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Abstract: In this paper, we propose a line-based SLAM from an imageesgzpicaptured by a vehicle in consideration
with the directional distribution of line features thateletied in an urban environments. The proposed SLAM
is based on line segments detected from objects in an urbaroement, for example, road markings and
buildings, that are too conspicuous to be detected. We wutitathl constraints regarding the line segments
so that we can improve the accuracy of the SLAM. We assuméhtbaingle of the vector of the line segments
to the vehicle’s direction of travel conform to four-compgom Gaussian mixture distribution. We define a
new cost function considering the distribution and optenikze relative camera pose, position, and the 3D
line segments by bundle adjustment. In addition, we makitadliimaps from the detected line segments. Our
method increases the accuracy of localization and reviked lines in the digital maps. We implement our
method to both the single-camera system and the multi-asystem. The accuracy of SLAM, which uses
a single-camera system with our constraint, works just dsasea method that uses a multi-camera system
without our constraint.

1 INTRODUCTION ing a camera as an input. In the case that feature
. . points can be detected fully, the accuracy of SLAM
Currently, —advanced driver assistance Sys- js a5 well as a method with laser range scanner. Since
tems(ADAS) has been actively researched.  An the accuracy of SLAM decreases without enough fea-
autonomous car is an example of an ADAS that will tre points, there are many studies trying to solve that
enable people to go anyplace without your driving nroplem; for example, studies that uses multi-cameras
operation.To achieve that, it requires localization t0 o researches detect not only points, but also lines.
calculate its’ trajectory. (Teramoto et_al.,_2012) in_di— However, using many feature points or lines means an
cated that the accuracy of the localization required jncreasing of calculation cost, and it is fatal because
for practical use is from several dozen centimeters {he system of the autonomous car requires a real-time
to several_ meters. For localization, one of the main ¢jcylation. Increasing equipment means increasing
methods is to use GPS. Although POSLYV, one of of hroduction costs. The less equipment attached to
the high-end integrated accurate positioning system, the vehicle, the better it is as long as the accuracy is
achieves accuracy within several dozen centimetersaintained in the autonomous car.
using a RTK-GPS receiver, it is not appropriate for
use in the autonomous car. One reason is that the cost In this paper, we propose a line-based SLAM con-
of RTK-GPS is very high. Another reason is that the sidering a directional distribution of line features in
GPS system depends on the strength of microwavesan urban environment, which is based on the Manhat-
from the satellite. Thus, if the vehicle is in the tunnel, tan world assumption. Based on the fact that many
it cannot work. line segments in road markings are parallel or vertical
Meanwhile, the visual simultaneous localization to a vehicle’s direction of travel, we define the distri-
and mapping system (SLAM) has been attracting at- bution as four-component Gaussian mixture distribu-
tention of researchers because it does not have theséion. To prove our method’s effectiveness, we con-
problems. To determine its position, detects feature duct four experiments: 1) single-camera system with
points from the environment around the vehicle us- line-based SLAM, 2) multi-camera system with line-
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based SLAM, 3) single-camera system with line-and-

point-based SLAM, and 4) multi-camera system with Y“L .
line-and-point-based SLAM. We can achieve a high »L 64
accuracy of SLAM in all experiments by our method. ‘@ & — e 1’“
In addition, we simultaneously make a digital (a) On roads (inter) (b) On buildings (inter)

map. Although, the digital map has been used in
ADAS, it must be accurate and up-to-date. Roads and -
road markings are destroyed frequently, so they must L xwt_, | —
be updated. Our digital map can be generated while e -
driving on streets, and it requires cameras. No other IL- S 444 S

equipments are needed. SLAM often has some intrin- S e —— 6t Cf

sic or extrinsic errors, so the line segments in the map (c) Onroads (mtra) (d) On buildings (intra)
often tilt. However, it is not a problem in our method Figure 1: Examples of intra- and inter-camera correspon-
because the directional distribution is considered. dences.

points from learned road markings and achieved a
high accuracy in estimation of a camera pose.
2 PREVIOUSWORKS (Hata and Wolf, 2014) proposed a method which
detects road markings robustly for SLAM. They de-
veloped a line detector which did not affected by il-
lumination condition by adapting Otsu thresholding
method.
In addition, (Z.Tao et al., 2013) combined GPS,
proprioceptive sensors, and road markings for SLAM.

