
Real-Time Diminished Reality for Dynamic Scenes
Siim Meerits∗

Keio University
Hideo Saito†

Keio University

Figure 1: Diminishing a calendar from user view. Right side image shows original input from a color camera. A calendar on that image has been
diminished using our system and the result can be seen on the left side image.

ABSTRACT

Diminished reality (DR) research aims to develop methods to visu-
ally hide objects from real scenes. One or more cameras capture
a scene where some objects, called the occluding objects, are ‘di-
minished’ by an DR system. To do this in real time we need to
use multiple cameras. We introduce a novel multi-camera DR sys-
tem utilizing an RGB-D camera to hide arbitrary trackable objects
from a scene. In our case, the scene background does not have to
be planar for the system to work and we can handle scene changes
in real time. Additonally, we introduce color correction technique
to merge image content originating from different cameras and also
demonstrate method to repair images with partially missing con-
tent.

Keywords: Diminished reality, free-viewpoint video, RGB-D
camera.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities;

1 INTRODUCTION

Diminished reality (DR) is a research field concerned with provid-
ing users an indirect view of the world where some objects have
been made invisible. In other words, some device records user sur-
roundings, then removes some objects from the view using image
manipulation and finally presents the result to the user. Such device
could be a wearable computer or hand–held device such as smart-
phone. The diminished reality concept is demonstrated in Figure 1
where we show one of the results of our system.

∗e-mail: meerits@hvrl.ics.keio.ac.jp
†e-mail: saito@hvrl.ics.keio.ac.jp

There are many approaches to diminished reality. Some meth-
ods, such as image inpainting, make guesses of possible image con-
tent based on patterns found on images. Another set of methods,
based on videos, utilize series of images from camera to piece to-
gether backgrounds of objects to be removed from user view. We
are interested in approaches which can achieve realistic diminished
reality in real time. The inpainting methods cannot always give
truthful results as there are limits to guessing image content and
video based methods cannot always work in real time. To achieve
realistic real–time diminished reality, we need to place multiple
cameras into the scene to see hidden areas behind occluding ob-
jects.

Previously, most systems have attempted the use of multiple
color cameras to develop understanding of the scene structure. This
work introduces different approach using an RGB-D camera to see
the hidden areas of the scene. In recent years, Kinect devices de-
veloped by Microsoft brought RGB-D cameras to consumer living
rooms and new projects, such as Google Tango, are trying to intro-
duce the RGB-D camera technology to smartphones. Therefore, we
expect that RGB-D cameras will become more common in future.

In this paper we show that it is possible to achieve realistic dimin-
ished reality with only two cameras – a color camera and an RGB-D
camera. While two camera DR systems have been developed be-
fore, our system importantly does not require the background of
scenes to be planar. The background structure can not only be of
any shape but it can also change and move freely.

We also address the issue of color calibration and relighting. By
using different types of cameras at different viewpoints in the scene,
we invariably have to deal with lighting differences of images ob-
tained from cameras. Additonally, we show how to apply image
inpainting techniques within our framework to fill in content of ar-
eas where scene reconstruction has failed. Finally, we demonstrate
our system in two sample scenes where we diminish different ob-
jects.

The rest of the paper is organized as follows. After introducing
related works, we explain our proposed method which includes sys-

2015 IEEE International Symposium on Mixed and Augmented Reality Workshops

978-1-4673-8471-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMARW.2015.19

53

Color camera
RGB-D camera

Occluding
object

Hidden
area

Marker
for pose

estimation

Color camera image RGB-D camera image

Figure 2: System setup diagram. The color camera sees some oc-
cluding object from the front. In this diagram, a calendar object was
chosen as an example. The task of the RGB-D camera is to observe
the hidden area behind the calendar highlighted in a blue box. Im-
ages from the actual scene are shown in the bottom of the diagram.

tem overview, camera pose estimation and object detection, scene
reconstruction and result compositing. Before concluding, we show
experimental results with system setup, results in two scenes and
performance metrics.

2 RELATED WORKS

The diminished reality term refers to systems capable of hiding ob-
jects from scenes. This definition is very broad and has resulted
in articles with varying approaches to diminished reality to be pub-
lished. Review of some earlier DR work can be found in paper by
Mori et al. [8]. In the following subsections we summarize previ-
ous relevant research. All of the papers presented here can work in
real time and use multiple cameras.

