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Abstract: In this paper, we propose a system for AR visualization ofrita distribution on the environment. Our
system is based on color 3D model and thermal 3D model of tigettacene generated by KinectFusion
using a thermal camera coupled with an RGB-D camera. Inimdfthase, Viewpoint Generative Learning
(VGL) is applied to the colored 3D model for collecting itaiske keypoints descriptors. Those descriptors
are utilized in camera pose initialization at the start ofioe phase. After that, our proposed camera tracking
which combines frame-to-frame camera tracking with VGLaubscking is performed for accurate estimation
of the camera pose. From estimated camera pose, the thelbmab@el is finally superimposed to current
mobile camera view. As a result, we can observe the wide hesmtl map from any viewpoint. Our systemis
applied for a temperature change visualization systemavittermal camera coupled with an RGB-D camera
and it is also enables the smartphone to interactively ajsgiiermal distribution of a given scene.

1 INTRODUCTION monitor large machines and areas. Since the cost of
such a device is also high, it makes it hard to use sev-
Thermal imaging is utilized for various purposes such €ral cameras to cover a large surface. Also, the cali-
as recording energy related issues of power equipmentoration of these devices is difficult due to the low res-
and observing body temperature of animals. Recently, olution images obtained from single camera.
a lot of work has been done to combine state-of-the-  In this paper, we propose a system for visualizing
art computer vision techniques with the thermalimag- wide area temperature map from arbitrary viewpoints.
ing. For example, (Szab0 et al., 2013) propose a The goal of our paper is AR visualization of a ther-
new augmented reality(AR) system of the patient'sin- mal 3D model with ordinary hand-held cameras in
frared tissue temperature maps for directly visualizing order to monitor the spatial temperature distribution
myocardial ischemia during cardiac surgery. (Kandil of the target scene. Our approach is based on precom-
etal., 2014) present a method for automatically gener- puted RGB 3D model and thermal 3D model of the
ating 3D spatio-thermal models, and enables ownerstarget scene achieved with an RGB-D camera coupled
and facility managers to quickly get the actual energy with the thermal camera shown in Figure 1. These 3D
performance data for their existing buildings by lever- models are generated using KinectFusion (Izadi et al.,
aging recentimage-based 3D modeling approaches a®011). The colored 3D model is used with the View-
well as thermal cameras. point Generative Learning (VGL) (Thachasongtham
Recently, smartphone attachable thermal imaging et al., 2013) algorithm to detect feature points robust
devices have started to appear. Since the cost ofto viewpoint changes and to generate a database with
these devices is considerably less than thermal cam-corresponding 3D positions and descriptors of these
eras originally built for military or medical purposes, features. We then estimate the pose of the camera by
thermal imaging is starting to be more widely used in finding keypoint correspondences between the current
consumer applications(Yanai, 2014). view and the database. We also combine the frame-
However, the resolution and the field of view of to-frame tracking with the VGL based tracking for
the thermal cameras is limited and it is difficult to accurately estimating the camera pose. By knowing
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the pose of the camera, we are then able to performapproach, we also use the KinectFusion for recon-
AR visualization of thermal 3D model from any view-  structing 3D thermal model. The major advantages
point with a hand-held camera. of such approach is its ease of use in confined spaces
As a result, our system has two applications. The and its relatively low price when compared with 3D
first one is temperature change visualization system LiDAR and robotics platform.
using an RGB-D camera and a thermal camera. The The problem of 3D pose estimation of rigid ob-
other is interactive AR visualization of thermal 3D jects has been studied for several decades because es-
model on smartphone display. The user can revealtimating the pose of a known object is a significant
the 3D thermal model by touching relevant image re- issue in Augmented Reality. (Saito et al., 2014) pro-
gions on the smartphone. The paper is structured aspose on-line diminished reality system using View-
point Generative Learning (VGL) based camera pose
estimation. The VGL generates a database of feature
descriptors from the 3D model to make the pose es-
timation robust to viewpoint changes. Therefore, we
apply the VGL for tracking the mobile cameras be-
cause the purpose of our AR system is to enable the
observer to move hand-held camera arbitrarily and to
visualize the thermal map in a given scene.

