
A Simple 3D Scanning System of the Human Foot 

Using a Smartphone with Depth Camera 

Takumi KOBAYASHI*1, Naoto IENAGA1, Yuta SUGIURA1, 
Hideo SAITO1, Natsuki MIYATA2, Mitsumori TADA2 

1 Keio University, Yokohama, Japan; 
2 Digital Human Research Group, Human Informatics Research Institute,  
National Institute of Advanced Industrial Science and Technology, Japan  

DOI: 10.15221/18.161   http://dx.doi.org/10.15221/18.161  

Abstract 

In recent years, online purchasing of clothes and shoes has become increasingly common. Although 
this is convenient, it can be difficult to choose the correct shoe size. While 3D foot scanners can 
accurately measure foot size and shape, this expensive and large scale equipment is not generally 
accessible for personal use, and there is a need for some simple and accurate means of measuring 
the foot in 3D. Recently developed smartphones with depth cameras enable easier measurement of 
3D shapes, and this paper describes a method for measuring foot shape using a 3D point cloud 
captured from multiple directions by such a camera. As a 3D point cloud can potentially include noise 
or may omit occluded parts of the foot, we propose the use of a dataset of 3D foot shapes collected by 
a precise 3D shape scanner. We show how a deformable model can be generated by performing a 
principal component analysis on this dataset, minimizing error to recover a complete and 
high-accuracy 3D profile of the entire foot. We tested this method by comparing the 3D shape so 
produced to the 3D shape measured by the 3D scanner. The proposed method was found to scan foot 
shape with an error of about 1.13 mm. As demonstrated experimentally, the contribution of our work is 
in introducing the deformable model of 3D foot shapes based on principal component analysis, so that 
accurate shape models can be calculated from noisy and occluded 3D point clouds obtained via 
smartphone input. 
 
Keywords: 3D foot scanning, 3D reconstruction, foot measurement, PCA, smartphone camera, depth 
camera 

1. Introduction 

With the rapid growth of E-commerce services, online purchasing of clothes and shoes has become 
increasingly common, and virtual try-on applications are also emerging. Although these services are 
convenient, users experience problems in selecting the correct size, and existing systems cannot 
reliably simulate fittings for various body shapes. In particular, it can be difficult to choose the correct 
shoe size, as dimensions differ with brand or shoe type; there is evidence that 30% of shoes sold 
through online shops are returned because the size is incorrect, creating a high demand for a system 
that can accurately measure the foot’s 3D shape. While some shops now provide a 3D scanner to 
select suitable shoes or to make custom-made products, this technology is not widely used in small 
stores or for personal use because it is large-scale and very expensive. For this reason, there is a 
need for some simple and accurate means of measuring the foot’s size and shape in 3D. 
 
Smartphones have become an indispensable part of daily life, and along with high-performance 
cameras, some smartphones now include a depth camera that enables measurement of 3D distances. 
Additionally, devices equipped with a motion tracking camera can automatically estimate self-position 
to instantly acquire a wide ranging 3D point cloud. It is expected that practical applications to measure 
3D foot shape using a smartphone camera will soon be available. This paper presents a method for 
measuring foot shape from a 3D point cloud as input captured from multiple directions using a 
smartphone depth camera, allowing users to measure their own foot shape at home. However, as such 
3D point clouds can potentially include noise or may omit parts of the foot due to occlusion, we 
propose to use a dataset of precise 3D foot shapes collected by a 3D shape scanner to generate a 
deformable model by performing principal component analysis (PCA). By minimizing any shape error 
in the deformable model and the 3D point cloud, we aimed to reconstruct the complete 3D shape of the 
foot with high accuracy. To test this method, we compared the shape so produced to the shape 
measured by the 3D scanner. The results indicate that the proposed method can scan foot shape with 
an error of about 1.13 mm. 
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2. Previous work 

Several studies have been conducted to develop instruments for measuring the 3D shape of the 
human body or foot [1]. However, these 3D scanners are expensive and large-scale, making simple 
measurement impossible for many users. Estimation of 3D shape from a single human silhouette 
scanned by a camera is one reported method [2, 3], applying deep learning methods to estimate shape 
parameters. Similarly, Lunsher et al. reported 3D shape estimation of the human foot using deep 
learning methods [4]. This method is simple, using only depth maps from a single viewpoint as input. 
However, one problem of deep learning is the need to prepare a large volume of image or depth map 
data associated with 3D shape parameters. 
 