Our goal is to realize SLAM using the distribution of
line segments. There are some SLAM works that use
line and road markings. Therefore, we discuss line-
based SLAM and SLAM using road markings sepa-
rately in this section.

2.1 Line-based SLAM

There are previous works on line-based SLAM that 3 SYSTEM OVERVIEW
have taken different approaches. (Smith et al., 2006)
proposed a real-time line-based SLAM. They added We provide an overview of a line-based SLAM con-
straight lines to a monocular extended Kalman filter sidering the distribution of road markings. We im-
(EKF) SLAM, and realized the real-time system using plement our method into both a single-camera system
a new algorithm and a fast straight-lines detector that and a multi-camera system. We explain the method of
did not insist on detecting every straight line in the the multi-camera system because the radical method
frame. for both the single-camera and the multi-camera sys-
Another approach for the line-based SLAM is us- tems is the almost same .
ing lines and other features. (Koletschka et al., 2014)  As a premise, our SLAM method requires wheel
proposed a method of motion estimation using points odometry. A relative camera pose and position in each
and lines by stereo line matching. They developed a frame are estimated from the data from the wheel sen-
new stereo matching algorithm for lines that was able sors. Then, we obtain line segments from input im-
to deal with textured and textureless environments. ages for each frame by the line segment detector
In addition, (Zhou et al., 2015) proposed a vi- (LSD) algorithm. To correspond detected line seg-
sual 6-DOF SLAM (using EKF) based on the struc- ments, we consider the following three cases: match-
tural regularity of building environments, which is ing between the front images features at franaad
called the Manhattan world assumption (Coughlan t — 1, matching between the rear image at frame
and Yuille, 1999). By introducing a constraint about andt — 1, and matching between the rear image at
buildings, the system achieved decreasing position framet and the front image at frante- s. However,

and orientation errors. the viewing directions are very different, so it is hard
] _ to find matching segments, especially in the case of
2.2 SLAM using Road Markings the third case. For a robust match, we make the fea-

ture patches around the line segments warp into other
There are also previous works using road markings frames. Due to this warping processing, the perspec-
for SLAM for a vehicle. (Wu and Ranganathan, 2013) tive appearance of the patch resembles a target image.
proposed a method for SLAM using road markings In addition, searching for the appropriaealue for
that they previously learned. They detected feature the best match enables us to find the correspondences
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between a rear image and multiple front images more 2D line Iy, which is a projection line off i in the im-
robustly. As long as corresponding line segments areage plane, is given as four-vectar ", di")T. Point
detected, each line segment can be tracked over. Fig-u is calculated in the same way as the world pgint
ure 1 indicates examples of matching. and the vectod in the image plane is calculated as
Using these corresponding line segments, 3D line follows:
segments can be initially estimated using a method

based on the Manhattan world assumption. After Dy — gx R R 3
that, bundle adjustment is applied to the relative cam- k= Dy = RavRw Tk ©)
z

era pose, positions and 3D line segments to optimize

them. In a cost function of bundle adjustment, which d — <dx) B <qZDX— qXDZ> @)

is used for the optimization, we implement a new el- k= dy/  \a.Dy—aqyD,

ement considering the distribution of road markings, ] ) )

which is defined by 4-component Gaussian mixture WhereDy is a point of the camera coordinate system.

distribution. Due to this element, the accuracy of lo- Finally, the wheel odometryis expressed as follows:

calization improves and tilted line segments, which 1

include some errors, in the generated map are revised. W [ 2] ot At gt )
The difference between a single-camera system gt X

and a multi-camera system is that the former does not

consider_ the third matching case: matching between yhereAxt denotes its relative movement from a pre-
the rear image at franteand the frontimage atframe ;5,5 time anck,! denotes the noise d@fx!. In the

t—s proposed method, we estimate the 3-DOF motion of
the vehicle coordinateg,(z, 6) in a 2D-environment.
Whenx?, which is the initial position of the vehicle,
4 NOTATION is in the same position as the origin of the world coor-
dinate systemy! equalsRyy' andTy,!. We suppose
We explain the notations briefly before discussing our thate,' is zero-mean Gaussian white noise with co-
method in detail. First, we define the four coordi- variancez.