Figure 1: Our capture system is composed of the Microsoft
KINECT and Optris P1160 thermal camera. 3 PROPOSED METHOD

) ] . The overview of our system is shown in Figure 2. As
follows. The related works are discussed in Section j; can pe seen, our system pipeline consists of an off-

2. After describing the detail of our system in Sec- |ine phase and an on-line phase. In the pre-process
tion 3, Section 4 will show the two applications of  gage of this system, we estimate the intrinsic parame-
our method and discuss the accuracy and the runtime;eo s of the RGB-D camera and the thermal camera by

ofourcamera tracking. We fina}lly con_clude the paper using an ordinary circle grid pattern (Zhang, 2000).
and describe our future works in Section 5. We also need to calibrate the relative pose of these
distinct devices. For this reason we use our own cal-
ibration board that makes easier to detect the circle

2 RELATED WORKS grid pattern with thermal camera. After the prepro-
cessing, we generate two 3D models using Kinect Fu-

t. sion (Izadi et al., 2011) - one with the RGB infor-

The 3D representation of heat distribution has a ; ; .
tracted the interest of researchers because of the deMation another with the corresponding temperature

velopment of 3D modeling techniques, depth cameras distribution at the capturing time. The RGB colored
and thermal imaging (Borrmann et al., 2012), (De- 3D model is the source of stable keypoints database

misse et al., 2013). These systems reconstruct a therStored by Viewpoint Generative Learning in off-line
mal 3D model and exploit it for acquiring not only ac- Phase and the thermal 3D model will be used for aug-

curate and wide scope thermal data but also geographMmented reality in on-line phase. The stable keypoint
ical information of a building so that the observer can database will be available for estimating the camera
run simulations of thermal distribution and can eas- POS€ in on-line phase. o

ily find the areas with abnormal temperatures. They During the on-line phase, we first initialize the
involve a mobile wheeled robot with a laser scanner c@Mera pose reference to the RGB 3D model. The

and a thermal camera for simultaneous acquisition of INitial camera pose is calculated by the correspon-
3D laser scan data and thermal images. However, thisd€nces between the stable keypoints in VGL database

robot is not capable of exploring bumpy ground or and h k(_eypoints .extracted from the first_ frame. Af-
confined spaces. ter this initialization, the camera pose is computed
Our work is inspired from a mobile 3D thermal using frame-to-frame tracking in combination with

system introduced in (Vidas et al., 2013) which used YGL based camera pose estimation. We can then
only two cameras - an RGB-D camera and a ther- align the thermal 3D model with the current viewpoint

mal camera. This system uses the KinectFusion al- and superimpose the thermal information on the cur-

gorithm (lzadi et al., 2011) for generating dense and rentimage.
high-fidelity 3D thermal model. Inspired from their
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@ (b) (©
Figure 3: (a)lower plate (b)upper plate (c) captured imagmfthermal camera.

Offlne th_e thermal image. However, th_e depth map captured
: with RGB-D camera is contaminated with structural
Camera Pose noise especially in black circle areas. Therefore we
| Camera Calibration | Initialization compute the planar surface equation from acquired

3D points on circle grid and project them onto the es-
timated plane for accurately estimating their 3D posi-

I Colored 3D Model Generation I

A tion. We then apply the efficient Perspective-n-Point
£ algorithm (Lepetit et al., 2009) to estimate the extrin-
I Thermal Map Generation | sic parameters.
Viewpoint Generative AR Visualization of 3.2 Colored 3D Model Generation
Learning Thermal 3D Model
: _ The KinetFusion algorithm (Izadi et al., 2011) is used
Figure 2: System Overview. to generate the uncolored 3D model of target scene.
While KinectFusion is running, we save not only the
3.1 CameraCalibration camera poses of RGB-D camera but also the color im-

age, depth image and thermal image for each frame.

Using the pose estimation of each frame, we then gen-

erate colored 3D model by projecting RGB data onto
€the uncolored 3D model.

