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ABSTRACT

Diminished reality (DR) enables us to see through real objects oc-
cluding some areas in our field of view. This interactive display
has various applications, such as see-through vision to visualize
invisible areas, work area visualization in surgery and landscape
simulation. In this paper, we propose two underlying problems
in see-through vision, in which hidden areas are observed in real
time. First, see-through vision methods require a common area to
calibrate every camera in the environment. However, the field of
view is limited and many approaches rely on a time-consuming cal-
ibration, sensors, or fiducial markers. Second, see-through vision
applications assume that the background is planar to ease image
alignment. We therefore present a place-and-play see-through vi-
sion system using a wide field-of-view RGB-D camera. We val-
idated the accuracy and the robustness of our system and showed
results in various environments to show the applicability.
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Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information System—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

Diminished reality (DR) is an active research field whose goal is to
remove real objects from the real world visually [5]. This interac-
tive display has various applications, such as work area visualiza-
tion in surgery and landscape simulation. One of the DR techniques
aiming at seeing through remote regions occluded by walls is called
see-through vision [3, 1, 7]. The advantage of see-through vision is
that it can recover dynamically changing backgrounds based on live
video resources from cameras at different viewpoints (e.g., surveil-
lance cameras).

However, the application range is rather limited due to two tech-
nical issues. First, see-through vision methods require a common
area to calibrate every camera in the environment. However, the
field of view (FoV) of each camera is limited, and many approaches
rely on a time-consuming calibration using sensor-, feature-, and
fiducial marker-based methods. Second, see-through vision ap-
plications assume that the background consists of several planes.
The conventional techniques approximate backgrounds as several
planes to ease camera pose estimation and image warping from the
background observer camera to the user camera. While this approx-
imation comes from an assumption that see-through vision is used
in urban areas, it limits the application range.

To address these problems, we present a place-and-play see-
through vision system using an RGB-D camera with a wide
FoV(Figure 2).Our RGB-D camera consists of a fish-eye camera
and a 3D-Lidar and enables us to have a common region of view
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for the user and hidden view observers to be calibrated online. As
a result, this system configuration results in a see-through vision
without pre-calibration between the environment and the cameras.

Our contributions in this paper include:

• Proposing an instant see-through vision system, which does
not require calibration between the environment and cameras
except a wide FoV RGB-D camera placement

• Feature matching between the fish-eye background observer
camera and the user pinhole camera

• Demonstrating accuracy, robustness, and applicability using
real live videos captured in indoor and outdoor 3D scenes

2 RELATED WORK

Kameda et al. proposed the use of surveillance cameras calibrated
in advance as hidden view observer cameras [3]. Their method vi-
sualizes an invisible space due to building by converting images
obtained by the observer cameras into user camera images. In the
image conversion, they assume that the area to be visualized is a
plane or far away to be approximated as a plane. In this method,
a CAD model is used to visualize the hidden backgrounds and to
estimate user camera pose from observer cameras. However, it is
not practical to have a CAD model of the environment and creating
it is time-consuming. Barnum et al. acquired a common region of
view between a user and a hidden view observer camera using an
additional camera observing both regions visible from the user and
the hidden view observer camera [1]. This method also assumes
pre-calibrated cameras and a planar background when transform-
ing background image to the user view. Tsuda et al. used a fiducial
marker placed on a wall to be diminished to estimate the camera
pose [7]. This method generates see-through vision images by ren-
dering acquired 3DCG model of background buildings.

All the methods described above estimate user poses online but
assume all background observer cameras and the environment are
calibrated in advance. On the other hand, we acquire a common
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Figure 1: Comparison of the number of coordinate system trans-
formations in the conventional methods and our proposed method.
Only our proposed method performs direct correspondence be-
tween a user camera and a hidden observer camera.
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Figure 2: RGB-D camera composed of a fish-
eye camera and a 3D-Lidar

Figure 3: Feature matching between a camera and a fish-eye camera. Left top: User
camera input, right: fish-eye camera input, Left bottom: See-through result

field of view between a hidden view observer camera and a user
camera using a wide FoV RGB-D camera as an observer camera. In
other words, the fish-eye camera enables direct correspondence be-
tween the cameras, and 3D-Lidar enables the reconstruction of the
3D background structure. Figure 1 summarizes the number of the
online and offline coordinate transformations of the conventional
method and our methods.

