
Camera Pose Estimation Based on Keypoints
Matching with Pre-Captured Set of Real Images

Kei Obata
Graduate School of Science and Technology

Keio University

Yokohama, Japan

Email: obata@hvrl.ics.keio.ac.jp

Hideo Saito
Keio University

Yokohama, Japan

Email: saito@hvrl.ics.keio.ac.jp

Abstract—In this paper, we propose a method for camera pose
estimation based on keypoints matching with images capturing
the target scene from multiple viewpoints. For estimating camera
pose from an image, 3D structure of the target scene is needed.
Then a set of correspondences between 2D position in the image
and 3D positions in the target scene provides the camera pose by
solving Perspective-n-Point problem. Image keypoints are used
as these positions, but finding corresponding 3D positions of the
3D structure is not easy problem even if a 3D textured model
of the target scene is given. This is because the appearance of
each 3D position is not always the same. In order to solve this
problem, we adopt real images as a source of keypoints contained
in the database. Real image represents accurate appearance for
each 3D position, so keypoint matching with the input images
can be more accurate. We constructed database based on the
keypoint using the local image feature derived from real images
and evaluated the accuracy of camera pose estimation. The result
showed that the database constructed by our method is effective
to accurate camera tracking.

I. INTRODUCTION

Estimation of camera poses from images captured by the

camera is one of the essential issue in computer vision. A

typical approach for the camera pose estimation is based on the

data of the real scene such as the shape and texture obtained

in advance, then comparing the data with the captured images

for computing the camera pose. The correspondence of the

3D geometry of the target scene and 2D image enable us to

compute the camera pose by using Perspective-n-Point (PnP)

problem. To find the points for the matching in the image,

various local invariant features have been proposed. However,

they are not robust against affine transformations and change

of appearance of the object caused by change of the viewpoint

of the camera, therefore they cannot be applied to 3D object

tracking including dynamic changes of camera pose.

Yoshida et al.[1] proposed the keypoint which contains the

multiple image features derived from the projection images

captured in various viewpoints. The keypoint contains the

image features described in the multiple viewpoints at its

position, which indicates that it is detected robustly as a

keypoint from various viewpoints. They called such keypoint

“stable keypoint”, and constructed the database which contains

the stable keypoints for camera pose estimation with respect

to a flat textured surface. Tachasongtham et al.[2] applied

them to the 3D object tracking. For obtaining the images

of the 3D model, they use the viewpoint generative learning

(VGL) method. In VGL method, a 3D textured model of the

target object is used as an input, and the projected images

from various viewpoint are synthesized by a regular manner

in OpenGL[3].

However, using the synthesized images from the 3D textured

model as an input of the database includes some problems.

When a 3D model is used, we cannot render the same

as appearance as the real scene. Even a synthesized image

captured from a camera pose is not completely coincident with

a real image captured at the same viewpoint as the synthesized

image. There are many reasons of the difference. Even if we

use one of the state-of-the-art 3D modeling technologies such

as Structure from Motion (SfM) methods that have recently

been studied by a lot of researchers[4][5][6] to create the 3D

model, the shape of the 3D model isn’t always accurate. In

addition, it is necessary to set the surface property of each

portion of the model since the material of the object influences

the appearance of its surface. The setting of the property of the

light source is also needed to reproduce the real appearance.

In order to solve these problems, we propose a method for

camera pose estimation by matching with real images used as

input of the creation of the 3D model. When the 3D textured

model is reconstructed using them by SfM, the camera pose of

each real image can also be computed, so that we can obtain

each depth image captured in the pose in which the real image

is taken. Using the sets of the real image and the depth image,

we can obtain the 3D position and the image feature of each

keypoint based on the real appearance. These images are the

input of the SfM, therefore they capture the object in various

viewpoints as the generated images do in VGL method.

We construct the keypoint database based on the real image

sequence which is the input of SfM. Using the database, we

estimated the camera pose. Our experimental result show that

the database constructed by our method indicates more stable

result than the one using the database based on the projected

images in estimating camera poses.

II. RELATED WORKS

In this section, we introduce related works of camera pose

estimation and relevant keypoint matching methods.