One important aspect of all DR works is the amount of scene
complexity a DR system can handle. Hence, we start from works
that can only handle scenes with planar backgrounds, and then
move on to works which can handle more complex backgrounds.

Zokai et al. [12] introduced the main concepts of diminishing
objects with planar and piecewise planar backgrounds by using a
paraperspective background model.

Enomoto et al. [1] also demonstrate a system for diminishing
objects in front of planar background. While previous work by
Zokai et al. [12] considered the region of the occluding object to
be known, Enomoto et al. deduce the occluding area by compar-
ing pixels of different camera images. As a weakness, this sort of
pixel-by-pixel comparison does not work if the occluding object
has no color variation across its surface or if the number of cameras
capturing scene is low.

Jarusirisawad et al. [6] demonstrate a DR system that can han-
dle moving cameras. In this work the background model has to be
created before system is put into use.

Another Jarusirisawad et al. [5] paper demonstrates a system ca-
pable of removing occluding objects from scene without requiring
the background of the scene to be planar. The method in question

Color camera RGB-D camera

Camera pose estimation

Occluding object detection

Scene reconstruction

Color correction

Missing areas generation

Input capture

Pose estimation and
object detection section

Scene reconstruction
section

Compositing section

Figure 3: Overview of major system processes and their ordering by
execution.

utilizes a large number of freely placed color cameras to gather in-
formation about the scene. The core method for object removal is
plane–sweep algorithm (PSA). The PSA could be considered as a
very simple form of multi–view stereo (MVS). As with most MVS
algorithms, the computation is very expensive and the real-time re-
quirements resulted in reconstruction quality tradeoffs – only small-
ish objects with strong contrast difference with background were
effectively diminished.

Honda et al. [4] developed a system capable of diminishing ob-
jects in scenes with complex backgrounds. In their approach, the
background is scanned before system use and stored as a 3D model.
During system operation, the background of occluding objects is
rendered using this model.

A recent work from Sugimoto et al. [10] realizes a DR system
using three rigidly fixed RGB-D cameras to see behind a robotic
arm. The approach is interesting for the use of multiple depth-
sensing cameras. However, while the three dimensional structure of
the scene is considered, the background model is not reconstructed.
For every pixel, an evaluation function chooses best camera for
showing background. As the robotic arm is only half–diminished,
no color correction methods are used.

3 PROPOSED METHOD

3.1 System overview
Reconstruction of the scene can be a very difficult task when only
color cameras are available. The RGB-D cameras could be utilized
to solve those problems. By obtaining a stream of depth maps,
we can gather information about the scene structure in much easier
manner. We construct our system on the idea that RGB-D cam-
eras can help realize real–time diminished reality within dynamic
scenes.

The setup of our system contains two cameras – a color cam-
era and an RGB-D camera. The occluding objects seen by color
camera are diminished using imagery seen from RGB-D camera.
Essentially, the purpose of the RGB-D camera is to see hidden ar-
eas in the scene. This conceptual setup is illustrated in Figure 2.

Before explaining the way of utilizing the camera images, we
discuss temporal issues of camera streams. It is tempting to utilize
data from multiple frames of images, as in video based DR systems,
to enhance the scene quality or fill in areas that cannot be seen from
any camera at some moment. However, we argue that this approach
will bend the reality of the scene. Some objects might have moved
when cameras could not observe them. By utilizing data from pre-
vious frames, those objects remain visible in their prior locations,
making the scene unrealistic. Returning to our concept of dimin-

54

(a) Color camera view (b) RGB-D camera view

Figure 4: Camera pose estimation and occluding object detection.
Camera poses are estimated using the marker attached to the con-
crete wall, visible in both images. The red, green and blue lines
drawn on top of the marker show three Cartesian coordinate axes
in marker coordinate system. Lastly, the white lines in (a) show the
bounding box of a detected occluding object.

ished reality explained in introduction, the present authors argue
that we want to see behind objects for some practical reasons and
strongly prefer to see true representation of the world. Hence, we
decide to only work with data available from cameras at present
moment and not to generate any historical view of the scene.

All important system parts are given in Figure 3. This process
is run once for every frame captured from both color and RGB-D
camera.

