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ABSTRACT

We propose a novel diminished reality method which is able to (i)
automatically recognize the region to be diminished, (ii) work with
a single RGB-D sensor, and (iii) work without pre-processing to
generate a 3D model of the target scene by utilizing SLAM, seg-
mentation, and recognition framework. Especially, regarding the
recognition of the area to be diminished, our method is able to main-
tain high accuracy no matter how the camera moves by distributing
the viewpoints for each object uniformly and aggregating recog-
nition results from each distributed viewpoint as the same weight.
These advantages are demonstrated on the UW RGB-D Dataset and
Scenes.

Keywords: Diminished Reality, Object Recognition, Convolu-
tional Neural Network, SLAM, Segmentation

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition

1 INTRODUCTION

In contrast to augmented reality (AR) and mixed reality (MR)
which superimpose virtual information on the real scene, dimin-
ished reality (DR) is a research field that visually erases real ob-
jects [15]. The research on DR originates from Mann et al. [14].
Mann et al. proposed a method of overwriting unnecessary objects
with virtual objects to diminish them. On the other hand, in recent
years, DR methods to make scenes without a specific object have
become mainstream. Therefore, there are many challenging issues
related to the goal (e.g., 6 degree of freedom (DoF) camera pose es-
timation in arbitrary scenes, detection of objects to be diminished,
etc.).

Barnum et al. proposed a method [1] that is able to manage dy-
namic hidden areas by using three cameras, one shooting a hidden
background and the other located at the user’s viewpoint, assum-
ing the object to be diminish is several plane to work in real-time.
Yoshida et al. proposed a method [22] to visualize blind spots of
the vehicle using multiple cameras installed in a vehicle. Although
these methods are able to cope with dynamic hidden areas, as they
use a plurality of sensors as inputs, the costs are high and the appli-
cation destination is limited. Therefore, many methods for achiev-
ing DR with one camera have also been proposed. The method pro-
posed by Mori et al. [16] generate a three-dimensional (3D) model
of a target scene to synthesize a hidden background image, estimate
the camera pose with respect to the 3D model, and project the 3D
model to the user’s viewpoint in real-time. To generate a hidden
background image, [23] does not require a 3D model of the target
scene as pre-processing, however, DR is achieved by assuming the
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shape of the hidden area as a plane, so the scenes to be managed are
limited.

The identification of areas to be diminished and their tracking are
also major technical issues in DR. As represented by the method of
Kawai et al. [6], many DR methods prompt the user to border the
region of interest in the initial frame, and track the region using
a tracking method, such as SLAM and feature-based tracking in
subsequent frames. Cosco et al. proposed a method for diminishing
a haptic device so the user does not need to draw the hidden area
[2]. However, since this method requires the preparation of the 3D
model of the hidden object, it cannot manage unknown objects.

To solve the problems of the conventional method described
above, we propose a novel DR method that has the following three
advantages with respect to conventional methods:

• Category-based automatic object selection to be diminished
rather than dragging-based user input,

• Progressive background reconstruction in arbitrary scenes
without pre-learning of the scenes, and

• Working with a single RGB-D sensor as an input.

Hidden background image generation is performed by expand-
ing a part of the SLAM framework by utilizing the 3D model, se-
quentially reconstructed by the SLAM framework, in which the ob-
ject categories are labeled by the segmentation framework. The di-
minished result is generated by integrating the hidden background
image and the input RGB image by specifying the hidden area
based on the final recognition result obtained through the recog-
nition framework.

Especially, to detect and track the area to be diminished accu-
rately, we propose a novel recognition method that has the fol-
lowing advantages by distributing the viewpoints for each object
uniformly and aggregating the recognition results from each dis-
tributed viewpoint as the same weight: 1. working in real-time
while processing SLAM, segmentation, and object recognition, 2.
managing smooth-surfaced objects and a large number of cate-
gories, and 3. maintaining high accuracy regardless of the motion
of the camera.