natesW, C;!, G andV!, which indicate the world, ' ~ N(0,Zx) (6)
front camera, rear camera, and vehicle coordinate sys- )

tems, respectively. The relative transformations from Ox 0 0

the world coordinate system to the vehicle coordi- = 0 of 0 |a )
nates system at frameare expressed &', Tw!, 0 0 09

and these from the vehicle coordinates system to the\yhereg,, g,, andag denote error variances. The con-
front or the rear camera coordinate system are ex-ygriance increases in proportion to time, supposing
pressed aRe;v, Te;v, Revs Tew. The relative pose  ihate, ! simply increases.

and position of the front and rear cameras are cali-

brated beforehand. Using these notations, the projec-

tions from a world poinp = (x,y,2)" to camera point

q = (ax,0y,q;)" are calculated as follows: 5 PROPOSED METHOD
Ox ; ¢ The purpose of our method is to enhance the accuracy
dk= [ dy | =Rew(Rw P+Tw)+Tov(l)  of line-based SLAM by bundle adjustment, which
Qz considers the distribution of the line segments. Our

wherek denotes camera 1 or camera 2. For this case,SYStem consists of two parts: line matching and bun-
k = 1 indicates the front camera. Then, projection d!€ adjustment. "In this section, we explain how to
from a camera poirg to a image point = (u,v)T i realize themindividually.

calculated as follows: . .
5.1 LineMatching

Ox
U — ( ) Y g (qx/qz) @ . .
v % Qy/ 9z Our method has two matching algorithms: match-
ing inter-camera correspondences and matching intra-
Secondly, the 3D lindy is expressed as six-vector camera correspondences, the basis of which is warp-
(pc",rk")T. The three-vectorpy is a center point of  ing patches based on the Manhattan world assump-
the 3D line and is the direction of the 3D line. The tion. We explain them individually.
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5.1.1 Inter-Camera Correspondences

and the rear images, and is not featured with a smgle- 3
camera system. The blue-colored rectangle shown in
Figure 2(a) is a patch, which is 20 pixels wide and
has a detected red-colored line segment in the center, “ —
The patch is transformed into a target image plane by (a) Rear image and patch  (b)Warped patch
a warp function, which considers the place where the ,

line segments are detected. Conceivable places where
they can be detected include front walls of buildings
or road surfaces, as shown in Figure 1(a) and (b).
Therefore, two types of warping processing are per-
formed on all line segments in this matching algo-
rithm.

To explain the case of the front walls of building,
according to the Manhattan world assumptiony-a
coordinate value of all the points in the patclO# is
h, which indicates the height of the attached camera. (c) Frontimage and a detected line segments

Therefore, the 3D point in the patch is calculated as gjgyre 2: (a)A rear image with a patch of the red detected

follows: line. (b) The warped patch converted from (a). (c) The front
h(Umz2+a)/(Vmz2+B) 'mage.
Pr h/(Vimz + B) ® Although we propose this matching method, it has
_ o two ambiguous points: one is that we cannot precisely
We define the coordinate of the patch as, = distinguish whether the line segments exist on build-

(Umz2 + O, Vm2 + B)T, whereun» denotes the center ings or the road surface, and the precise valudof
point of the line segment and and 3 are the Eu-  cannot be calculated. To exclude these ambiguous
clidean distances from the center point. elements, we test two calculations, for the building

In the case of the line segments detected on theand road surface, and chardyeat regular intervals in
road surface, the 3D pointin the patch is calculated as each experiment. Then we decide the correspondence
follows: based on the highest ZNCC score.

dx
Pof = dx(Vm,2 + B)/(Um,z + U) 9)

Oh/ (U2 + Q1) This method of matching is used between pairs of

The x-coordinate value of all the points in the patch front images or pairs of rear images. There are three
in G5! is dy, which is shown in Figure 1(b), under the conceivable places where the line segments can be de-
assumption. tected in this method: two of three are the same as the

The result of the warping is shown in Figure inter-camera correspondences and the last one is the
2(b). It shows that the perspective appearance be-side wall of buildings, as shown in Figure 1(c) and (d).
comes similar to the target image (Figure 2(c)). Sub- The 3D pointin the patch is calculated as follows:
sequently, we judge whether the warped patch and the

