5◦ and p = 0.95 yields B≤ 9.

π-rotation ambiguity: the criterion we use to solve the ambigu-
ity in 2.3.3 should clearly separate the two options, for the choice
to be consistent across different maps and rotations. As can be seen
on Figure 4, close to 90% of the data has a ratio lower than 0.9,
which seems like a large enough margin from a ratio of 1. (i.e. total
undecisiveness) to consider the criterion pertinent.

Inlier distance threshold εd: the RANSAC distance threshold
can also be computed, by noticing that a pixel may move in a de-
scriptor region with radius r by at most one diagonal of a histogram
grid cell for it to still contribute to the same 4 histograms. The
length of this diagonal is

√
2/2 · r, so we use εd =

√
2/2.

3.3 Sample results
This section will show and describe some results.

We first match as an example the test map shown in Figure 3d
against our 3-cities database. 367 descriptors were computed,
yielding 211 raw matches across the database (127 for Edinburgh,
31 for Belfast, 53 for Glasgow). After RANSAC model estimation,
47 inliers remain for Edinburgh, shown in Figure 5a, and none for
the two other references. Using the estimated model, we can then
overlay the reference data from OpenStreetMap onto the tourist
map, as shown in Figure 5b. As expected given the number of in-
liers obtained, the algorithm correctly identifies this map as being

(a) A test map with unknown ori-
gin. Image ©Google.

(b) 33 inliers found with the Glasgow reference,
accuracy within 1% for rotation and scaling, and
around 20 meters for position.

Figure 6: Matching of an unknown map.

(a) A test map of Paris. (b) 6 inliers found for Glasgow (and rejected)

Figure 7: Matching of a map not in any reference.

from Edinburgh, and locates it very accurately.
As a second example, we use the test map in Figure 6a. Ig-

noring the text labels, a reader unfamiliar with the geography of
Glasgow will have trouble figuring out where this map is from. The
algorithm produces 191 raw matches (100 for Glasgow alone), and
finds a set of inliers for Glasgow (Figure 6b) exclusively. Again,
the identification performs flawlessly, and locates the map (scaling,
rotation and translation) with remarkable precision.

As a final example, we present the matching of a test map of
Paris, i.e. a city not in the database. The test map, shown in Fig-
ure 7a, yields 599 descriptors, and 328 raw matches (116 for Ed-
inburgh, 69 for Belfast, and 143 for Glasgow). The inlier rate is
considerably lower than previously, with only 4 inliers for Belfast
and Edinburgh, and 6 for Glasgow. The inliers for Glasgow are
shown in Figure 7b. The identification process rejects all reference
maps, since they do not meet the minimum number of inliers.

3.4 Scale and rotation invariance benchmark

To evaluate the performance of the descriptor with regards to rota-
tion and scaling, we used 8 test maps (3 for Edinburgh, 3 for Belfast,
and 2 for Glasgow), and manually determined groundtruths for their
positions, rotations and scales. The maps are then subjected to ar-
bitrary rotations in [0;2π[and scalings in [10%;200%]. The rotated
and scaled maps are then matched against our database, and the
accuracy of scale, position and rotation estimation are computed.

Figure 8 shows the results. The position accuracy in % was
computed relative to the size of the test map. For each test map,
1000 random transformations were applied. Note that the size of
the transformed maps was enforced to be larger than 300 pixels in
all dimensions. The results show the robustness of the proposed
method against similarities.

3.5 Noise benchmark

We evaluate the effect of noise on matching by applying (sepa-
rately) 4 kinds of noise to the map in Figure 3d. We model end-
point detection noise by point jitter, inaccurate maps by applying

92

e1 e2 e3 b1 b2 b3 g1 g2
0.0

0.5

1.0

1.5

2.0

2.5 Scale estimation error (%)

e1 e2 e3 b1 b2 b3 g1 g2
0

20

40

60

80

100 Position estimation error (meters)

e1 e2 e3 b1 b2 b3 g1 g2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 Rotation estimation error (degrees)

e1 e2 e3 b1 b2 b3 g1 g2
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 Position estimation error (%)

Figure 8: Accuracy of the estimation for 8 maps (1000 random
similarities each, see text for details). ’e’ is for Edinburgh, ’b’ for
Belfast, and ’g’ for Glasgow. 10th 25th 50th 75th and 90th per-
centiles shown, red dot is mean.

0 2 4 6 8 10
jitter (px)

0
10
20
30
40
50
60
70
80
90

er
ro
r (

%
)

0 5 10 15 20 25
inaccuracies (px)

0
1
2
3
4
5
6
7
8

er
ro
r (

%
)

0 20 40 60 80 100 120 140
extra segments (%)

0

10

20

30

40

50

er
ro
r (

%
)

0 10 20 30 40 50 60
missing segments (%)

0
5

10
15
20
25
30
35
40

er
ro
r (

%
)

Scale estimation error (%)
Rotation estimation error (%)
Position estimation error (%)
Unmatched maps (%)

Figure 9: Median matching accuracy under different forms of noise

displacements to entire segments, and misdetections of roads by ei-
ther adding extra segments, and removing existing ones.

