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Abstract. Today, cameras have become smaller and cheaper and can be
utilized in various scenes. We took advantage of that to develop a thumb
tip wearable device to estimate joint angles of a thumb as measuring
human finger postures is important in terms of human-computer inter-
face and to analyze human behavior. The device we developed consists
of three small cameras attached at different angles so the cameras can
capture the four fingers. We assumed that the appearance of the four fin-
gers would change depending on the joint angles of the thumb. We made
a convolutional neural network learn a regression relationship between
the joint angles of the thumb and the images taken by the cameras. In
this paper, we captured the keypoint positions of the thumb with a USB
sensor device and calculated the joint angles to construct a dataset. The
root mean squared error of the test data was 6.23 and 4.75 degrees.

Keywords: Wearable device - Human computer interaction - Pose esti-
mation.

1 Introduction

Human sensing has become an increasingly indispensable technology in recent
years. Contributions to promoting human health by measuring and analyzing
human behavior is needed in the world where the number of aging individuals
is increasing. In addition, human-computer interfaces are becoming essential as
many people use multiple computers. In particular, finger posture measurement
is important in designs for people to make devices that are easy to use and
virtual reality which has become popular in recent years.

Methods for measuring finger posture can be roughly divided into three cate-
gories depending on where a sensor is attached: the environment, specific object,
or the hand itself.

Environment A convolutional neural network (CNN) achieves amazing re-
sults in various areas of computer vision, including hand keypoint detection.
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Methods were proposed to improve the detector by reconstructing three-
dimensional (3D) hand keypoints and reprojecting them when generating
training data [8], and to estimate the 3D hand keypoints from RGB im-
ages [11] and from RGB-D images [6]. There is also a hand pose estimation
method using RGB-D images and a machine learning method other than
CNN [9]. These methods do not require attaching the sensor to the hand,
but the measurement could fail if the hand hides from the sensor.

Specific object Studies have measured hand motion with a sensor attached to
a specific object. For instance, a fisheye camera was fixed to the top of a
bottle to estimate how the hand grips the bottle [3], and a band sensor was
developed to estimate the grasping hand posture [5]. Although the sensor is
robust against occlusion when the sensor is attached to a specific object, the
sensor can measure only when a human is interacting with the object.

Hand itself Many wearable devices were proposed since they are robust to the
occlusion. A typical wearable sensor is a data glove. It is possible to calculate
the joint angles of the hand with a sensor embedded in the glove. Data gloves
need to cover the whole hand, wrist-worn sensors [4, 2, 7] and a camera [10]
were developed to classify the hand pose. A fisheye camera ring was also
developed to estimated hand gestures and palm writing by acquiring an
image of a hand inside [1].

Our device is also attached to the hand itself. However, unlike previous stud-
ies, we utilize multiple cameras in this research. Today, cameras have become
smaller and cheaper and can be expected to be utilized in various scenes. We
take advantage of that to develop a thumb tip wearable device to measure joint
angles of a thumb. The device consists of three small cameras attached at dif-
ferent angles so that the cameras can capture the four fingers. We assume that
the appearance of the four fingers will change depending on the joint angles of
the thumb.

With the advent of CNNs, it is possible to link input images and their labels
automatically as long as there is a large amount of training data. The regression
relationship between the joint angles and the images taken by the cameras is
learned by the CNN. In this paper, we conduct an initial experiment to assess
the effectiveness of the developed device. We captured the keypoint positions of
the thumb with the Leap Motion (Leap Motion, https://www.leapmotion.com,
last accessed: May 5, 2018) and calculated the joint angles of the thumb.

Our contributions are summarized as follows:

— We develop a thumb tip wearable device that use multiple small and inex-
pensive cameras. It can be easily attached to the thumb and used to estimate
the thumb posture.