5.1.2 Intra-Camera Correspondences

line segments in the target image correspond or not (;z(um,1+a)
with using an error ellipse based on the EKF proposed Pbs = Z(del +B) (10)
V4

by (Davison et al., 2007). We use a raster scan of the
error ellipse of the warped patch and calculate a zero- ynder the Manhattan world assumptiargoordinate
mean normalized cross-correlation (ZNCC) score. At of || the 3D points in the patch i, which is shown
the position where the ZNCC is the highest, we calcu- in Figure 1(b), so Equation 10 can be defined. As well
late two more values: the angle between the Warped as the inter-camera Correspondences we Chd{\ge

line segment and the line segments in the target im- regular intervals and find the best one for matching.
age, and the distances from the endpoints of warped

line segments to the line segment in the targetimage.5.1.3 The Matching Result
If these two values are lower than the threshold, they
are regarded as the correspondence. The results of matching are shown in Figures 3.
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Figure 3: Examples of matching using our method (a)-(f) aR¢HE (Hirose and Saito, 2012) (g)-(l). (a)-(d) and (g)-(jg ar
matched pairs of front and rear images. (e) (f), (k), andr@)raatched pairs of front images. The red lines and green line
show correct and incorrect matching, respectively.

Figures 3(a) to (d) indicate intra-matching corre- one line segment, because it requires only one line
spondences with using our method, and Figure 3(g) segment to calculate the 3D information and each
to (j) indicate correspondences using LEHF (Hirose line segment has some corresponded line segments.
and Saito, 2012). Although, the enough number of Therefore, we choose one line segment by minimum
the line segments cannot detected, the accuracy of thenedian method. An element used in the minimum
matching obviously increases. median method is the re-projection error, which is cal-

Figures 3(e) and (f) indicate inter-matching corre- culated from the perpendicular distance from a repro-
spondences with using our method, and Figures 3(k)jected 3D line to the endpoints of a detected line in the
and (1) indicate correspondences using LEHF (Hirose image plane. This method is widely used and is de-
and Saito, 2012). The accuracy of them is the almost fined in a paper written by (Bartoli and Sturm, 2005).
same. Figure 4(b) shows a result of this method, which is

Using our method, we can classify all matched obviously better than first method.
line segments intoon the building walls or o )
on the road which LEHF cannot do. This detected 5.3 Optimization by Bundle Adjustment
place data are important for the next step.

We optimize the relative camera pose, positiBo.(,
52 |nitial Estimation of 3D Line Tw!) and the 3_D line segments by bundlle a(_jjust—
ment. We define the set of corresponding line seg-

) ) mentsQ as :
We use two methods to estimate the 3D line segments,

which will be explained individually in this section. Q={w = (t.k j,p)|
First, we estimate line segments using a method te{l,..Thke{L2),je{1..3}pe{123}}

based on the line of intersection of planes that passes (11)
the camera center and the line segment. Figure 4(a)where theith line segment indicates that a 3D line
shows_examples of road maps generated by the 3D iN-s observed in a placp by camera at framet. In
Igrmalt_lon calculalted by_I:(EIS methodf, alttrrw](_)ughbmost of ur method, the objectives are to minimize the re-

em lie wrong place. The reason for this IS because projection errors of all the line segments and to mini-
when the line segments run parallel to the travel di-

tion. th le bet the ol - mize the angle errors of the line segments observed in
rection, the angie between the plane passing € S€0y, o o5 syrface. Then, the cost function is defined as
ments becomes too low. The 3D information create

following.
error because of that. 9

Secondly, we estimate the line segments using g_ & 2 _ 1 @ (g 1)+ = my2
Equations (8)(9),(10) as explained in Section 5.1. In e 2 Izn; 1@ 1) 202 ;(ee )
this method, we can obtain some 3D information per (12)
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the vehicle’s

direction of travel
F=[E B EI’

vector of

] o egative 3D line segment
4 8 12 4 8 12 ﬁ’ i
z[m] z[m] diretion fp,citive r=[n n %7

(a) Standard initial estimation(b) Our initial estimation direction

T - 7 1 Min of dg * -z /2(rad)
= S ~—

4 z[m 8 1 4 gm 8 12 T
i . i . Max of dg © « /2(rad)
(c) Without the constraint  (d) With the constraint axof dg ¢ 7 /22

Figure 4: Examples of road maps. Figure 5: A schematic diagram d§.