Our recognition method equally divide the viewpoint of each ob-
ject (see Figure 2, upper right) while maintaining the computational
complexity of O(n2) (i.e. the size of the input image). We call each
divided viewpoint a Viewpoint Class (i.e., each small sphere dis-
tributed around each segmented object in Figure 3). Only when the
object is observed from a new Viewpoint Class where the object is
not yet recognized from, we crop the region of the object from a
current frame to input the cropped images into a trained CNN for
feature extraction. The aim of this procedure is to improve the final
recognition accuracy by avoiding repeating the recognition compu-
tation when the camera stops at a poor view direction. As a sec-
ondary effect, the processing time is reduced by limiting the num-
ber of times to input the region to a CNN. Therefore, there is no
trade-off between accuracy and real-time in this method. Further-
more, by utilizing a CNN as a tool for feature extraction, high scal-
ability is achieved. In our method, any CNN structure that takes
one input image and outputs its category can be used, so that the
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Figure 1: Flow of the proposed method (Depicted in blue: SLAM Part, red: segmentation part, green: recognition part, and yellow: DR part)

range of application of this method is widened to consider various
kinds of datasets for a CNN and trained CNN models are provided
recently [3, 8].

2 METHOD

In this section, we describe our proposed method, which simul-
taneously processes reconstruction, segmentation, object recogni-
tion, and DR. Figure 1 shows a flow diagram of the proposed
method. Our method consists of four parts (depicted in blue:
SLAM, red: segmentation, green: recognition, and yellow: DR).
After an overview of the SLAM and segmentation parts, we de-
scribe in detail the recognition part, which is one of the main con-
tribution of this work. Then, we explain in detail the DR part, which
is the core of this work. The inputs are simply RGB and depth im-
ages obtained from a moving RGB-D sensor, which were processed
individually.

2.1 SLAM Part
This section provides an overview of the SLAM part (see Figure 1,
depicted in blue).

We employ the SLAM system proposed by Keller et al. [7] be-
cause a global model, which is a model reconstructed through the
SLAM framework, consists only of point clouds. Thus, it can man-
age a wider environment compared to voxel-based methods, includ-
ing KinectFusion [5]. Each point sk of a global map S has in-
formation including a 3D position vvvk ∈ R3, a normal nnnk ∈ R3, a
confidence ck ∈ R, and a time stamp tk ∈ N.

The Pre-processing Stage is for smoothing a depth image Dt
at current frame t with a bilateral filter [21] and transforming Dt
into a vertex map Vt(uuu) = KKK−1u̇uuDt(uuu) using the camera intrinsic
parameter KKK, a depth map element uuu = (x,y)T in the image domain
uuu ∈ R2, and its homogeneous coordinate u̇uu. The normal map Nt is
also generated in this stage by using a cross-product calculation to
Vt .

The Camera Pose Estimation Stage is for calculating the cur-
rent camera pose TTT t = [RRRt , tttt ] ∈ SE(3), RRRt ∈ SO(3), and tttt ∈ R3

by using Vt , V m
t−1, and N m

t−1. At this time, we denote the rendered
map of the global model with respect to a particular camera pose as
m. The point-to-plane ICP algorithm proposed by Low [13] takes
these three maps and outputs a rotation and translation between the
current frame and the previous frame.

The Global Model Rendering Stage is for obtaining the corre-
spondences between the point clouds generated by the current depth
map Dt and the global model S . The index map L is generated
in this stage by projecting point clouds from the global map via the
projection matrix PPPt , which consists of the current camera pose TTT t

and the intrinsic parameters KKK. V m
t and N m

t are also generated at
this stage for the “Camera Pose Estimation” stage in the next frame.

The Global Model Update Stage is for merging or adding the
point clouds generated from the current depth map Dt to the global
model. Only when specific geometric conditions are satisfied is the
point Dt(uuu) merged to a point sk already present on the global map
S , and the associated confidence ck is incremented.

2.2 Segmentation Part

This section provides an overview of the segmentation part (see
Figure 1, depicted in red), which determines the object targeted for
object recognition. The segmentation part in the proposed method
consists of four stages, and this section outlines each.

We employed the segmentation framework based on the method
by Tateno et al. [19]. It takes the current depth map Dt to incre-
mentally build up and to update a Global Segmented Map (GSM)
L for each frame. The components of the GSM are the same as
those for the global map S , and each point on the GSM is labeled.
The main advantage of this system, and our reason for employing it,
is that the computational cost for updating a GSM never increases,
as with other segmentation systems [4].