In [5], the 3D shape of the foot was measured on a flat scanner using the photometric stereo method. 
In the same way, [6] performed 3D measurement using depth data captured from the sole of the foot 
by a depth camera. As these methods could only reconstruct the shape of the sole, it was not possible 
to measure the 3D shape of the entire foot. Other research has estimated the shape of the human 
body [7] or the feet [8, 9] using multi-view images as input. Wang et al. [8] and Amstutz et al. [9] made 
use of deformable models generated by performing PCA on a dataset of 3D foot shapes. These 3D 
shape data were defined to ensure that each data point had the same anatomical meaning, making it 
possible to statistically analyze the 3D shape data. In these studies, 3D foot shape was estimated by 
fitting the deformable model to the actual foot shape. It was expected that sufficient accuracy could be 
achieved without a large amount of data, but it was necessary to fix multiple cameras in appropriate 
positions for camera calibration. As this camera calibration process is difficult for ordinary users, this 
cannot be described as a simple system. 
 
In the method proposed here, we generated the deformable model using the same approach as 
Amstutz et al. [9], but rather than multiple viewpoint images, we used a 3D point cloud as input. By 
using a smartphone camera that automatically estimates self-position, it was also possible to acquire a 
point cloud as input using a handheld device. 

3. Proposed method 

To realize our goal of designing a simple system to accurately estimate 3D foot shape, we used a 
deformable model and a 3D point cloud acquired by a smartphone depth camera. The system 
overview is shown in Fig. 1. For preprocessing, we performed a PCA on the 3D foot shape dataset, in 
which one of the principal components indicated a particular foot shape. This enabled us to reconstruct 
the foot shape from principal component parameters to generate the deformable model. To compare 
the deformable model and the point cloud of the 3D foot shape, the foot portion of the acquired point 
cloud was extracted by removing the floor and any parts above the ankle. After processing, we aligned 
the deformable model and the captured point cloud. Finally, we defined the evaluation function referred 
to in section 3.5, and the actual 3D foot shape was estimated by optimizing the shape parameters. 
 

 

Fig. 1. System overview 
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3.1. Segmentation 

Having acquired a point cloud of the real foot using a smartphone camera, excluding objects other than 
the foot, the point cloud still contained additional elements such as the floor and the area above the 
ankle as shown in Fig. 2(a), making point cloud segmentation necessary. To begin, we detected the 
point cloud of the floor plane and removed it (Fig. 2(b)), using the RANSAC algorithm [10] for plane 
parameter estimation. Next, we extracted the point cloud within 10 cm of the floor and isolated the 
point cloud of the foot shape. As outliers were included in the acquired point cloud, we performed the 
following filtering. For each point, we calculated the average distance to a certain number of 
neighborhood points and assumed a Gaussian distribution. Any point at an average distance larger 
than the interval defined by the average value and the standard deviation of a Gaussian distribution 
was regarded as an outlier and was excluded from the acquired point cloud. This process eventually 
yielded the point cloud of the foot (Fig. 2(c)). 
 

 

Fig. 2. (a) Point cloud acquired by smartphone depth camera; (b) after removing plane; (c) after filtering and 
extracting foot shape 

 

3.2. Dataset 

To generate a deformable foot model, we used the dataset created by [11]. Each foot shape in the 
dataset included mesh information, and the coordinate system was set to a size measurement 
standard. A sample from the dataset is shown in Fig. 3.  
 
Each foot �� in the dataset of � feet was described by the same � vertices, as defined by anatomy 
specialists. The initial shape of the deformable model �� was defined as the average shape of each 
3D foot shape in the dataset as follows: 
 �� = (�	, �	, �	, �
, �
, �
, … , �� , �� , ��)T, � = 1, 2, … , �  (1) 

 �� = 	� ∑ �����	   (2) 

 

      

 

3.3. Definition of shape parameters by PCA 

We performed a PCA on the 3D foot shape dataset, making it possible to reproduce each data point in 
low dimensions while suppressing information loss as far as possible. Here, the i-th principal 
component is denoted as ��  (1 ≤ � ≤ �) and � = min (�, �). 
 

Fig. 3. A sample from the dataset of 3D 
foot shapes 

Fig. 4. Cumulative contribution rate 
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The rate of variance of each data point on the i-th principal component to the sum of variance of �	 , �
, … , �� is called the contribution rate; the cumulative contribution rate can be calculated by adding 
the contribution rate in order from the first principal component. Fig. 4 traces the cumulative 
contribution rate for a dataset of 68 men’s foot shapes used in this study. In the proposed method, 
principal components up to the 12th principal component were adopted as shape parameters of the 
deformable model, following Amstutz et al. [9]. 
 