3.2 Pose estimation and object detection
Before scene reconstruction can take place we need to obtain some
preliminary information about the scene. Namely, we need to figure
out the location of the cameras relative to each other and also find
the occluding objects to be diminished from the scene. This section
discusses how both of the operations are carried out in our system.
Related illustration can be seen in Figure 4.

3.2.1 Camera pose estimation
In our system, we only need to estimate the poses of cameras rela-
tive to each other. Easiest way to do this is in real–time is to have a
known object within the scene that can be tracked from all cameras
simultaneously. For this reason, we use AR markers for camera
pose estimation. Additionally, the advantage of markers is their
good performance and accuracy. Our marker detection is imple-
mented using system developed by Garrido-Jurado et al. [2].

It is important to note that the scene reconstruction process is car-
ried out for every frame independent of other frames. This means
that there is no need to track the scene pose. In turn, this implies
that if we use a known object for pose estimation then this object
can move freely within the scene as long as it is visible from all
cameras.

3.2.2 Occluding objects detection
To remove objects from scenes we need to know where they are
located. The occluding objects must be detected in both color and
RGB-D camera images. In both cases the end result of this detec-
tion should be a binary mask over camera images indicating wheter
particular pixels are part of an occluding object or not. We call
this the occlusion mask. The actual detection method to derive it is
highly dependent on what objects we are trying to diminish. In the
following we demonstrate two detection methods – marker based
detector and color blob based detector.

The marker based detector works, as the name suggests, by de-
tecting AR markers that are attached on top of occluding objects.
An example of this detection is seen in Figure 4. We assume that
the 3D shape of an occluding object is known, including the posi-
tion of the attached marker. Hence, we can project the 3D shape of
the occluding object on the camera images. However, we still need

to turn this shape information into final occlusion mask. In case
of complex shapes we could render the whole 3D object to the oc-
clusion mask using computer graphics techniques. However, some
simple shapes, such as the calendar object in Figure 4, can be han-
dled in a faster way. It can be seen that the outline of a rectangular
object, such as the previously shown calendar, or any box-shaped
object for that matter is always a convex polygon, regardless of the
viewing angle. In case of convex shapes, we can ignore the internal
structure of an object and only use its vertices to generate a convex
hull i.e. the object outline. After obtaining a convex hull of the
object we can fill it and obtain an occlusion mask.

Another detection method, the color blob based detector, works
by finding objects with certain color and shape. First, we apply a
watershed-based blob detection algorithm to find all blobs in image.
Every found blob is then evaluated to see if it fits the object descrip-
tion. The process of checking object color is carried out as follows.
The blob pixels are converted to HSV color space and average color
values are calculated for all color channels. This process is also car-
ried out on a set of training images of the object. We can measure
variance of each color channel across the training data. This is use-
ful when making actual evaluation of the blob colors – the average
values of colors are allowed to vary around one variance distance of
training data average color values. Finally, we can also apply some
simple shape detection heuristics to further validate objects. For
circle shapes, such as a ball used in experiments, we calculate the
bounding box of every blob. If the width and height ratio is close
to one, then the object might be a circular object. This process ex-
cludes many false-positive blobs that pass color checking.

The occluding object detection process is identical for both color
and RGB-D camera. However, the way of using the occlusion
masks from detection is completely different. In the following we
describe both use cases. The RGB-D camera occlusion mask is
used to exclude pixels from scene reconstruction. Essentially, the
RGB-D camera depth map values are set to invalid values in areas
where occluding objects were found. By removing occluding ob-
jects from RGB-D camera, it is guaranteed that such objects will
not be included in scene reconstruction. The color camera occlu-
sion mask is used after scene reconstruction, in compositing phase,
and explained in corresponding section of this work in detail.

3.3 Scene reconstruction

The scene reconstruction method explained here expands on our
previous work [7].

Very straightforward approach for projecting RGB-D images to
the color camera view might be to project all RGB-D camera depth
pixels separately to the color camera. This would, however, result
in a sparse map of depth pixels in the other camera view. The prob-
lems with this approach are as follows. First, filling in the sparse
map of depth pixels can be compuationally expensive as we need
to search the neighborhood of every depth pixel for other pixels
and then interpolate values between them. Secondly, the final re-
sult of our system should be a color image, not a depth map. This
means that we need to carry out the proceedure of interpolating
not only depth map, but also the color image between sparse depth
map points in the target view image. Latest RGB-D cameras, such
as Microsoft Kinect 2, tend to have color images many times the
resolution of depth map. This process would essentially upsample
the depth map to the color image resolution and hence inflate the
transformation operations. Upsampling of the depth map does not
increase the amount of information about the surroundings, so it
would be reasonable to try to use a scene reconstruction method
that works directly with the original depth map.