A benchmark of the accuracy of matching against each of those
4 forms of noise is shown in Figure 9. Jitter follows a bivariate un-
correlated Gaussian distribution of mean 0 (the number of pixels is
the standard deviation), and inaccuracy follows the same distribu-
tion, but applies identically to both endpoints of a segment. Extra
segments are created at random positions and orientations, and have
a length that follows a Gaussian of mean and standard deviation 30
pixels. The percentage shown for extra and missing segments is
relative to the number of initial segments. Each data point on the
plots is the median of 200 samples.

The benchmark shows the excellent resilience of the proposed
method to both added segments and missing ones. Jitter is shown
to be mildly inconsequent up to 5px, after which, considering the
short length of many segments, performance degrades rapidly. In-
accuracies in segment positions only have a small impact on match-
ing, which can be expected: the descriptors being poorly localized,
adding to it has little effect.

4 CONCLUSION

We have presented an algorithm for the geolocation of printed
maps, based on local descriptors of road patterns. The descriptor
is heavily inspired from the SIFT descriptor [6] for natural images,
and makes use of histograms of road orientations. Transposing
such a texture-based matching method to the textureless context of
road networks allows us to make use of a particularly well-studied
matching framework, using descriptor indexing, nearest-neighbor

matching and outlier robust transformation estimation.
Experiments and benchmarks show the precision of the geoloca-

tion, and its robustness to multiple forms of noise. The algorithm
however suffers from poor localization of its numerous descriptors,
because of the dense sampling in space and scale that was used to
palliate the difficulty of keypoint and scale selection. Further work
will delve into these limitations, in order to make the method scal-
able to immense reference regions and wider ranges of test map
scales.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS Grant-in-Aid for Scientific
Research(S) 24220004.

REFERENCES

[1] S. Callier, H. Saito, and G. Moreau. Real time detection and tracking
of printed maps based on road structure. ITE Transactions on Media
Technology and Applications (MTA), 3(1):85–94, 2015.

[2] J. Crowley and A. C. Parker. A representation for shape based on
peaks and ridges in the difference of low-pass transform. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
6(2):156–170, March 1984.

[3] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
June 1981.

[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, New York, NY, USA, 2 edition,
2003.

[5] D. G. Lowe. Object recognition from local scale-invariant features.
In The Proceedings of the Seventh IEEE International Conference on
Computer Vision, 1999., volume 2, pages 1150–1157 vol.2, 1999.

[6] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, Nov.
2004.

[7] S. Martedi and H. Saito. Augmented fly-through using shared geo-
graphical data. In International Conference on Artificial Reality and
Teleexistence, pages 47–52, 2011.

[8] A. Morrison, A. Mulloni, S. Lemmelä, A. Oulasvirta, G. Jacucci,
P. Peltonen, D. Schmalstieg, and H. Regenbrecht. Mobile augmented
reality: Collaborative use of mobile augmented reality with paper
maps. Computers and Graphics, 35(4):789–799, Aug. 2011.

[9] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on
Computer Vision Theory and Application (VISSAPP’09), pages 331–
340. INSTICC Press, 2009.

[10] D. Reilly, M. Rodgers, R. Argue, M. Nunes, and K. Inkpen. Marked-
up maps: Combining paper maps and electronic information re-
sources. Personal Ubiquitous Computing, 10(4):215–226, Mar. 2006.

[11] G. Reitmayr, E. Eade, and T. Drummond. Localisation and interac-
tion for augmented maps. In Proceedings of the 4th IEEE/ACM Inter-
national Symposium on Mixed and Augmented Reality, ISMAR ’05,
pages 120–129, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[12] J. Schöning, A. Krüger, and H. J. Mller. Interaction of mobile cam-
era devices with physical maps. In Adjunct Proceeding of the Fourth
International Conference on Pervasive Computing, pages 121–124,
2006.

[13] D. Wagner and D. Schmalstieg. Artoolkitplus for pose tracking on
mobile devices. In Proceedings of the 12th Computer Vision Winter
Workshop, CVWW’07, pages 139–146, 2007.

[14] L. Yang, J.-M. Normand, and G. Moreau. Robust random dot markers:
Towards augmented unprepared maps with pure geographic features.
In Proceedings of the 20th ACM Symposium on Virtual Reality Soft-
ware and Technology, VRST ’14, pages 45–54, 2014.

[15] L. Yang, J.-M. Normand, and G. Moreau. Augmenting off-the-shelf
paper maps using intersection detection and geographical information
systems. In 14th IAPR International Conference on Machine Vision
Applications, May 2015.

93