3 THE PROPOSED FRAMEWORK

The user camera pose is calculated based on 3D positions of fea-
ture points accompanying matches with the user and a hidden view
observer camera. However, the difference in appearance between a
fish-eye image and a pinhole image due to distortions is too large to
match feature points in the images using feature descriptors. Thus,
we first convert the fish-eye image to a pinhole camera image (i.e.,
we simulate a pinhole camera with the same internal parameter as
that of the user camera in a celestial coordinate space). Then, we
obtain a see-through vision image by overlaying a textured model
generated from a point cloud and a fish-eye image to the user view.

3.1 User Camera Pose Estimation

The ideal fish-eye camera has an equidistant projection. In practice,
however, actual fish-eye cameras do not follow an ideal projection
model. We therefore estimate the internal parameters of a fish-eye
camera using a model proposed by Scaramuzza et al. [6]. Based
on these, we calculate rays, which correspond to each pixel of the
fish-eye image. To render a virtual camera image Cv, we set the
camera to the origin of the fish-eye camera C f . Given the rays of

each pixel of the fish-eye camera p f = (X f ,Y f ,Z f )
T, each pixel of

the virtual camera pv is calculated as follows.

pv ≈ ARp f (1)

where A and R are 3 by 3 intrinsic parameter and rotation matrices
associated with the virtual camera, respectively.

We estimate the user camera pose by solving the perspective n-
point (PnP) problem with 3D positions of corresponding points be-
tween the virtual and the user camera. At this stage, RANSAC is
performed to remove outliers and obtain reliable correspondence.
Figure 3 shows an example of the resulting feature matches.

3.2 See-through Image Generation

The number of point clouds from a 3D-Lidar is too small to fill
in the region of interest in the user view. We therefore generate

triangular meshes from a point cloud and fill the mesh with fish-eye
image pixels. To remove deformed triangular meshes, we generate
meshes only if the length of a side is smaller than a threshold and
satisfies the following condition.

T←{t | li
t < α ||gt ||, t ∈W} (2)

where T is the output triangular meshes, α is a user given constant,
li
t (i = 0,1,2) is the length of a side of a triangular mesh t among all

triangular meshes W, and gt is the center of gravity of a triangular
mesh t, respectively.

4 PERFORMANCE VALIDATION

We validate out method in terms the following three items.

• Real-time performance We measured the processing speed
throughout the see-through vision process.

• Robustness We validated the robustness of our camera pose
estimation in an outdoor scenario.

• Applicability We applied our see-through vision system in
various indoor and outdoor environment.

4.1 Setup

Here, we assume a blind spot visualization scenario. Table 1 sum-
marizes cameras and a 3D-Lidar used in this experiment. We used
a Windows 10 PC with an Intel Core i7 5820K 3.3GHz CPU and
NVIDIA GeForce GTX 960 GPU. In this experiment, we used the
SURF [2] descriptor of GPU implementation for acceleration.

4.2 Real-time Performance

We put a hidden view observer camera behind a building at around
100cm height, as shown in Figure 4 and captured the building wall
with the user camera. We selected a 3D scene in which a person is
walking in front of a building, which is difficult for the conventional
methods to perform see-through vision. Figure 6 shows the results
of our see-through vision. These results show that our method can
generate see-through images in the 3D scene.