We decide to approach the problem from a different angle. To
be able to render the scene at different viewpoint we first gener-
ate some other representation of the depth map that is easier and
more reliable to process. Computer graphics research has brought

55

RGB-D camera
color image

RGB-D camera
depth image

16x16 pixel
cutout

Figure 5: Step-discontinuity constrained triangulation (SDCT). A
sample 16x16 pixel area has been cut out of RGB-D camera depth
frame. The SDCT proceedure was applied to this cutout and the re-
sulting triangles are shown in the lower part of the figure. Light grey
pixels are further away from the camera than the dark grey pixels. As
can be seen from the diagram, triangles corresponding to different
objects have been correctly segmented to different triangle meshes.

us many powerful tools to deal with rendering of 3D data. It would
make sense to leverage the available systems for our use. Typical
computer graphics methods expect triangles for rendering. So it is
important to realize a transition from RGB-D camera depth map to
a set of triangles that make up the scene. The way we achieve that
is later explained in scene reconstruction section in detail.

3.3.1 Step-discontinuity constrained triangulation

We have selected the so-called step-discontinuity constrained tri-
angulation (SDCT) method [3] to generate triangle meshes out of
RGB-D camera depth maps. This process is illustrated in Figure 5.
The core idea in SDCT is that neighboring pixels in depth map typ-
ically correspond to close points in real scene. Therefore, triangles
can be formed between space points defined by neighboring depth
pixels to reconstruct an object’s surface.

Triangle generation alone, however, is not enough. As seen in
Figure 5, triangle mesh should be broken or segmented between
different objects. In case we do not carry out the segmentation, any
sort of viewpoint change will reveal triangles that join foreground
and background objects, making the scene look incorrect.

The segmentation proceedure is implemented in very simple way
in SDCT. Namely, any sort of depth change between neighboring
triangles over certain constant discontinuity threshold will mean
that the neighboring pixels are part of different objects. Hence, any
triangles between such depth pixels should be deleted. Empirically
values around 5 cm for this value were found to be producing good
results.

3.3.2 Issues with SDCT
The segmentation method implies that surfaces with normals at
very low angles relative to rays cast from camera might be removed
by the procedure. In other words, if an object’s surface is oriented
such that the depth measurments of neighboring depth pixels differ
more than the discontinuity constant then this surface is excluded
from reconstruction. By knowing RGB-D camera properties we
can calculate the angle of a surface at which it becomes invisible at
different distances from the camera.

The calculation of minimum allowed surface angle in regions
close to camera principal axis is illustrated in Figure 7. Writing
down trigonometric relations of two triangles from the diagram we
obtain

(x+d) tanα = d tanβ , (1)

where β is the minimum allowed angle of the surface, α the angle
between rays cast from two neighboring depth pixels of the camera,
x the distance from camera to the object surface and d the disconti-
nuity constant. We can extract the value of interest, β , and get

β = arctan
(

x+d
d

tanα

)
. (2)

The depth camera used in our experiments, Microsoft Kinect 2,
has horizontal field of view of 70◦ and 512 pixels in horizontal di-
rection. The angle α between rays cast from depth pixels depends
on pixel coordinates in image plane. The value is highest near the
principal axis, where α = 0.156◦, and lower elsewhere, such as at
the edge of the depth map, where α = 0.103◦. The effect of surfaces
becoming invisible is stronger at larger α values, so in the follow-
ing we only consider the extreme case of α = 0.156◦ for estimation
purposes. Given discontinuity constant of d = 5cm, we can calcu-
late minimum surface angles at different distances. Our system is
designed for indoor use and generally no scene in the experiments
had dimensions over 5 meters. At 5 meters β = 15.2◦ and at the
much more common distance of 2.5 meters β = 7.7◦. At those an-
gles the surface is barely visible. Since so little is being seen of the
surface, the reconstruction would also be very low quality. Hence,
it is reasonable to exclude such areas from reconstruction in any
case.