The Depth Map Segmentation Stage is for segmenting the in-
putted depth map Dt by conducting a normal edge analysis. The
process takes the vertex map Vt and normal map Nt as inputs and a
binary edge map Lt is outputted by comparing the nearby normal
angles and vertex distances. Then, a connected component algo-
rithm is applied to the binary map to obtain a label map Lt on
which each element Lt(uuu) is associated with l j.

The Segment Label Propagation Stage is for generating a
propagated label map L p

t , where each element L p
t (uuu) is associ-

ated with a label on the GSM. To achieve this goal, first, the ren-
dered label map L m

t is computed by projecting the GSM with PPPt ,
which was created in the “Camera Pose Estimation Stage”. Next,
the overlap percentage between li ∈ L m

t and l j ∈ Lt is computed
and used to decide whether li is propagated to L p

t or l j to be used
directly. Finally, a propagated label map L p

t of a current frame t
(see Figure 2, left bottom) is obtained.

The Segment Merging Stage is for merging segments that orig-
inally consisted of the same object. When the overlapped percent-
age of la, lb ∈ L m

t , calculated in the “Segment Label Propagation
Stage”, is sufficiently larger than the threshold, the segment pair
(la, lb) is merged and replaced with la.

The Segment Update Stage is for updating the GSM with L p
t .

The labels of each point in the GSM are updated only when their
label confidence is over the threshold; otherwise, only label confi-
dence changes.
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Figure 2: Actual image of Viewpoint Class uniformly distributed
around each segmented object in the Global Segment Map (GSM).
Green pyramids represent the camera trajectory up to the current
frame t. The Viewpoint Class colored in red is the one from which
the object has already been recognized. Left side, top to bottom:
input RGB image, normal map Nt , propagated label map L p

t .

2.3 Recognition Part

This section provides an overview of the recognition part (see Fig-
ure 1, depicted in green), which determines the object area to be
diminished. The recognition part consists of three stages, and this
section explains each stage in detail.

As shown in Fig. 3, one of the main contributions of this work
is equally dividing the viewpoint around each object in the GSM
and impartially merging the recognition results from each divided
viewpoint (Viewpoint Class) with the same weight to detect and
track the area to be diminished accurately. To achieve this goal, in
contrast to [19], each segmented object O j has information about its
centroid CCC j ∈ R3 for placing the Viewpoint Class centered on the
centroid CCC j. Viewpoint Class generation is performed only once
before the initial frame as a pre-processing step. N points can be
distributed uniformly over the surface of a sphere whose radius r is
1 with the following equations [18]. We store each coordinate ψψψγ ∈
R3 that is generated by converting θγ and ϕγ into xyz coordinates.

θγ = arccos(hγ ),hγ =−1+
2(γ −1)
(N −1)

,1 ≤ γ ≤ N,

ϕγ = (ϕγ−1 +
3.6√

N
1√

1−hγ
2
)(mod2π),2 ≤ γ ≤ N −1,ϕ1 = ϕN = 0

(1)

2.3.1 Viewpoint Class Judgment

The objective of this stage is to determine whether the current cam-
era pose belongs to a new Viewpoint Class for each object O j. We
perform the following processing for each object appearing on the
propagated label map L p

t .
First, we compute the vector VVV ct

j starting at the centroid CCC j and
ending at the current camera position tttt in world coordinates with
VVV ct

j = tttt −CCC j for each object O j. At this time, the current cam-
era position tttt is already computed in the Camera Pose Estimation
Stage. Next, the vector VVV ct

j is normalized to length r. Considering
that each prepared Viewpoint Class ψψψγ is distributed on a sphere
whose center is the origin of the coordinate, we can determine the
Viewpoint Class to which the current camera pose belongs by com-
paring vectors ψψψγ and VVV ct

j . Thus, the γ that minimizes the distance
between ψψψγ and VVV ct

j is the Viewpoint Class to which the current

Figure 3: The concept of our Viewpoint Class based recognition
system. Each circle uniformly distributed around the object indi-
cates a Viewpoint Class. Since the recognition results from each
Viewpoint Class (i.e., CNN outputs at t = 1,11,12) are aggregated
as the same weight, even if the camera idles in a bad position
(t = 1 ∼ 10), the accuracy of the recognition result increases in the
end.

camera pose belongs.