In order simplify the pose estimation of the thermal
camera in reference to the RGB-D camera, we us
a special calibration board that is visible from both
color and thermal cameras. This calibration board :
is constructed of two plastic plates stacked together. 3.3 Thermal 3D Model Generation
Both details were made with 3D printer. The lower
plate is made of a planar surface covered with cir-
cular bumps corresponding to the black parts of the
circle grid calibration pattern. The upper plate is de-
signed to plug on top of the first one, it is thus made
of a planar surface with holes where the black pattern
of lower calibration board should appear. Combin-
ing both plates creates a flat calibration pattern like
the ones commonly used. Just before calibration, we
heat the lower plate while the upper one remains at
ambient temperature so that the circle grid pattern in
thermal image can be detected as shown in Figure 3.
The intrinsic parameters of RGB-D camera and
thermal camera are calculated using Zhang'’s method
(Zhang, 2000). In order to estimate the pose of the
thermal camera in reference to the RGB-D camera,
we obtain a set of 3D-2D correspondences by de-
tecting both 3D positions of black circles captured in
RGB-D camera and its corresponding 2D locations in

Since the RGB-D camera and the thermal camera are
located at slightly separate positions, we need to ap-
ply rigid transformation calculated in Section 3.1 to
thermal image and deal with occlusions for correctly
mapping the thermal data. In order to remove oc-
cluded thermal data, we first project the 3D points
corresponding to the pixels of the depth image onto
the thermal image and generate the depth image from
the thermal camera viewpoint. Then, we remove oc-
cluded depth values by replacing the neighboring ab-
solutely difference values with the average value of
this area. Finally, for each pixel of the RGB-D image,
corresponding thermal values can be found while re-
moving occluded area. The process of thermal data
mapping is illustrated in Figure 4.
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Estimated Camera Pose

Uncolored 3D Model

Thermal Image Ogelusions Removal Figure 5: Viewpoint Generative Leaning.
Figure 4: Thermal data mapping from estimated camera ey .
pose. 3.5 CameraPose I nitialization
3.4 Viewpoint Generative Learning After learning is finished, we first detect SIFT key-

points and extract feature descriptors from the ini-
Conventional local features such as SIFT and SURF tial frame. For each detected keypoint, we search
are robust to scale and rotation changes but sensi-the two most similar descriptors by evaluating Eu-
tive to |arge perspective Changes_ In order to solve clidean distance of their hlgh dimensional value us-
this problem, (Yoshida et al., 2013) proposed a sta- ing the Fast Library for Approximate Nearest Neigh-
ble keypoint matching method which is robust even bors (FLANN) algorithm. Then, we evaluate the ra-
under Strong perspective Changes by using Viewpoint tio of the distance of closest descriptor to that of the
Generative Learning (VGL). However, this method is second closest descriptor, and if the ratio is under
only focusing on planar surfaces and can not deal with @ given threshold we validate the established corre-
3D objects. Therefore, (Thachasongtham et al., 2013)spondence. As a result, we can identify the 3D/3D
modify this algorithm so that they can estimate the correspondences between the stable keypoints on the
pose of a 3D obiect from stable keypoints stored in model in 3D and the current RGB-D camera view. Fi-
VGL database. nally, the pose of RGB-D camera is deduced with a

During on-line phase, we need a robust camera Singular value decomposition associated to RANSAC
tracking algorithm against strong viewpoint changes for excluding wrong correspondences. The accuracy
because the user of our system is observing the tar-of initialization is evaluated by the ratio between the
get scene with a hand-held camera. Therefore, wenumber of the 3D/3D correspondences and that of ex-
apply the Viewpoint Generative Learning to the RGB  tracted keypoints from current image . If the ratio is
3D model generated in Section 3.2. In the first step, over the threshold, we assume the initialization is suc-
we generate patterns of the model from various view- cessfully performed and start frame-to-frame tracking
points using the OpenGL rendering process as shownfrom the next frame.
in Figure 5. For each generated viewpoint, we col-
lect not only the patterns and extracted SIFT features
but also the depth and viewpoint of those rendered F=Si\"
images. Then, all detected keypoints are projected ==
from pixel coordinate system to 3D coordinate sys- ;
tem and conserve only the ones that can be detecteds
over multiple views. We define these features with
high repeatability as stable keypoints and collect the
corresponding descriptors.

After that, k-means++ (Arthur and Vassilvitskii,
2007) is applied to cluster the set of collected descrip-
tors of each stable keypoint and store the barycenter3.6 Camera Tracking
descriptors and the 3D positions of each stable key-

pointin the VGL database. In the frame-to-frame tracking, we continuously ex-
tract descriptors from RGB-D frames. Under the as-
sumption that the current camera position is close to
the previous one, we search for correspondences with

(a) current image (b) camera pose
Figure 6: Camera pose estimation.
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the features from previous frame in their local neigh-

Microsoft Kinect(640x 480 pixels resolution, 30fps)

borhood . The matching pairs are evaluated based onand Optris PI160 with a resolution of 160120 pix-
Euclidean distance, and the closest pair is selected a®ls and a frame rate at fps. Vertical and horizontal

matching pair. If the ratio of matched pairs to key-
points extracted in previous frame is over 10 %, the

values of the field of view of the P1160 are 2and
28, respectively.

current camera pose is estimated by singular value de-

composition and RANSAC (as explained in previous
Section), otherwise we apply the VGL based tracking
to re-initialize the camera pose.