— We suggest that the finger joint angles can be estimated from the appearance
of the fingers with the CNN.
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Fig. 1. The thumb tip wearable device we Fig. 2. 6, and 6 are calculated by find-

developed. Three cameras (left, circled) and ing the inner product of three vectors
their driving circuits are fixed to the device V4i, Vip and vmc from the 3D posi-
(center). The device can be attached to the tions of the four thumb keypoints; Ptip>
thumb as shown on the right. Pips Pmp and pcm .

2 Methodology

First, we describe the device we developed. We then explain the constructed
dataset. Afterward, we describe the CNN architecture.

2.1 Device

We developed the thumb tip wearable device shown in Fig. 1. We use three
small cameras which are arranged at 30° intervals to capture the four fin-
gers. The cameras are TU233N2-Z manufactured by Sony Semiconductor So-
lutions Corporation (IU233N2-Z/TU233N5-Z, https://www.sony-semicon.co.
jp/products_en/new_pro/december_2016/iu233_e.html, last accessed: May
5, 2018). The driving circuits are also fixed to the device.

2.2 Dataset

In this research, a dataset is constructed by using the images captured by the
cameras as input data and the joint angles of the thumb acquired by the Leap
Motion as the outputs. Fig. 3 shows the scenes building the dataset. The acquired
image and the 3D positions of the hand keypoints change according to the hand
shape. Three captured images are converted to grayscale, resized to 1/8 in height
and width, and then connected in the vertical direction to make a single grayscale
image of 80 x 180 pixels (examples are in Fig. 3 (b) (b’)). The Leap Motion can
easily acquire the 3D positions of the hand keypoints, but the accuracy is inferior
to motion capture. Therefore, data is acquired only at the frame when the two
joint angles 61 and 60, of the thumb are larger than 0 degrees and smaller than
120 degrees. 61 and 0, are calculated by finding the inner product of three vectors
Vii, Vi and vmce from the 3D positions of the four thumb keypoints; tip Ptip
interphalangeal joint Pip metacarpophalangeal joint pmp and carpometacarpal
joint pem. These relationships are shown in Fig. 2.



4 N. Ienaga et al.

Fig. 3. Examples of the data collection. We used the device consisting of three cameras
and the Leap Motion (a) and (a’). Three captured images are converted to grayscale,
and then connected in the vertical direction to make a single image (b) and (b’). The
Leap Motion provides the 3D positions of the hand keypoints (c) and (¢’).

Table 1. The CNN architecture. We repeat the first part three times and double the
number of filters of the convolutional layer at each time. The activation function, ReLLU,
is used after all convolutional and fully connected layers. The batch normalization is
used before all max pooling layers. After the first two fully connected layers, the dropout
is 50%.

Layer‘Filter size, strides or number of units

Input 80 x 180 x 1
Convolutional| 3 x 3 x (1st:32, 2nd:64, 3rd:128), 1
Convolutional| 3 x 3 x (1st:32, 2nd:64, 3rd:128), 1

Max pooling 2 x 2,2
Fully connected 1024
Fully connected 1024
Fully connected 2

2.3 Network

The regression relationship for predicting the output value #; and 65 estimated
from the input image is learned by the CNN. The architecture of the CNN is
shown in Table 1.

3 Experiment

The input image was scaled so that each pixel value falls within the range of
[0, 1]. Then the average of all input data was subtracted from the input data
and divided by the standard deviation of all input data. The training data was
shuffled randomly. The input data was augmented by random flipping (left to
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m— (raining

m— validation

Table 2. MSE and RMSE of the testing.
Thumb angle| 6 6o
MSE[deg.”] [38.83]22.52
RMSEldeg.] | 6.23 | 4.75

0 20 40 60 80 100 120 140 160 180 200
epoch

Fig. 4. Training and validation loss.

Table 3. Correct and predicted joint angles of the thumb, and the MSE and RMSE
of Fig. 5’s scene 1 and scene 2.