γ̄ j = argmin
1≤γ≤N

∥ψψψγ −VVV ct
j ∥ (2)

We denote the Viewpoint Class as γ̄ j. We denote the recognition
result of an object O j from Viewpoint Class γ as Ωγ j . If the recog-
nition result Ωγ̄ j is empty, the object O j is recognized in the next
stage and its index is denoted as ĵ.

2.3.2 Recognition with CNN
After the objects recognized in this stage are determined, segments
of each object O ĵ in the RGB image of the current frame are
cropped based on the propagated label map L p

t . Next, these im-
ages are input into the convolutional neural network (CNN) tuned
by deep learning with a specific dataset (e.g. ImageNet [3, 8]). At
this time, the softmax function is not applied to the output of the
CNN because merging the outputs of the CNN from each View-
point Class and calculating the probability of what each object are
performed in the next stage. Therefore, the raw output of the CNN
is stored as Ωγ̄ ĵ

.

2.3.3 Merging the Recognition Results
To recognize each object, the recognition results are merged and
renewed for each object O ĵ with the following equation, where ψr

j
represents a subset of Viewpoint Classes from which the object O j
has already been recognized.

yλ
ĵ
=

exp
(

∑γ j∈ψr
ĵ
Ωγ j (λ )

)
∑i=Λ

i=1 exp
(

∑γ j∈ψr
ĵ
Ωγ j (i)

) (3)

With this equation, the probability yλ
ĵ

that the object O ĵ catego-
rized to λ is calculated with ψr

ĵ
, the total number of categories Λ,

and Ωγ j (i), which denotes the CNN output of category i from a
Viewpoint Class γ j of an object O j.

2.4 DR Part
In this section, we describe in detail the DR part, which is the main
contribution of this work. In Figure 1, the part relating to DR is
shown in yellow. In the “Global Model Rendering without Objects
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Table 1: Precision/Recall rate using the UW RGB-D Scene Dataset [9, 10]

Method View(s) Input Precision/Recall
Bowl Cap Cereal Box Coffee Mug Soda Can Background Overall

DetOnly [11] Single RGB 46.9/90.7 54.1/90.5 76.1/90.7 42.7/74.1 51.6/87.4 98.8/93.9 61.7/87.9
Det3DMRF [11] Multiple RGB-D 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8
HMP2D+3D [9] Multiple RGB-D 97.0/89.1 82.7/99.0 96.2/99.3 81.0/92.6 97.7/98.0 95.8/95.0 90.9/95.6
BoVW+FLAIR [17] Multiple RGB 88.7/70.2 99.4/72.0 95.6/84.3 80.1/64.1 89.1/75.6 96.6/96.8 89.8/72.0
Ours Multiple RGB 96.2/91.8 92.2/95.9 98.4/96.1 91.9/87.1 91.7/89.3 94.0/100.0 94.1/93.4

to be Diminished” stage, we create the hidden background image
necessary for generating the diminished result by extending part of
the SLAM framework. In the “Generating DR Image with Recog-
nition Result” stage, we identify the object area to be diminished
in the input image using the recognition result obtained through the
recognition framework and we superimpose the hidden background
image generated at the “Global Model Rendering without Objects
to be Diminished” stage on the object area. This section describes
the details of these two stages.

2.4.1 Global Model Rendering without Objects to be Dimin-
ished

As shown in Figure 1, the purpose of this stage is to generate a
hidden background image superimposed on the object area that is
to be diminished and specified through the recognition result of the
recognition framework. In this proposed method, a hidden back-
ground in the user view is recovered based on the global map S .
We project point clouds within a region labeled with a certain object
to generate a corresponding hidden background image.

More specifically, when projecting each point sk constituting the
global map S during the “Global Model Rendering” stage in the
SLAM framework, a hidden background image of the same size as
the input image B is generated according to the following proce-
dure. At this time, let uuusk be the image coordinate at which the point
sk is projected.