In this experiment, we rendered four virtual viewpoints facing
different directions. The average frame rate was 1.76 fps. The most
time-consuming process was user camera pose estimation, which
accounted for approximately 80% of the total processes. The break-
down of the timing was approximately 52% (approximately 13%
per image) for rendering virtual cameras, approximately 18% (ap-
proximately 5% per image) for matching, approximately 10% for
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Table 1: Device specifications

Device name Specifications

HOKUYO YVT-X002 Max 10,360 points,

(3D-Lidar) Scanning range: 210◦×40◦

Kodak PIXPRO SP360 4K Image size: 1440×1440,

(Fish-eye camera) FoV: 235◦×235◦

Logicool C905 Image size: 640×480,

(USB camera) FoV: 61◦×46◦

Hidden view observer

User camera

Figure 4: Experimental setup

solving the PnP problem. Although the virtual camera rendering
process occupies most of the time, we believe that the process-
ing speed would be improved by parallelization techniques, such
as GPU implementation (e.g., OpenGL), which is currently imple-
mented on CPU.

4.3 Robustness

We hypothesized that the success rate of our see-through vision im-
age generation drops as the distance from a hidden view observer
camera becomes large since we render virtual viewpoints at the pro-
jection center of the fish-eye camera. Therefore, we systematically
changed the relative position of the user camera and measured the
success rate at each point. The success rate was defined as the ra-
tio of the number of frames, in which the hidden background was
correctly estimated, within 10 seconds during the execution of see-
through vision.

We measured the success rate at each point on the grid of interval
0.5 m in the area of 2 m2 located 1 m next to and 2 m behind the
observer camera. The user camera was directed so that the view is
blocked by the wall by 50 % or more. Figure 5 depicts the results
of this experiment. The number shown in the circle is the rate of
correctly estimated user camera poses at the position (i.e., success
rate). As expected, we found that the robustness falls depended on
the distance from the observer camera. We observed extremely low
scores at positions close to the wall due to large occlusions by the
wall impeding correct feature matching. We suggest that placing
virtual cameras close to the positions where the success rate is low
would increase the matching.

4.4 Applicability

We also performed the proposed method in four other places, in-
cluding two indoor and two outdoor scenes. Figure 7 shows the
results. The left figure shows the input, and the right one shows
the see-through images. These results show the applicability of our
method. To generate these results, we placed the wide FoV RGB-
D camera behind the occluding wall and soon the see-through vi-
sion results are obtained. Our preparation step is just simple to
place a hidden view observer (i.e., RGB-D camera with a wide
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Figure 5: Success rate measurement results of the proposed see-
through vision system.

FoV). In other words, compared to the conventional methods, our
method is highly portable and applicable since it does not require
pre-calibration of the background observer camera.

5 DISCUSSION

Limiting the region of interest and matching colors of cameras will
improve the quality of our see-through vision since we currently
overlay all of the reconstructed raw color pixels onto the user view.
We can improve the frame rate as well up to the highest one among
the cameras by separating processes for color and depth data via
multi-threading, or in a similar manner to [4]. Cameras with dif-
ferent exposure timing will also improve frame rate [8]. One of the
extensions of our system will be, therefore, to use multiple cameras
as background image resources (e.g. pedestrians’ cameras).

6 CONCLUSION

We presented a see-through vision method using a hidden view ob-
server camera with a wide FoV (i.e., RGB-D camera composed of a
fish-eye camera and a 3D-Lidar). To achieve see-through vision us-
ing this camera, we proposed an online user camera pose estimation
method using feature point matching in a common FoV between
the user and the hidden view observer camera. Unlike conven-
tional methods, our method could acquire direct correspondences
to the environment and therefore remove the pre-calibration pro-
cess, which results in the place-and-play see-through vision system.
The outdoor and indoor experiments using real data demonstrated
the computational performance, robustness of the camera pose es-
timation, and wide application range of the proposed method. Our
future work will include improving the system’s performance based
on GPU implementation and feature point matching between fish-
eye and pinhole images.
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Figure 6: Results of the proposed see-through vision system. Note that a person is walking behind the wall (i.e., the background scene
changes dynamically). Bottom row images show the enlarged image of the region enclosed in the orange rectangle in the top row images.

Room scene

Corridor scene

Road +  warehouse scene

Road + tree scene

Figure 7: Results in the indoor and outdoor scenes. The left images show indoor scenes, and the right images show outdoor scenes.
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