3.3.3 GPU acceleration
The SDCT reconstruction has been implemented in OpenGL
shaders for accelerated execution on GPUs. The whole process has
been divided between vertex, geometry and fragment shaders. In
the following we describe the shaders in detail.

In the theoretical description, the triangle mesh generation, view-
point transformation and rendering of the scene are considered as
separate steps and carried out in this order. In practice, however,
we can reorder some operations for the purpose of optimization.
Also, we do not need to store any intermediate results such as the

SurfaceRGB-D
camera

β

Figure 6: Minimum surface angle problem definition. Our task is to
estimate the minimum allowed angle β where surface is still visible.

56

α β

x d

Figure 7: Minimum surface angle problem simplification. In this fig-
ure, α is the angle between rays cast from two neighboring depth
pixels, d is the discontinuity threshold and x is the distance to surface
from camera. This sort of simplification is possible by noting that the
disparity threshold d is normally orders of magnitude smaller than the
distance x between camera and surface.

triangle mesh data. Only the final color image of the reconstruction
rendering is retained.

We start by uploading the depth map pixels to graphics card
memory. The first stage of processing is done in vertex shader.
Point coordinates (i.e vertices) in RGB-D camera space are calcu-
lated for every depth pixel. For even faster execution, the X and
Y-axis projection coordinates in image plane for every depth pixel
are stored in separate static buffer. The resulting point p in RGB-D
camera space is then transformed to the target viewpoint using

p′ = Rp+T, (3)

where R and T are respectively the rotation and translation of view-
point transformation.

Geometry shader is responsible for forming triangles between
vertices calculated in vertex shader step. List of all theoretically
possible triangle formations have been calculated in advance. Es-
sentially, the geometry shader only has to go through the list and
verify if a particular triangle is valid or not according to a set of
rules and output them accordingly. The validation rules are as fol-
lows:

• All triangle vertices must be valid. Typically all real world
depth maps contain at least some invalid depth points due to
bad camera performance or occlusions.

• Depth value difference between any two vertices of the tri-
angle must be less than the discontinuity constant. This
rule hides triangles that would otherwise connect separate ob-
jects to a single mesh as discussed in previous subsections.

• Triangle must be facing forward. This rule makes sure that
any back sides of objects are not made visible.

Final stage of the pipeline is using fragment shader. To output
a color image we need to color in triangles generated in previous
steps. We already have both the vertex coordinates and correspond-
ing texture coordinates for every triangle. OpenGL automatically
interpolates texture coordinates within triangles and performs color
lookups.

3.4 Compositing
3.4.1 Ingredients for compositing
Figure 8 shows inputs to the compositing phase of our system. Our
objective is to only hide occluding objects and therefore we only
need to replace the image content of that region in color camera
images. The main source for that replacement data comes from
previously discussed scene reconstruction phase.

(a) Color camera view (b) Background reconstruction

(c) Valid pixel mask (d) Missing pixel mask

Figure 8: Compositing masks. The red rectangles highlight occluding
object area. We need to use background reconstructon image to
overlay occluding object in color camera view. The pixel mask below
show succesfully reconstructed background pixels and the pixels that
are missing from reconstruction.

It is not guaranteed that scene reconstruction always succeeds
in all image areas. For example, due to the positioning of the
RGB-D camera we cannot see some hidden regions completely, or
the RGB-D camera is unable to read depth values in some image
areas. The second issue is also visible in the Figure 8, where a
metallic object causes holes in the RGB-D camera depth image and
in turn results in some parts being missing from reconstrucion im-
age.

Fortunately, it is possible to develop an understanding of areas
missing from reconstruction image. The scene reconstruction pro-
cess, introduced in the previous section, saves final images in the 4-
channel RGBA format. First three channels are the common RGB
colors. However, the last channel, alpha, serves the purpose of in-
dicating wheter a pixel was written during rendering. Therefore
we can construct two masks from this alpha channel: a valid pix-
els mask and missing pixels mask. In both cases we constrain the
masks to the regions of occluding objects.

In the following subsections we explain how the pixel masks are
used to generate a composite result of of color camera and recon-
struction images. In a nutshell, the valid pixels from reconstruction
are copied using a color correction technique and the content of
missing pixels is generated using image inpainting methods.