In Fig. 4, the cumulative rate to the 12th principal component exceeds 93%, which means that foot 
shape variations for 93% of the dataset can be described in the 12th principal component space. The 
3D foot shape in the model can be deformed using the following formula: 
 �′ = �� + ∑ !"#�	
"�	   (3) 

 
where each element of the principal component score vector $ = (!	 , !
 , … , !	
)T is the shape 
parameter coefficient, and the model can be deformed from the average shape by changing the value 
of $. In the proposed method, 3D foot shape is estimated by optimizing the principal component score 
vector $ so that the difference between the model and the acquired point cloud is minimized. 
 

3.4. Initial alignment 

Before deforming the shape of the model, it was first necessary to align the 3D point cloud with the 
coordinate system of the deformable model. When using the ICP algorithm [12], which is widely 
employed as a method of 3D point cloud alignment, a nearest point from the other point cloud is 
searched as a corresponding point for each point of a point cloud and to estimate a rigid transformation 
that minimizes the distance between corresponding points. However, the ICP algorithm is used in case 
each point cloud represents the same shape object; it cannot estimate a rigid transformation for sparse 
point clouds or in cases where initial alignment has failed. For that reason, the ICP algorithm was not 
used here. 
 
Instead, we performed the initial alignment by rigid transformation of the acquired point cloud 
according to the coordinate system of the foot shape model. The flow of the initial alignment is shown 
in Fig. 5. First, PCA was performed on the acquired point cloud %& to obtain a vector that indicates the 
direction from heel to toe. In section 3.3, PCA was performed on the foot shape dataset to reduce the 
dimension of shape parameters of the deformable model; in this case, it was used to calculate a vector 
in the direction of largest variance. The first principal component of the acquired point cloud is denoted 
as '	. The normal vector of the floor plane estimated in section 3.1 is denoted as ()*�+. The acquired 
point cloud %& is rotated to the same posture as the deformable model , using the rotation matrix - 
as follows: 
 - = (.)*�+ , /)*�+ , ()*�+)0	  (4) 
Here, /)*�+ = ()*�+ × '	, .)*�+ = /)*�+ × ()*�+. The center of gravity of the model , is then denoted as (�2,, �3,, �2,), the center of gravity of the rotated point cloud %	 is denoted as 4�2%5 , �3%5 , �2%56, and the 

respective centers of gravity are matched by the translation vector 7	 as follows: 
 

7	 = 8�2, − �2%5�2, − �2%5�2, − �2%5 :  (5) 

 
The x coordinate of the point with the minimum x coordinate in the translated acquired point cloud %
 

is then denoted as ��%;. The respective heel positions are matched by the transformation vector 7
 as 
follows: 
 

7
 = <−��%500 >  (6) 
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Finally, the scaling transformation is performed on the model ,. The x coordinate of the points with the 

maximum x coordinate in the model , and in the point cloud %? are denoted as �@, , �@%A and B =�@%A/�@, . The respective lengths from heel to toe are rendered equal by the scaling matrix D as follows: 

 D = EB 0 00 B 00 0 BF  (7) 

 

The model after scaling transformation is denoted as ,′.  

 

 

Fig. 5. Flow of initial alignment 

 

3.5. Evaluation function 

The evaluation function is defined as the distance error between the model ,′ and the point cloud %? following initial alignment. The 3D foot shape is estimated by deforming the model to minimize the 
error. The deformable model comprises G meshes. First, the point in the acquired point cloud closest 
to the inner center HIJ(K�) of each mesh K�(1 ≤ � ≤ G) constituting the model is determined as the 
corresponding point H� of each mesh. The distance error L� between the corresponding point and the 
mesh plane is shown in the following equation: 
 L� = M4H� − HIJ(K�)6 ∙ O(K�)M  (8) 

Here, O(K�) is the normal vector of each mesh K� of the deformable model. As the vertex of the 
deformable model is determined by the principal component score vector $, the inner point and the 
normal vector of each mesh is also regarded as a function of $. The distance error can therefore be 
described as a function of $. The evaluation function is defined as the sum of squares of the distance 
error calculated by equation (8) for all meshes whose corresponding point distance meets a certain 
threshold. Optimization is performed using the Levenberg-Marquardt method [13]. 
 P = ∑ L�
@Q∈@   (9) 