where d, (a,b) denotes the perpendicular distance
from a pointa to a lineb in images,g;' andgy' de- the cost function to enhance the accuracy of the opti-
note the endpoints of observed line segments,&8nd  ization. Under the Manhattan world assumptign,

denotes an angle error, which can be calculated usingcoordinate of the line segments detected on the road
the difference between the travel direction of the vehi- gy rface is absolutelis, so we keep it constant dur-

cle and the vector of the line segments. An objective jng the process of bundle adjustment. Simkgeand

H : t t j : . .
is to find the best values &', T, andL) tomin- 4 "have ambiguousness, we do not incorporate that

imize E. We use the iterative non-linear Levenberg- constraint. Figure 4(c) and (d) are the result of map-
Marquardt optimization algorithm with numerical dif- ping after bundle adjustment without or with the con-

ferentiation based on a method proposed by (Madsengraint, respectively. The figures show that the con-
et al., 1999). We explain the calculation method for gtrint works well.

the reprojection error and angle error individually.

In addition, we include a geometric constraint into

o 5.3.2 AngleError
5.3.1 Reprojection Error
First, we show thadly in Figure 5 is an angle between

We use the following equation to calculate(gn',!'):  the travel direction and the vector of the 3D line seg-

, C o du(ay = U = dy (0 — V ments, and it has either a positive or a negative value;
g =d(gn'’,l") = b9 )2 X(gy ) (13)  the maximum value igf and the minimum value is
Y, 0"+ dy —7J. Itis calculated as follows:
To solve the bundle adjustment, we make Jacobian F, r,
matrices made from the result of differentiated ItEqua- dg = arCtanF—x - arCtanr—x (18)
tion (13) in the relative camera pose, positieq(',
Tw!) and the 3D line segments!. The differentia- (Fcz0and = 0)or (= 0and = 0))
tion equations are expressed as follows by conform- = .
ing to the chain rule: dg = arctanF—Z — arctanr—z -7 (19)
i ; ; X X
ailt:ai:ailt (14) (Fkz0and F£0)or (F,<0and k= 0))
aRV‘_"’ aq. aRV_W whereF = (F, Fy,F,) denotes the vehicle’s direction
de' _0e' og (15)  Of travel. To establish the consistency of the sign
0Tw'  0q' 0Tww! of dg, we taker from dg in Equation (19). In our
dal el oq method, we add a new constraint abdt As | dis-
a_pi = a_q'@ (16) cussed in section 1, we suppose that most of the road

markings are parallel or vertical to the vehicle’s direc-

ai_' — 6&'6_[)' (17) tion of travel. Although some markings include diag-

orl oD or! onal lines, there are many markings that include paral-
whereq andD are defined as Equations (1) and (4), lelor vertical lines; for examples, car lanes, and mark-
respectively. ings at crosswalks. In the case of the parallel line, we
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As well as reprojection error, we make a Jacobian
—@ matrix. The differentiated equations are expressed as

(- @ follows:
ol
(— deg)  [Oeyl deyl ey
ast I | %" _ ( o 9% 0% > (25)
3 H “ ar arx ary arz
;m 25 ‘ ‘ | | a j
- € Iz
1 = (26)
[ | j
| il %% _o (27)
1 ory
e o] dep) x
—_——— 28
4o ar, M2+ 1,2 (28)
Figure 6: A four-component Gaussian mixture distribution. In addition, we obtain the best value of and

_ o og by changing them at regular intervals for the best
assume thadg conforms to the Gaussian distribution.  gptimization in each experiment.

In the case of the vertical line, we assume tigat- J
conformsto the Gaussian distribution. Figure 6 shows
their distribution. Considering the diagonal lines, we
define one more Gaussian distribution. It prevents the
diagonal lines from being corrected to the parallel or , , . . .
vertical lines. The equations can be expressed as fol-IN this section, we introduce a practical experiment

6 EXPERIMENT

lows: that uses a real vehicle driving in an urban environ-

ment. Two cameras and a RTK-GPS, which can get

Pi(dgu=0,0=0q) = high accuracy of self-position, are attached to the ve-

1 1 4m?2 (20) hicle. The frame rate of the camera is 10 fps and
\/T%zexq_ZcruZ( 6)°) we prepare two datasets: one is a straight scene that

has 72 frames and another is curve scene that has 200
frames. We use the GPS as a ground truth. We evalu-
ate the accuracy of localization and mapping individ-

1 . T (21) ually.