1. When uuusk is not inside the hidden background image B or
when the label of the point sk is an object category to be di-
minished, the processing is discarded and shifted to the next
point sk+1 constituting the global map S .

2. When B(uuusk ) is empty, fill B(uuusk ) with the pixel value of
point sk.

3. When B(uuusk ) is not empty, B(uuusk ) is filled with the pixel
value of the point sk only when one of the following three
conditions is satisfied.

• If the label of the point filling B(uuusk ) is 0 and the label
of sk is not 0.

• If both the label of the point filling B(uuusk ) and the la-
bel of sk are 0 and the Euclidean distance between the
vertex coordinates of the point filling B(uuusk ) and the
camera position tttt at current frame t is greater than the
Euclidean distance between the vertex coordinates of
the point sk and the camera position tttt .

• If both the label of the point filling B(uuusk ) and the label
of sk are NOT 0 and the Euclidean distance between
the vertex coordinates of the point filling B(uuusk ) and
the camera position tttt at current frame t is greater than
the Euclidean distance between the vertex coordinates
of the point sk and the camera position tttt .

Here, the point where the label is 0 is a point on the edge. There-
fore, there is a possibility that the point constituting the object to be

diminished exists in points that are labeled 0. In the above proce-
dure, filling in the hidden background image B is given the highest
priority. Next, when the point assigned with a label other than 0 fills
B, that point is not replaced with the point assigned with label 0.
Lastly, the above procedure gives lowest priority to filling B with
a point close to camera position tttt in the current frame.

Although the SLAM framework of this proposed method em-
ploys dense SLAM, it does not guarantee that all pixels of a hidden
background image B will be filled. Therefore, in this method, we
apply the median filter to the hidden background image B gener-
ated by the above procedure and render it the final hidden back-
ground image B̃.

2.4.2 Generating DR Image with Recognition Result
In this stage, as shown in Figure 1, the purpose is to generate di-
minished result IDR by utilizing the hidden background image B̃
generated through the “Global Model Rendering without Objects
to be Diminished” stage, the propagated label map L p

t , and the fi-
nal recognition result of each object O j included in the propagated
label map L p

t obtained through the recognition framework. Here,
seen in Figure 2, the propagated label map L p

t contains the region
labeled 0, which is shown in black. Therefore, we reduce the area
whose label is 0 and generate the label map L̃ p

t , in which the area
to be diminished is dilated by performing the dilation processing
of 8-neighborhood twice on a label whose recognition result cate-
gory is the same as the category to be diminished. Next, each pixel
IDR(uuu) of the diminished result IDR is filled by the following pro-
cedure:

1. When the recognition result category of the label L̃ p
t (uuu) is

the category to be diminished, IDR(uuu) is filled with B̃(uuu).

2. When the recognition result category of the label L̃ p
t (uuu) is

NOT the category to be diminished, IDR(uuu) is filled with
I (uuu).

3 EXPERIMENTS

In this section, we demonstrated experimentally the validity of our
method. In our experiments, we evaluated our method using the
popular UW RGB-D Dataset (v2) [9, 10]. The followings are the
details of the evaluation environment: CPU: Intel Core i7-6950X
3.00 GHz, GPU: GeForce GTX 1080, and RAM: 125.8 GB. The
deep learning framework used in this evaluation experiment was
Chainer [20]. Throughout the experiment, the number of Viewpoint
Classes was 700. The CNN model used in this experiment was
Network In Network (NIN) [12]. Since the UW RGB-D Dataset
provides mask images, we masked the region for each object on
each training image. Next, we trained the CNN model by randomly
rescaling and adding noise for robust predictions.

3.1 Results
Table 1 shows the mean-Average Precision (mAP) estimates of our
method and the existing methods reported in [9, 11, 17]. As shown
in Table 1, we were able to achieve a performance of 94.1 mAP as

341



Figure 4: DR results in several frames (object category to be diminished: “Cereal Box”, upper stage, left to right: diminished result IDR,
recognition result, lower stage, left to right: input RGB I , hidden background B̃, propagated label map L̃ p

t , global map S，GSM L )

compared to the detector performance of 61.7 mAP and the SLAM-
aware BoVW+FLAIR performance of 89.8 mAP. Therefore, we
could detect and track objects to be diminished accurately through
recognition based on Viewpoint Class and CNN.