 
3.4.1. Occlusion problems 

As shown by the red ellipse in Fig. 6, the point cloud of the sole and around the ankle are omitted in the 
acquired point cloud due to occlusion. If corresponding points are sought for all meshes without 
considering occlusion, distances to the wrong corresponding points are included in the optimization 
calculation. Because the mesh of the deformable model is regular, it is possible to judge whether a 
mesh is of a certain area, and the meshes constituting the sole part of the deformable model are 
therefore excluded in advance from calculation of the evaluation function P. In addition, even in cases 
where the corresponding point distance exceeds a certain threshold, it is regarded as the mesh that 
corresponds to the point of the missing part. 
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Fig. 6. Parts omitted due to occlusion 

4. Experiments and results 

The 3D foot shape dataset [11] to generate a deformable model in the experiment comprises 68 male 
feet, each composed of 295 vertices. When acquiring a 3D point cloud for a foot by oneself, the 
smartphone is moved to capture the shape of the entire foot. The actual experimental condition is 
shown in Fig. 7. As the ASUS ZenFoneAR smartphone used in this experiment can automatically 
perform motion tracking while taking depth map images, it is possible to acquire a wide range of point 
cloud by linking depth map images to device movement. In this experiment, 3D foot shape is estimated 
by fitting the deformable model to the input point cloud of the subject’s own foot as acquired by the 
smartphone. For evaluation purposes, we compared the resulting foot shape quantitatively with the 
high-accuracy measurement of the actual foot shape as captured by a 3D scanner. For measurement 
of the ground truth, we used Eyewear Laboratory’s INFOOT 3D foot scanner [14]. 
 

 

Fig. 7. Experiments in self-acquisition of a point cloud using a smartphone camera 

 

 

4.1 Initial alignment 

Following alignment of the acquired point cloud and the deformable model, the scaling transformation 
was performed on the model so that the each foot length was equal. Fig. 8 shows the position and 
posture of each foot shape to be identically aligned. 
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Fig. 8. Alignment outcome 

 

(a)  

 

(b)  

Fig. 9. Error distribution (a) before deformation and (b) after deformation 

 

4.2 Reconstruction of 3D foot shape 

The result of model deformation is shown in Fig. 9. The mesh color is displayed in the order red, yellow, 
green and blue. Fig. 9 shows that some parts of the distance error become smaller following 
deformation. The distribution error of the finally estimated foot shape is visualized in Fig. 10. The entire 
foot shape is estimated by compensating for the part omitted by occlusion in the acquired point cloud. 
In addition, the shape of the deformable model is not collapsed by fitting but is deformed while 
maintaining the natural foot shape. 
 

 

Fig. 10. Error distribution of the computed 3D foot shape in 6 views. Upper left: outer instep. 

Upper right: inner instep. Middle left: outside of the foot. Middle right: inside of the foot. 

Lower left: heel and sole. Lower right: upper side of the foot. 
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5. Discussion 

The average distance between the meshes of two 3D shapes was defined as measurement error, and 
the 3D shape reconstructed by the proposed method was compared to the 3D shape scanned by the 
3D foot scanner. The resulting measurement error was 1.13 mm.  
 
As shown in Fig. 10, the top part of the foot was estimated with high accuracy, but the side part 
incurred a large error. In particular, the error was large for the inner side surface. This is because there 
are more omitted parts of the acquired point cloud on the inner side surface of the foot than on the 
instep part, and the correct shape cannot be estimated. Fig. 9 also shows that the error for the side 
part following deformation becomes larger. In fact, because it is necessary to move a certain distance 
from the target object to take a depth map image, it is difficult to acquire a finely shaped point cloud. It 
follows that since the surface of the point cloud in the range approximately 1 cm above the floor has 
not been acquired due to occlusion, it is transformed and differs from the real shape following 
optimization. In the experiment, the estimation result depended on the 3D point cloud acquired by the 
smartphone depth camera. 

6. Conclusion 

This paper describes a simple 3D scanning system that estimates 3D foot shape by using a 3D point 
cloud captured by a smartphone depth camera. This system uses a deformable model generated by 
PCA of a dataset of 3D foot shape data and employs optimization to minimize the distance between 
the acquired point cloud and the mesh plane of the deformable model. The findings confirm that it is 
possible to deform the model shape while maintaining a foot-like shape even where there is occlusion 
or noise in the input point cloud. The evaluation experiment yielded a measurement error of 1.13 mm, 
confirming that foot shape could be estimated with sufficient accuracy to select the correct shoe size. It 
was also shown that the entire foot shape can be estimated even when the input is compromised by 
missing data or noise. Additionally, by acquiring a 3D point cloud using a smartphone depth camera, 
the required input data for shape estimation can readily be obtained by this simple 3D scanning 
system. 
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