However, sometimes the frame-to-frame tracking
fails even in the case where we can find keypoint cor-
respondences correctly. In order to solve this prob-

lem, we evaluate the Euclidean distance of camera po-
sition and the rotation of camera poses between cur-

rent frame and previous frame. If the distance is over
5cm or the rotation is over 10 degrees, we consider
the frame-to-frame tracking as wrong estimation and
apply the motion model calculated from previous 3

frames for predicting current camera pose. As a re-
sult, our camera pose tracking is stable as shown in
Figure 6.

3.7 AR Visualization of Thermal Moded

During the on-line processing, we superimpose pre-
computed thermal 3D model on current view from es-
timated camera pose as shown in Figure 7. The ren
dering process is performed in GPU with CUDA and
OpenGL so that the observer can see the temperatur
distribution in real-time. As a result, we can visualize

the thermal distribution of the scene from any view-

point.

(a) Off-line generated thermal (b) AR visualization of thermal
3D model model

Figure 7: Examples showing AR visualization.

4 EXPERIMENTS

In this section, we introduce two applications for ther-
mal observation system using AR visualization of
thermal 3D model. The first one is AR visualiza-

tion for detecting the temperature distribution change
with an RGB-D camera coupled with a thermal cam-
era. The second one is to interactively visualize the
thermal 3D model on smartphone display. For gener-
ating thermal 3D model and RGB 3D model, we used
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4.1 AR Visualization of Temperature
Changes Distribution

We demonstrate the use of our AR system by visu-
alizing chansing temperatures of electrical equipment
within a scene in real-time. This system can visualize
more widespread thermal distribution than our previ-
ous work (Nakagawa et al., 2014).

In on-line phase, the user moves same camera set
as in the off-line phase and to record current thermal
distribution. During camera tracking, this application
continuously projects the thermal data onto the off-
line generated uncolored model from the estimated
viewpoint as shown in Figure 8. Then, we simulta-
neously superimpose both off-line generated thermal
3D model and on-line rendered thermal map on cur-
rent view as illustrated in Figure 9.

Additionally, this application enables us to visu-
alize the difference of the current thermal state in re-
spect to the recorded thermal 3D model from the same
viewpoint. Figure 9 shows the results by blending the
augmented thermal map with currentimage RGB data

§nt regions of considerable temperature change.

4.2 Quantitative Evaluation
4.2.1 Runtime Evaluation

The experiment was carried out on a PC with 16GB
of RAM, an Intel Core i7-4800MQ CPU and a Nvidia
GeForce GTX 780M graphics card. Table 1 shows
the breakdown of the processing times. We believe
that this system can be considered to be running in
real-time frame rates. Also, we compare the runtime
for camera pose estimation with VGL database based
tracking proposed by (Thachasongtham et al., 2013).
Their method takes 0.12 seconds for camera pose es-
timation since requesting the database for finding cor-
responds keypoints is slower than the local area key-
point searching in frame-to-frame tracking.

Table 1: Breakdown of Processing Time.

Process runtime (sec)
Total 0.46
Camera pose estimation 0.10
On-line thermal mapping 0.12
Visualization 0.24
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CEEAL

Figure 8: The process of on-line thermal 3D map rendering.

Online Capturing Data Capture Maps from Estimated Pose
(left/right : Color/Thermal Image) (left/right : Offline/Online Thermal Map) Temperature Change Visualization

8 - . *‘

Camera Tracking Offline Thermal Map Online Thermal Map

Figure 9: AR temperature change visualization system.

4.2.2 Accuracy Evaluation the camera positions of two consecutive frames. Even

when the cameras were moved slowly, the VGL based
In order to evaluate the accuracy of camera pose esti-Facking sometimes fails to track the camera (as high-
mation, we calculate the RMSE score of re-projection lighted in green circles on the graph). Our method is
error from estimated camera pose and compare it with Much more stable, since we combine frame-to-frame
that of VGL based tracking in 10 frames (Figure 10). tracking, VGL baseq |n|t|_aI|zat|on and motion model
As table 10 shows, our proposed method outperforms for camera pose estimation.