FCV2016, the 22nd Korea-Japan Joint Workshop on Frontiers of Computer Vision

-76-



SIFT[7] and SURF[8] are widely used as keypoint detectors

and descriptors. They are robust against the change of scale,

rotation and translation. However, they are weak against the

dynamic affine transformation.

The keypoint matching method proposed by Lepetit et al.

[9] is effective to estimate camera pose against planar surface.

In learning phase, affine transformation is applied randomly

to the target image, and keypoint detection is executed in

generated images. By using image patches around the detected

keypoints, randomized trees are made. In keypoint matching,

point-to-point matching is done by training the patch around

the keypoint detected in input image in the trees. In this

method, the random affine transformation could lead to cause

unfair data for matching, and the amount of affine-transformed

images is large.

Yoshida et al.[1] also proposed a method of camera pose

estimation to planar surface robust against viewpoint change.

This method uses the viewpoint generative learning (VGL).

In learning phase, the images from various viewpoints are

generated virtually. After executing keypoint detection in each

image, the keypoints detected in many images are used for

camera pose estimation because of their robustness against

viewpoint change. For this reason, these keypoint are called

“Stable Keypoint”. For coordinating the image features in the

database, k-means clustering is done in each stable keypoint.

Tachasongtham et al.[2] applied Yoshida et al.’s method to 3D

object. By treating stable keypoint in 3D space, camera pose

estimation to 3D object is enabled. In [1] and [2], it is assumed

that the target is covered with Lambertian surface. Therefore,

both of them cannot be applied to objects whose appearance

change depending on the viewpoint.

Shinozuka et al.[10] proposed a method in which all image

features in each stable keypoint are saved into the database

without clustering in order to deal with the change of ap-

pearance. However, the input of this method is still the set

of synthesized images from textured 3D models, therefore

the image features of keypoints aren’t matched with real

appearances.

In our proposed method, we don’t use synthesized images

from textured 3D model, but use real images captured for

reconstructing the 3D model of the scene, so that the image

features of each stable keypoints are computed from the

same same appearance as the real images taken at various

viewpoints.

III. DATABASE CONSTRUCTION

In this section, we describe the algorithm of constructing

the database for the camera pose estimation. The algorithm is

shown in Fig.1. First of all, we make a 3D model of the target

scene using the real images by SfM. By looking the 3D model

in the equal camera pose in which the real image is captured,

we can obtain the 3D position of the 2D keypoints in each

real image. The 2D keypoints which are detected repeatedly

from many viewpoints are summarized in the 3D keypoints,

then 3D keypoints are stored into the database.

Fig. 1. Overview of Database Construction

A. Obtaining the 3D Positions of 2D Keypoints

A real image sequence of a target scene is captured from

various viewpoints. Then a 3D model can be reconstructed

by the captured images using SfM. In our method, we

employ Autodesk 123D Catch[12] as a SfM for 3D model

reconstruction. When the 3D model is obtained, camera pose

of every image in the input image sequence can also be

estimated by Autodesk 123D Catch. They are represented in

the world coordinate system which is set in the reconstruction

process. Fig.2 shows the example images of a input real

image sequence for reconstructing the 3D model shown in

Fig.3(a) with the estimated camera poses shown in Fig.3(b).

Fig.4 shows the depth images of the 3D model synthesized at

the same camera pose as the part of input images shown in

Fig.2. The depth image provides 3D positions of 2D keypoints

detected in the input real image at the same viewpoint as the

depth image. In this way, we can estimate 3D positions of all

keypoints detected in all input images.

B. Making 3D Keypoints

By regarding keypoints detected in the different images with

similar 3D positions, we can collect 2D keypoints in different

images for the same 3D position in the scene.

We focus attention on the viewpoint in which each input

image is taken in order, and set the 2D keypoint to the 3D

coordinate system. We compute the all 3D distances between

the 2D keypoint focused on (kp2Dtmp) and kp3Di in the

set of 3D keypoint in existence Kp3D = {kp3Di | 0 ≤
i < n}. If the Euclidean distance d between kp2Dtmp and

kp3Di is closer than the set value D, it is assumed that they

have the same 3D position. In this case, kp2Dtmp becomes

a part of what constitutes kp3Di. If any kp3Di don’t exist

around kp2Dtmp, it is assumed that kp2Dtmp is the new 3D

keypoint and defined as kp3Dn. This process is applied to all

2D keypoints of each viewpoint images in sequence. In this

process, the 3D keypoints which contains image features of

each viewpoint are accumulated temporarily.