3.4.2 Color correction with seamless cloning

Most DR systems have opted to use homogenous set of cameras in
demonstrations. This means that due to same lens and imaging sen-
sors the colors across camera views are similar. In our case, how-
ever, there is a need to deal with very different cameras. This prob-
lem also exists in consumer applications where, for example, smart-
phone users have different device models and hence have cameras
with wildly varying parameters. It is hard to expect that color cal-
ibration data would be available for all cameras. A good solution
should work without calibration data.

It should be obvious that color differences can also arise from
scene lighting – same cameras at various viewpoints percieve scene
differently. This sort of problems have been considered in the field
of relighting research.

57

(a) Simple compositing (b) Seamless cloning

Figure 9: Color correction example. (a) shows result created by copy-
ing pixels marked as valid from reconstruction image to color camera
view without any processing. (b) shows merger of input images using
seamless cloning to correct colors.

(a) Without inpainting (b) With inpainting

Figure 10: Image inpainting example. Missing areas on top of metal-
lic surfaces have been repaired by inpainting. Lower left corner and
top edge in the image have missing content due to the RGB-D cam-
era field-of-view limits. These areas have also been filled in by in-
painting.

Our solution to the problem at hand is to use seamless cloning
technique introduced by Perez et al. [9]. Generally, this method
seamlessly merges unrelated images. The effect of using this ap-
proach in our system can be seen in Figure 9. The method has
number of good properties. First, no calibration process is neces-
sary. Secondly, the color camera image colors are preserved, only
inserted image is changed. Finally, small mismatches in alignment
of input images are fixed automatically because of the seamless
property of image insertion.

3.4.3 Guessing missing content with image inpainting
Image inpainting techniques are intensively studied and constitute
a subfied of diminished reality on their own. Their purpose is to
hide objects by procedurally generating image content by looking
at image patterns. Generating content for complex backgrounds
is difficult, and probably impossible when there are no repeating
patterns. However, smaller areas with limited amount of variation
could be filled with generated content. During experiments, we en-
countered situations where holes in scene reconstruction happened
due to small specular objects, such as a steel pipes. To repair those
image areas, we applied image inpainting method by Telea et al.
[11]. The particular work was specifically advertised as effective
in repairing damaged images, where inpainted areas are in limited
size. The results of applying inpainting to the areas of missing pix-
els is shown in Figure 10.

4 EXPERIMENTAL RESULTS

4.1 Setup
The cameras used in the experiments are given in Table 1. The host
computer had Intel Core i7-4770K CPU clocked at 3.5 GHz, 16
GB of RAM and GeForce GTX 780 graphics card. The system ran
Gentoo Linux operating system.

Table 1: Camera hardware

Camera Color camera RGB-D camera

Model Point Grey Flea3 Microsoft Kinect 2

Color resolution 1280x1024 1980x1080

Depth resolution N/A 512x424

Framerate 30 fps 30 fps

The color camera had adjustable lens. It was necessary to open
up the aperture to F1.6 to reduce motion blur in images. Other-
wise, any moving AR markers would be hard to detect and result
in incorrect pose estimation values. The lens settings were fixed
and the camera intrinsic parameter calibration was carried out us-
ing a board with checkerboard pattern. The intrinsic parameters for
RGB-D camera, both color and depth frames, were acquired from
factory calibration data stored inside the Kinect 2 device.

4.2 Scenes
We set up two scenes to test our system – a ‘calendar’ scene and a
‘ball’ scene. Both are toy problems, but they should convey the gen-
erality of our approach. The fundamental difference of the scenes
lies in the occluding object detection algorithm being used.

4.2.1 Calendar scene

The objective in calendar scene is to hide a calendar object with
attached AR marker. The dimensions of the object are known, in-
cluding the AR marker position. The detection method was previ-
ously explained in object detection section. Results are shown in
Figure 11.

4.2.2 Ball scene

The target in ball scene is to detect a blue colored toy ball using
blob detection and remove it from the scene. Again, the exact ob-
ject detection method could be found in object detection section.
Results can be seen in Figure 12.