' 4.3 AR Visualization of Thermal 3D

. \/\/—/\ Model on Smartphone

This system consists of a smartphone and a server PC

RMSE (mm)

g and they are connected via wireless network in order

¢ ——Proposed Method to transfer the video data between those devices. Fig-
! —— VGL based Tracking ure 13 shows communication flow between a smart-

; phone and a server. The server has two threads -
1 2 3 4 s 6 71 8 9 10 one for network operations and one for AR process-
Frame ing. The network thread continuously waits for new

Figure 10: RMSE of re-projection error (mm). frames from the smartphone and buffers them to be

used in the AR thread. As the AR thread is rather

the VGL based tracking in terms of re-projection er- slow in processing frames, it always retrieves the lat-

ror. Since our system applies singular value decom- est frame in the buffer and drops older frames. The

position to the the corredponding 3D-3D keypoints processed frames with AR overlay are buffered in the
for camera pose estimation, it is more accurate thannetwork thread to be sent back to smartphone. In the

the VGL based camera pose estimation deduced fromserver PC, RGB 3D model and thermal 3D model of
2D-3D correspondences. a target scene are generated and its robust keypoint
Figure 11 shows the Euclidean distances betweenfeatures are stored in VGL database. In the on-line

485



VISAPP 2015 - International Conference on Computer Vision Theory and Applications

~

g : e VGL based Tracking
E’ / \ Proposed Method
S s

: \ )

'_‘é) 4

g N L2

s b Q

el

=)

00\ R | R :

g [\W v 5

o

0 20 40 60 80 100 120 140 160
Frame
Figure 11: The Euclidean distances between the cameragussdf two consecutive frames.
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Figure 13: Connection flow between smartphone and
server.

h

Figure 12: The observer can select the thermal visualizatio
area.

phase, the observer can capture the scene with thd
smartphone and select target area by touching displa: Touched Area AR visualization
of the device (Figure 12). The correspondences be-
tween the keypoints on the current image in 2D and
stable keypoints of the model in 3D are searched in
the same way as the temperature change visualiza
tion system described in Section 4.1. Since smart-
phones can not obtain depth image of current frame,
the Perspective-n-Point method (Lepetit et al., 2009)
with RANSAC instead of singular value decomposi- = e — = =
tion is applied to the 2D-3D correspondences for de- Touched Area AR visualization
ducing the camera pose. We can finally superimpose (b) The target area is increasing
the thermal 3D object on the target area of smartphoneg;g re 14: AR visualization of thermal 3D model in smart-
display and visualize the temperature distribution of phone.
the area as shown in Figure 14.

The experimental platform was implemented on
smartphone with 1.0GHz MSM8255 processor and
512MB of RAM and a laptop with 2.5GHz Intel Core 5 CONCLUSIONS& FUTURE
i7-2860QM processor GeForce GTX 560M graphics WORK

card and 16GB RAM. The smartphone camera image . . o
size is 320¢240 pixels. In this paper, two systems for visualizing temperature

distribution of a given scene using an RGB-D cam-
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era and a thermal camera are presented. The first one

is temperature change visualization system compar-
ing on-line and off-line thermal 3D models from any
viewpoint. Another is the interactive AR visualization
of thermal 3D model on smartphone display. Both ap-
plications use AR visualization of off-line generated
thermal 3D model. In the off-line phase, the uncol-
ored 3D model of a given scene is reconstructed and
the poses of the camera with the corresponding color
and thermal images are saved by using KinectFusion.
After mapping color and thermal images on separate
uncolored models, Viewpoint Generative Leaning is
applied to the RGB 3D model in order to store the
stable keypoints and their clustered descriptors in the
VGL database. During the on-line phase, hand-held

camera poses are estimated by combining frame-to-

frame tracking with the camera pose estimation us-
ing correspondences between keypoint descriptors in
the current image and in the VGL database. Finally,
the thermal 3D model is superimposed on the current
hand-held camera view.

Recently, some devices for converting the smart-

phone camera into thermal camera have appeared in

the market such as Therm-App for Android and FLIR
ONE for iPhone. We plan to use these devices for
getting thermal information from smartphones so that
our AR visualization system can detect temperature
distribution changes on the fly.
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