Correct 01, 02 |Predicted 61, 62 MSE[deg.Q] RMSE|[deg.]
scene 1|2.58 4.27 [15.69 8.68 171.70 19.42{13.10 4.41
scene 2(30.12 21.14 (20.19 16.00 98.57 26.47| 9.93 5.14

right) and random rotation by a random angle (max angle is 25). We used the
Adam optimizer (57 = 0.9, 82 = 0.999, e = 1.0). The learning rate was 0.03, and
the batch size was 256. Loss function was the mean squared error (MSE). One
male subject gathered a dataset while moving his hands randomly and keeping
the palm level with the Leap Motion; 17931 frames were collected at around
30 fps (8997 frames with the right hand and 8934 frames with the left hand).
Of those, 12553 frames were used for training, and 2689 frames were used for
validation and testing. The training curve is illustrated in Fig. 4.

As the result of the validation because the loss of 95 epochs was the smallest
(MSE: 31.93), we tested using the CNN learned with 95 epochs. The results of
the MSE and the root mean squared error (RMSE) of the testing are shown in
Table 2. Two testing examples and the results are shown in Table 3 and Fig. 5.

4 Discussion

Fig. 6 shows a breakdown of the angle of the dataset. It is understood that most
data is less than 40 degrees. There are some possible reasons for this.

The first is that it is difficult to move one’s hand completely randomly. If we
moved our hands randomly, we would not cover the inner range of the motion.
To solve this problem, it is necessary to first generate movements that uniformly
cover the inner motion range and to have the subjects imitate the movements
as much as possible to create a dataset.

The next reason is the accuracy limit of the Leap Motion. This time, we
used the Leap Motion because it is easy to use. However, especially when the
thumb was bent deeply (61 and 05 are large), we could not measure it properly.
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scene 1 scene 2
Leap Motion Predicted % | Leap Motion | Motion Predicted
(b) (b))

Fig. 5. Two specific examples of testing, scene 1 and scene 2. the hand states (a) and
(a’), and the states of the thumb are reconstructed by 6, and 0, (b) and (b’). The left
of (b) and (b’) was created based on 6; and 62 acquired by the Leap Motion, and the
right was created based on the predicted 61 and 6>. Note that other parameters (e.g.,
finger length) are appropriate values because only angles were estimated.

.
s 9,

<10 <20 <30 <40 <50 <60 <70 <80 <90 90<=
angle[deg.]

Fig. 6. A breakdown of the angle of the dataset. For example, about 25% of the dataset
is data with 6 less than 10 degrees.

In scene 1 of Fig. 5, the thumb is straight (a), and the illustration of the thumb
created based on the thumb angles acquired by the Leap Motion (the left of
(b)) is almost straight. However, in scene 2, the thumb actually (a’) bends much
more than the illustration (the left of (b’)). To build a more accurate dataset,
we have to use motion capture.

The limited accuracy may be caused by the device. The part that integrates
the driving circuits with the device was large and hard, and cables between
the cameras and the driving circuits were at the tip of the thumb. This de-
sign hindered the thumb movement. Again, cameras have become smaller and
cheaper recently. We believe that this trend will continue. Camera images could
be available via Wi-Fi or Bluetooth. Thus, these camera problems will be solved
someday. Although we used three cameras this time, we are considering using
more cameras to acquire more information in the future.

5 Conclusions

Taking advantage of the fact that cameras have become smaller and cheaper
recently, we developed a thumb tip wearable device that can be easily attached
to a thumb tip to measure the joint angles of the thumb as measuring finger
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movements has become an important technique especially in recent years. We
proposed a method using a CNN to estimate the joint angles. We experimentally
suggested that the finger joint angles wearing the device could be estimated by
the state of the fingers.

We ignored the background of the input image; its influence was unknown
(e.g., when the background changes). It may be necessary to incorporate some
foreground (e.g., the hand) segmentation process into our deep learning frame-
work.

In the future, we would like to propose a device and a method that can
estimate joint angles other than the finger to which the device is attached by
increasing the number of cameras and devising their arrangement. Furthermore,
the device and the construction method of the dataset will be also improved.
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