—200(2( 6 —5))

L
Po(dgIh= 2,0 = 0a) =

exp

1
v/ 21042

Tt
Po(dfln= 2,0 = 0u) =

6.1 Evaluation of Localization

1 - (22) In our experiment, we apply our method to four cases;

expl—5— (dg’ -)?) 1) single-camera system with line-based SLAM

/21042 204 2 (called line (S)), 2) single-camera system with point-
P4(du= 0,0 = op) = and-line based SLAM (point-line (S)), 3) multi-

1 camera system with line-based SLAM (line (M)),
exp(— 5~ (dI")?) (23) and 4) multi-camera system with point-and-line based
208 SLAM (point-line (M)). We check how much the ac-

1

\/2Tog?
) ) curacy of localization improves when the directional
The numbers in the Legend of Figure 6 correspond 10 gsiripution of road markings is considered in each
these equations. cases.

Based on these equations, the cost functionis cal-  Figyre 7 shows trajectories of the vehicles in the

culated as follows: case of line (S) in two datasets. We compare four
el =do— (24) types of data in each case; ground truth, odome-
try, optimized data without the directional constraint,
This equation indicates that if the line segment is ver- and optimized data with the directional constraint. A
tical, but is a little tilted, it is corrected to the accurate closeup area (1) of Figure 7(a) and (b) indicates that
vertical line; and if it is parallel, but is a little tiltedt i ~ the optimized data with the constraint is the closest
is corrected to the accurate parallel line. The value of to the ground truth and it has higher accuracy than
pis decided by the value &f(dg); if P»(dg) is greater  that without the constraint. However, (2) of Figure
than othelP valuesuis 7. 7(a) indicates the accuracy decreases by adding the
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(a) Dataset 1

\2

id

(b) Dataset 2

Figure 7: The trajectory results obtained from datasetsdlL2aim the experiment of line (S). Comparison of the results
estimated by ground truth, odometry, optimized data withloe constraint, and optimized data with the constraint

ition error{m]

Frame

(@) line (S)

error[m]

Frame

Frame

(b) line (M)

(c) line-point (S)

Frame

Frame

(d) line-point (M)

Figure 8: Comparison of position error in each frame (dathgse

Frame

Frame

0 o 0 1 w2

Frame

(a) line (S) (b) line (M) (c) line- pomt (S) (d) line-point (M)
Figure 9: Comparison of position error in each frame (dat2se
Table 1: The sum of the position error and the improvemeet rat
Dataset 1 Dataset 2
Without the With the Improvement| Without the With the Improvement
constraint [m] | constraint [m] rate [%)] constraint [m] | constraint [m] rate [%)]
line (S) 13.57 6.52 52.0 176.11 107.32 30.1
line (M) 6.22 5.54 10.9 205.56 65.16 68.3
line-point (S) 8.45 4.32 48.9 186.18 125.96 32.3
line-point (M) 2.62 1.58 39.7 267.90 129.20 51.8
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(a) Dataset 1 (b) Dataset 2
Figure 10: Digital maps made from detected line segments.

Table 2: The rate of inlier lines

Dataset 1 Dataset 2
Without the With the Without the With the
constraint [%] | constraint [%] | Change [%]| constraint [%] | constraint [%] | Change [%]
line (S) 28.5 47.5 +19 40.1 35.9 -4.2
line (M) 35.1 416 +6.5 39.6 36.9 2.7
line-point (S) 39.1 49.7 +10.6 415 33.4 -8.1
line-point (M) 49.6 52.8 +3.2 42.2 39.1 -3.1
T =~ ~Y B
575 \ — o8 \ s
., = : a0 \\/Q =
565 \\\ ~ = R R
| @) 7) ~—_ @) @
(a) Without the constraint (b) With the constraint

Figure 11: Mapping results in line (S) Red lines indicatéainlines and green lines indicate outlier lines.

constraint. The reason for that is because the vehiclein all experiments by considering the constraint. For
cannot detect enough line segments. Actually, there dataset 1, the accuracy improves about 50% in the
are few line segments in the area. single-camera experiment. The accuracy of line (S)
with the constraint is as well as line (M) without it.
For dataset 2, the accuracy improves, especially in the
multi-camera experiments. Since our SLAM method