C. Selecting 3D Keypoints

If kp3Di has many image features, it means that kp3Di is

detected as 2D keypoint from many viewpoints, and it can be

-77-



Fig. 2. Part of Input Real Images

(a) Reconstructed 3D Model

(Modified Partly) (b) Estimated Camera Poses

Fig. 3. Output of Autodesk 123D Catch[12]

Fig. 4. Part of Depth Images

said that such point is effective to use for keypoint matching

in camera pose estimation. Such 3D keypoint is defined as

“Stable Keypoint” in [2]. According to this definition, we pick

up such 3D keypoints from Kp3D as stable keypoints.

The 3D keypoints are picked up as stable keypoint in

descending order of the number of the image features they

have. We set two thresholds, Skptmax and Featuremin, in

advance for determining the size of the database. Skptmax is

defined as the maximum number of stable keypoints stored

into the database. The picking up process continues until

the number of picked up 3D keypoints reaches Skptmax.

Featuremin is defined as the minimum number of the image

features which are held in each 3D keypoint. When the number

of image features which the picked up 3D keypoint has is

lower than Featuremin, this process ends even if the number

of the stable keypoint is lower than Skptmax.

For the sake of preventing following problems, these thresh-

olds are set. First, too many stable keypoint causes the increase

of computation, and it slows down the keypoint matching

process in camera pose estimation phase. Second, the 3D point

which has few image features means that it is not detected

from many viewpoint. If such 3D keypoint is included in the

database, it is not only the processing load, but also the cause

of the error of keypoint matching.

D. Storing Keypoints into Database

After all stable keypoints are defined, each stable keypoint

has multiple image features (e.g. SURF features) which corre-

sponding 2D keypoints have as shown in Fig.5. The number of

image features contained in each stable keypoint is too much

to use for matching with image features of 2D keypoints in

captured images for camera pose estimation phase. Therefore,

the clustering algorithm is applied to reduce the number of

image features of each stable keypoint. Because we use SURF

as the image feature descriptor, each stable keypoint has its

image features in the space of 64 dimensions. Each group

of the image features of the stable keypoint is clustered by

k-means clustering as shown in Fig.5 (in Fig.5, k = 3).

By executing this process, each stable keypoint has k image

features (the number of the centroids of clusters), which

decreases the size of the data and reduces the cost of keypoint

matching in camera pose estimation phase. In the end, the

-78-



database has the relations of image features and 3D positions

as shown in the lower side of Fig.5.

Fig. 5. Image Feature Clustering by k-means

IV. CAMERA POSE ESTIMATION

The algorithm of camera pose estimation is shown in Fig.6.

In camera pose estimation phase, we first get the image

captured by the camera and detect the 2D keypoint from it.

Then, keypoint matching between the 2D keypoints in the

image and the 3D keypoints in the database is executed. For

each 2D keypoint in the image, we search the 3D keypoints in

the database whose Euclidean distances from the 2D keypoint

in their image feature space are nearest(dist1) and second

nearest(dist2). If these distances satisfy eq.(1), we use this

matching for computing the camera pose.

dist1
dist2

< τ (1)

Finally, we estimate the camera pose with the sets of 2D-

3D keypoint matching pairs by solving PnP problem by using

RANSAC algorithm[11].

Fig. 6. Overview of Camera Pose Estimation

V. EXPERIMENTAL RESULT

We conducted camera pose estimation experiments using

our method and Tachasongtham et al.’s VGL method[2]. The

number of the input images of our method is 54, and the

number of the generated images in VGL is 52. The range of

generated pose of camera in VGL is adjusted to resemble the

one in our method. The number of frames in which camera

poses are computed is 95 in estimation phase. Fig.7 is the part

of input frames.