Figure 4 shows diminished results in each frame of UW RGB-D
Dataset when the category to be diminished is “Cereal Box”. As can
be seen from Figure 4, in the first half frame, since the 3D model
of the hidden area was not reconstructed, a part of the hidden back-
ground image B̃ and the diminished result IDR were incomplete.
However, as the frame progressed, the 3D model was generated
densely and completely in the hidden area. Also, by accurately es-
timating the camera pose with the SLAM framework, the borders of
the diminished area and the non-diminished area are geometrically
indistinguishable with each other in the diminished result IDR. On
the other hand, as described in section 2.4.1 Global Model Ren-
dering without Objects to be Diminished, the procedure was de-
signed to preferentially eliminate the point with a label 0, which
consists edge of each object from the hidden background image B̃.
However, the edge is still included in the hidden background image
B̃, and its removal is a future task.

Table 2: Average processing time for each stage of the recognition
and DR parts

(Unit: ms)
Viewpoint Class Judgment 1.0
Recognition with CNN 98.9
Recognition Result Merging 10.7
Global Model Rendering without Objects to be Diminished 32.5
Generating DR Image with Recognition Result 6.1
Total 149.2

Table 2 shows the processing time for each stage of the recog-
nition and DR parts. The average processing time for the Recog-
nition with CNN stage of the proposed method achieved real-time,

because only the cropped image of the object whose recognition
result from the current Viewpoint Class is empty is recognized in
the Recognition with CNN stage. Thus, the number of images in-
putted to the CNN was decreased and we could reduce the pro-
cessing time. Considering that the SLAM and segmentation part
achieved 72 fps [19], our system would work in real-time.

In addition, the proposed method generates a hidden background
based on the 3D model reconstructed by the SLAM framework.
Therefore, since the 3D structure of the hidden background is
known, the transparency of the object to be diminished can be ad-
justed. Figure 5 shows diminished results when the hidden back-
ground image B̃ is generated by the following procedure instead of
the procedure described in section 2.4.1 Global Model Rendering
without Objects to be Diminished.

1. When uuusk is not inside the hidden background image B or
when the label of the point sk is an object category to be di-
minished, the processing is discarded and shifted to the next
point sk+1 constituting the global map S .

2. When B(uuusk ) is empty, fill B(uuusk ) with the pixel value of
point sk.

3. When B(uuusk ) is NOT empty and the Euclidean distance be-
tween the vertex coordinates of the point filling B(uuusk ) and
the camera position tttt at current frame t is less than the Eu-
clidean distance between the vertex coordinates of the point
sk and the camera position tttt , fill B(uuusk ) with the pixel value
of point sk.

The above procedure gives top priority to filling in the hidden
background image B, then to satisfying B at a point further from
the camera position in the current frame. As shown in Figure 5,
especially in the latter frame, the area to be diminished and the
desk behind it are diminished, and furthermore, based on the cam-
era pose estimated by the SLAM framework, the couch and the floor
were naturally superimposed.
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Figure 5: DR results in several frames when the transparency is adjusted (object category to be diminished: “Cereal Box”, upper stage, left to
right: diminished result IDR, recognition result, lower stage, left to right: input RGB I , hidden background B̃, propagated label map L̃ p

t ,
global map S，GSM L )

4 CONCLUSION

In this work, we proposed a SLAM, segmentation, and recognition-
based DR method that would achieve real-time processing, auto-
recognition of the region to be diminished, and work without pre-
processing to generate a 3D model of the target scene. We leveraged
a state-of-the-art SLAM-based segmentation method and utilized a
CNN to determine the area to be diminished and to generate the
hidden background image. Furthermore, by distributing Viewpoint
Classes uniformly around each object and aggregating the recog-
nition results from each Viewpoint Class, robustness for camera
movement was achieved. These contributions of our method were
demonstrated through experiments using the UW RGB-D Dataset
and Scenes.
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