Figure 8 and Figure 9 provide a quantitative anal-
ysis of the accuracy of localization. They are posi-

tion errors, which indicate a perpendicular distance 5 hased on the Manhattan world assumption, it is not

to the ground truth. In addition, Table 1 shows the 5540 riate for the curving scene because the assump-
sum of the position errors in each case and the rate ofii;n qoes not stand up well . However, by using the

improvement in percentage. The accuracy improves
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directional constraint, the error generated in the curv- Davison, A. J., Reid, I. D., Molton, N. S., and Stasse, O.

ing scene is revised. It may be a reason for the high (2007). Monoslam: Real-time single camera slam.

improvement rate seen in dataset2. In Pattern Analysis and Machine Intelligence, IEEE
Transactions onlEEE.

6.2 Evaluation of M apping Hata, A. and Wolf, D. (2014). Road marking detection us-

ing lidar reflective intensity data and its application

. ) to vehicle localization. Irintelligent Transportation
The detected line segments can be used to make dig-  systems(ITSC), 2014 IEEE 17th International Confer-

ital maps. Figure 10 show the results of the digital ence onlEEE.

map. To produce a quantitative analysis, we judge Hirose, K. and Saito, H. (2012). Fast line description for
whether the generated line segments are inlier or out- line-based slam. IfProceedings of the British Ma-
lier. Inlier lines are defined as the perpendicular dis- chine Vision Conferenc8MVA.

tance from the endpoints of the generated lines to Koletschka, T., Puig, L., and Daniilidis, K. (2014).
a professional line within 100 mm. Table 2 shows Mevo: Multi-environment stereo visual odometry us-

ing points and lines. lintelligent Robots and Systems
(IROS), 2014IEEE.

adsen, K., Bruun, H., and Tingleff, O. (1999). Methods
for non-linear least squares problems. Ihformatics
and Mathematical Modelling, Technical University of

the rate of inliers in each experiment. The results of
dataset 1 become more accuracy, while that of datase
2 gets worse. The reason is that dataset 2 has more di-
agonal lines, which are collected to parallel or vertical

lines although it does not. Dataset 1 has many vertical Denmark Citeseer.

and parallel lines, so the rate of inliers increases in any smith, P., Reid, I. D., and Davison, A. J. (2006). Real-time
experiment. Figure 11 shows whether the line seg- monocular slam with straight lines. Rroceedings of
ments in the digital map are whether inlier or outlier the British Machine Vision Conferend@MVC.

in line (S) of dataset 1 . Red lines indicate inlier lines Teramoto, E., Kojima, Y., Meguro, J., and Suzuki, N.
and green lines indicate outlier lines. Tilted lines in (2012). Development of the “precise” automotive in-
Figure 11(a) is revised, so they change to green lines ~ t€grated positioning system and high-accuracy digital
in Figure 11(b). IrrléaEpEgeneratlon. IlR&D Review of Toyota CRDL

Wu, T. and Ranganathan, A. (2013). Vehicle localization
using road markings. lintelligent Vehicles Sympo-

7 CONCLUSIONS sium(IV), 2013 IEEEIEEE.
Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., and Yu, W.
In this paper, we propose a line-based SLAM consid- (2015). Structslam: Visual slam with building struc-

ture lines. InVehicular Technology, IEEE Transac-
tions on

Z.Tao, Bonnifait, P., V.Fremont, and J.lbanez-Guzman

ering the directional distribution of line features in an
urban environment. We regard the directional distri-
b.Utlon. Of.roa.d marklngs. as a comblnatlorl of Gaus- (2013). Mapping and localization using gps, lane
sian distribution, and define a new constraint to a cost markings and proprioceptive sensors. littelligent
function of bundle adjustment. In the practical exper- Robots and Systems(IROS), 2013 IEEE/RSJ Interna-
iment, we prove that the accuracy of SLAM improves tional Conference arlEEE.

in all cases. Due to our method, the single-camera

SLAM is as accurate as the multi-camera SLAM. In

addition, we make digital maps from the detected line

segments. Tilted lines are revised by our method, but

diagonal lines are badly corrected in some cases. We

will improve our method to apply to other cases.
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