4.3 Performance
System performance related data has been given in Table 2 for all
major processing steps of our system. The necessary core opera-
tions for system operation are the pose estimation and scene recon-
struction. These steps plus simple compositing can easily run in real
time – the frame rate is limited only by camera speeds. Therefore
we can achieve diminished reality in real time.

Table 2: System operations brakedown with computation time met-
rics

Operation avg. min. max.
Pose est. and object det. 8.2 ms 8.1 ms 15.7 ms
Scene reconstruction 12.8 ms 6.6 ms 23.6 ms
Simple compositing 1.1 ms 1.1 ms 1.2 ms
Color correction 13256.1 ms 12517.3 ms 14038.3 ms
Guessing missing content 1871.5 ms 540.9 ms 3128.7 ms

58

However, if we want to add color correction step and guess miss-
ing image content then the computational cost is too high for real
time execution. These steps are expensive partly due to the algorith-
mic complexity, but also due to the poor performance of third party
implementation of seamless cloning and image inpainting methods.

5 CONCLUSION

In this paper we demonstated a novel diminished reality system.
Our approach allows movement of scene background, occluding
objects and all cameras – the system can handle fully dynamic
scenes. Additonally, we take care of color differences across cam-
eras to get visually pleasing results and repair image areas where
RGB-D camera has failed to capture scene correctly.

ACKNOWLEDGEMENTS

This work has been supported in part by JSPS Grant-in-Aid for
Scientific Research(S) 24220004, and JST CREST “Intelligent In-
formation Processing Systems Creating Co-Experience Knowledge
and Wisdom with Human-Machine Harmonious Collaboration”.

REFERENCES

[1] A. Enomoto and H. Saito. Diminished reality using multiple handheld
cameras. In Proc. ACCV, volume 7, pages 130–135, 2007.

[2] S. Garrido-Jurado, R. Muoz-Salinas, F. Madrid-Cuevas, and M. Marn-
Jimnez. Automatic generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recognition, 47(6):2280 – 2292,
2014.

[3] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Reliable
surface reconstruction from multiple range images. In Computer Vi-
sionECCV’96, pages 117–126. Springer, 1996.

[4] T. Honda and H. Saito. Realtime diminished reality based on 3d mea-
surement of environment using an rgbd camera. Transactions of the
Virtual Reality Society of Japan, 19(2):105–116, 2014.

[5] S. Jarusirisawad, T. Hosokawa, and H. Saito. Diminished reality using
plane-sweep algorithm with weakly-calibrated cameras. Progress in
Informatics, 7:11–20, 2010.

[6] S. Jarusirisawad and H. Saito. Diminished reality via multiple hand-
held cameras. In Distributed Smart Cameras, 2007. ICDSC’07. First
ACM/IEEE International Conference on, pages 251–258. IEEE, 2007.

[7] S. Meerits and H. Saito. Visualization of dynamic hidden areas by
real-time 3d structure acquistion using rgb-d camera. In 3D Systems
and Applications Conference, Aug. 2015. (accepted for poster presen-
tation).

[8] S. Mori, R. Ichikari, F. Shibata, A. Kimura, and H. Tamura. Frame-
work and technical issues of diminished reality: A survey of technolo-
gies that can visually diminish the objects in the real world by super-
imposing, replacing, and seeing-through. Transactions of the Virtual
Reality Society of Japan, 16(2):239–250, 2011.

[9] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM
Transactions on Graphics (TOG), volume 22, pages 313–318. ACM,
2003.

[10] K. Sugimoto, H. Fujii, A. Yamashita, and H. Asama. Half-diminished
reality image using three rgb-d sensors for remote control robots. In
Safety, Security, and Rescue Robotics (SSRR), 2014 IEEE Interna-
tional Symposium on, pages 1–6. IEEE, 2014.

[11] A. Telea. An image inpainting technique based on the fast marching
method. Journal of graphics tools, 9(1):23–34, 2004.

[12] S. Zokai, J. Esteve, Y. Genc, and N. Navab. Multiview paraperspective
projection model for diminished reality. In Mixed and Augmented
Reality, 2003. Proceedings. The Second IEEE and ACM International
Symposium on, pages 217–226. IEEE, 2003.

(a) Diminished result (b) Original view

Figure 11: Video outtakes from calendar scene experiment.

(a) Diminished result (b) Original view

Figure 12: Video outtakes from ball scene experiment.

59