The common parameters of the two methods are below :

We chose SURF[8] for keypoint detector and descriptor, and

defined the value D in III-B as 2.0mm. The number of

keypoints in the database is 1000. The number of image

features in each keypoint, in other words, the value k in III-D

is 10. Then, both database have 1000×10 image features. In

camera pose estimation, we set τ = 0.7.

The examples of the results are shown in Fig.8 and Fig.9. In

this experiment, we rendered the 3D textured model created in

a database construction phase based on the estimated camera

poses. If the camera pose is estimated correctly, the rendered

model seems to be the same appearance as the input images

in Fig.7. The images presented in Fig.8 demonstrate that our

method worked well especially when the image was mainly

filled with specular object. This was due to the images in

which keypoints were detected in a database construction

phase. In VGL method, synthesized images reflect the appear-

ance of the 3D textured model. Textured model doesn’t always

look the same appearance as the real scene’s. In particular,

if the object don’t have Lambertian surfaces (for example,

the cylinder in the right side of the scene), this tendency is

noticeable. In contrast, we used the real images as input of the

database. Real image reflects the appearance of the real scene

faithfully. Therefore, our method can deal with the change

of the appearance coming from the viewpoint change. Fig.10

shows the example of the application to augmented reality

(AR) of our method. We overlaid a penguin image on the

front side of the golden box by projecting 3D position of

the corner points surrounding the front side of the box onto

each image using the estimated camera pose. This example

indicates that our method can be applied to AR in the specular

circumstances.

Fig.11 shows the number of 2D-to-3D inlier matching pairs

of RANSAC algorithm in camera pose estimation phase.

The matching pairs in inlier represents that they are correct

matching. In almost all of the frames, the number of the correct

matching of our method is larger than that of VGL. This fact

indicates using real image sequences as input is effective to

stable camera tracking.

VI. CONCLUSION

This paper proposes a method for the scene tracking. The

keypoint obtained from a real image reflects real appearance,

therefore we construct the database based on the real image

sequence. By using these keypoints, we construct the stable

keypoint database for estimating the camera pose. It has

a robustness against the change of the surface appearance

-79-



Fig. 7. Part of the Input Captured Images

Fig. 8. Part of the Estimation Results Using Proposed Method

Fig. 9. Part of the Estimation Results Using VGL Method

Fig. 10. Application to AR Using Proposed Method

Fig. 11. Inlier matching pairs of both results

caused by the viewpoint. The experimental result shows that

the database constructed by using our method achieves more

accurate result than the one constructed by previous method

based on the projected images of 3D textured model.

ACKNOWLEDGMENT

This work was supported in part by JSPS Grant-in-Aid for

Scientific Research(S) 24220004.

REFERENCES

[1] T. Yoshida, H. Saito, M. Shimizu, and A. Taguchi, “Stable Keypoint
Recognition using Viewpoint Generative Learning’,” in Proc. 8th Inter-
national Conference on Computer Vision Theory and Applications, Feb.
2013, pp. 310-315.

[2] D. Thachasongtham, T. Yoshida, F. de Sorbier and H. Saito, “3D Object
Pose Estimation Using Viewpoint Generative Learning,” Image Analysis,
vol. 7944, pp. 512-521, 2013.

[3] OpenGL, 〈http://www.opengl.org/〉
(2015/12/1)

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, Nov. 2007, pp. 225-234.

[5] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in Proc. 2014 IEEE International Confer-
ence on Robotics and Automation, Jun. 2004, pp. 15-22.

[6] J. Engel, T. Schöps and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” Computer Vision-ECCV 2014, pp. 834-849, 2014.

[7] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[8] H. Bay, T. Tuytelaars and L. V. Gool, “SURF: Speeded Up Robust
Features,” in Proc. 9th Europian Conference on Computer Vision, May.
2006, pp. 404-417.

[9] V. Lepetit and P. Fua, “Keypoint Recognition Using Randomized Trees,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
28, no. 9, pp. 1465-1479, 2006.

[10] Y. Shinozuka, F. de Sorbier and H. Saito “Specular 3D object tracking
by view generative Learning,” in Proc. Irish Machine Vision and Image
Processing Conference, Aug. 2014, pp. 9-14.

[11] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

[12] Autodesk 123D Catch, 〈http://www.123dapp.com/catch〉
(2015/12/1)

-80-




